首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work investigates the electrical properties of NiO–SDC/SDC anode sintered at approximately 1200°C for 1 h via the microwave method. Nanopowders Sm0.2Ce0.8O1.9 (SDC—samaria-doped ceria) and NiO were mixed using a high-energy ball mill and subsequently co-pressed at three different compaction pressures of 200, 300, and 400 MPa. This study determines the effect of compaction pressure on the electrochemical performance of Ni–SDC/SDC anode, with no binder used between layers. The electrical behavior of the prepared anode was studied via electrochemical impedance spectroscopy in controlled atmospheres, operating at high temperatures (600–800°C). The results indicate that decreasing the compaction pressure and increasing the operating temperature lead to a high electrochemical performance of the nonsymmetrical NiO–SDC/SDC anode. The mechanism for manufacturing NiO–SDC/SDC involves ball milling, dry pressing, and microwave furnace sintering processes.  相似文献   

2.
Gold nanoparticles (AuNPs) have been extensively used for decades in biosensing-related development due to outstanding optical properties. Peptides, as newly realized functional biomolecules, are promising candidates of replacing antibodies, receptors, and substrates for specific molecular interactions. Both peptides and AuNPs are robust and easily synthesized at relatively low cost. Hence, peptide–AuNP-based bio-nano-technological approaches have drawn increasing interest, especially in the field of molecular targeting, cell imaging, drug delivery, and therapy. Many excellent works in these areas have been reported: demonstrating novel ideas, exploring new targets, and facilitating advanced diagnostic and therapeutic technologies. Importantly, some of them also have been employed to address real practical problems, especially in remote and less privileged areas. This contribution focuses on the application of peptide–gold hybrid nanomaterials for various molecular interactions, especially in biosensing/diagnostics and cell targeting/imaging, as well as for the development of highly active antimicrobial/antifouling coating strategies. Rationally designed peptide–gold nanomaterials with functional properties are discussed along with future challenges and opportunities.  相似文献   

3.
This work presents a novel and simple route for the synthesis of water-soluble core–shell chitosan–gold nanocomposites. The experimental procedure can be summarized by the following steps: (i) chitosan deacetylation, (ii) chitosan depolymerization, (iii) chitosan nanoparticles’ formation and (iv) chitosan–gold nanocomposite formation. FT-IR spectroscopic results indicate that the formation of chitosan nanoparticles (ChtNPs) occurs via NH3+ and PO groups electrostatic interactions, while UV–vis spectra points to a possible embedding of gold nanoparticles into the ChtNPs. This feature was confirmed by electronic transmission microscopy measurements. Chitosan and gold are biocompatible materials. Added to this, the obtained chitosan–gold nanocomposites presented thermal and absorbance properties which strongly point to their potential use in phototherapeutic processes.  相似文献   

4.
It is known that optical activities can perform rotations. It is shown that the rotation, if modulated by attenuations, can perform symmetry operations of Wigner's little group which dictates the internal space–time symmetries of elementary particles.  相似文献   

5.
Perovskite solar cells (PSCs) based on the SnO2 electron transport layer (ETL) have achieved remarkable photovoltaic efficiency. However, the commercial SnO2 ETLs show various shortcomings. The SnO2 precursor is prone to agglomeration, resulting in poor morphology with numerous interface defects. Additionally, the open circuit voltage (Voc) would be constrained by the energy level mismatch between the SnO2 and the perovskite. And, few studies designed SnO2-based ETLs to promote crystal growth of PbI2, a crucial prerequisite for obtaining high-quality perovskite films via the two-step method. Herein, we proposed a novel bilayer SnO2 structure that combined the atomic layer deposition (ALD) and sol-gel solution to well address the aforementioned issues. Due to the unique conformal effect of ALD-SnO2, it can effectively modulate the roughness of FTO substrate, enhance the quality of ETL, and induce the growth of PbI2 crystal phase to develop the crystallinity of perovskite layer. Furthermore, a created built-in field of the bilayer SnO2 can help to overcome the electron accumulation at the ETL/perovskite interface, leading to a higher Voc and fill factor. Consequently, the efficiency of PSCs with ionic liquid solvent increases from 22.09% to 23.86%, maintaining 85% initial efficiency in a 20% humidity N2 environment for 1300 h.  相似文献   

6.
V ions exhibit cytotoxicity in a culture medium from concentrations of ≧0.2 mg/L. Ti, Zr, Nb and Ta are biocompatible elements. A new Ti–15Zr–4Nb–4Ta alloy for medical implants is being developed. Its microstructure, mechanical properties, corrosion resistance and corrosion fatigue properties in a physiological saline solution, biocompatibility with cultured cells, new bone tissue response through rat tibia implantation and surface modification are discussed. Medical applications will be also addressed.  相似文献   

7.
8.
Craig Clemons 《Composites Part A》2010,41(11):1559-1569
Blends of polyethylene (PE) and polypropylene (PP) could potentially be used as matrices for wood–plastic composites (WPCs). The mechanical performance and morphology of both the unfilled blends and wood-filled composites with various elastomers and coupling agents were investigated. Blending of the plastics resulted in either small domains of the minor phase in a matrix of major phase or a co-continuous morphology if equal amounts of HDPE and PP were added. The tensile moduli and yield properties of the blends were clearly proportional to the relative amounts of HDPE and PP in the blends. However, the nominal strain at break and the notched Izod impact energies of HDPE were greatly reduced by adding as little as 25% of the PP. Adding an ethylene–propylene–diene (EPDM) elastomer to the blends, reduced moduli and strength but increased elongational properties and impact energies, especially in HDPE-rich blends. Adding wood flour to the blends stiffened but embrittled them, especially the tougher, HDPE-rich blends, though the reductions in performance could be offset somewhat by adding elastomers and coupling agents or a combination of both.  相似文献   

9.
10.
Graphene was successfully modified with gold nanoparticles in a facile route by reducing chloroauric acid in the presence of sodium dodecyl sulfate, which is used as both a surfactant and reducing agent. The gold nanoparticles–graphene hybrids were characterized by high-resolution transmission electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, X-ray diffraction and energy X-ray spectroscopy. We demonstrate for the first time that the gold nanoparticles–graphene hybrids can act as efficient catalysts for the Suzuki reaction in water under aerobic conditions. The catalytic activity of gold nanoparticles–graphene hybrids was influenced by the size of the gold nanoparticles.  相似文献   

11.
12.
Metal–organic frameworks (MOFs) are an intriguing type of crystalline porous materials that can be readily built from metal ions or clusters and organic linkers. Recently, MOF materials, featuring high surface areas, rich structural tunability, and functional pore surfaces, which can accommodate a variety of guest molecules as proton carriers and to systemically regulate the proton concentration and mobility within the available space, have attracted tremendous attention for their roles as solid electrolytes in fuel cells. Recent advances in MOFs as a versatile platform for proton conduction in the field of humidity condition proton-conduction, anhydrous atmosphere proton-conduction, single-crystal proton-conduction, and including MOF-based membranes for fuel cells, are summarized and highlighted. Furthermore, the challenges, future trends, and prospects of MOF materials for solid electrolytes are also discussed.  相似文献   

13.
Si–Ni nanorod structures as anode materials for Li ion batteries have been prepared by depositing Si coatings on electrodeposited Ni nanocone arrays using plasma enhanced chemical vapor deposition. The obtained samples were characterized by field emission scanning electron microscopy and X-ray diffraction. The electrochemical performance was evaluated by a galvanostatic battery testing. It is shown that the first discharge capacity is high as 4125 mAh/g with a high first coulombic efficiency of 92% at C/20 rate. A capacity of 3249 mAh/g at C/5 rate is attained with retention of 95.7% after 30 cycles.  相似文献   

14.
Metal–organic frameworks (MOFs)/coordination polymers are promising materials for gas separation, fuel storage, catalysis, and biopharmaceuticals. However, most applied research on MOFs is limited to these functional materials thus far. This study focuses on the potential of MOFs as structural adhesives. A sintering technique is applied to a zeolitic imidazolate framework-67 (ZIF-67) gel that enables the joining of Cu substrates, resulting in a shear strength of over 30 MPa, which is comparable to that of conventional structural adhesives. Additionally, systematic experiments are performed to evaluate the effects of temperature and pressure on adhesion, indicating that the removal of excess 2-methylimidazole and the by-product (acetic acid) from the sintered material by vaporization results in a microstructure composed of large spherical ZIF-67 crystals that are densely aggregated, which is essential for achieving a high shear strength.  相似文献   

15.
We report a novel 3-D cavity wound dressing based on a hydrogel–elastomer Interpenetrating Polymer Network (IPN) fabricated into an open-mesh architecture. IPN fibers used to form the dressing were produced by a wet spinning method and optimized in two steps. A factorial experiment was first conducted to identify key parameters that controlled fiber properties. We observed that gelatin wt% played a major role in determining fiber yield, swelling, strength and stability. Other contributing factors included coagulation solution composition, gelatin type, and pre- and post-UV irradiation time. The key factors were then further evaluated individually to achieve a condition that provided a combination of good swelling, mechanical properties and stability. The concentration of the gelatin/HydroThaneTM extrusion solution significantly affected fiber formation and properties, presumably due to the changes in solution viscosity. The effects of pre-UV irradiation were also ascribed to its impact on the solution viscosity and became negligible at higher concentrations when viscosity is mainly controlled by concentration. The composition of the coagulation bath influenced the fiber swelling and wet stress. These results, taken together with our previous studies, suggest that our biomaterial would provide a combination of mechanical and swelling properties suitable for wound dressing applications.  相似文献   

16.
We analyze modern methods for calculating heat and hydrodynamic flow parameters in a boundary layer during the laminar–turbulent transition. The main approaches for describing the phenomenon of laminar–turbulent transition are examined. Each approach is analyzed. The manner in which different factors influence the laminar–turbulent transition is studied. An engineering model of the laminar–turbulent transition in a high-velocity flow is presented.  相似文献   

17.
《工程(英文)》2020,6(2):165-172
Given the increasing concern regarding the global decline in rare earth reserves and the environmental burden from current wet-process recycling techniques, it is urgent to develop an efficient recycling technique for leftover sludge from the manufacturing process of neodymium–iron–boron (Nd–Fe–B) sintered magnets. In the present study, centerless grinding sludge from the Nd–Fe–B sintered magnet machining process was selected as the starting material. The sludge was subjected to a reduction–diffusion (RD) process in order to synthesize recycled neodymium magnet (Nd2Fe14B) powder; during this process, most of the valuable elements, including neodymium (Nd), praseodymium (Pr), gadolinium (Gd), dysprosium (Dy), holmium (Ho), and cobalt (Co), were recovered simultaneously. Calcium chloride (CaCl2) powder with a lower melting point was introduced into the RD process to reduce recycling cost and improve recycling efficiency. The mechanism of the reactions was investigated systematically by adjusting the reaction temperature and calcium/sludge weight ratio. It was found that single-phase Nd2Fe14B particles with good crystallinity were obtained when the calcium weight ratio (calcium/sludge) and reaction temperature were 40 wt% and 1050 °C, respectively. The recovered Nd2Fe14B particles were blended with 37.7 wt% Nd4Fe14B powder to fabricate Nd–Fe–B sintered magnets with a remanence of 12.1 kG (1 G = 1 × 10−4 T), and a coercivity of 14.6 kOe (1 Oe = 79.6 A·m−1), resulting in an energy product of 34.5 MGOe. This recycling route promises a great advantage in recycling efficiency as well as in cost.  相似文献   

18.
Nanoparticles (NPs) were prepared from succinylated gelatin (s-GL) cross-linked with aldehyde heparin (a-HEP) and used subsequently as a nano-template for the mineralization of hydroxyapatite (HAP). Gelatin was functionalized with succinyl groups that made it soluble at room temperature. Heparin was oxidized to generate aldehyde groups and then used as a cross-linker that can react with s-GL to form NPs via Schiff’s base linkage. The polymer concentrations, feed molar ratios and pH conditions were varied to fabricate NPs suspension. NPs were obtained with a spheroid shape of an average size of 196 nm at pH 2.5 and 202 nm at pH 7.4. These NPs had a positive zeta potential of 7.3 ± 3.0 mV and a narrow distribution with PDI 0.123 at pH 2.5, while they had a negative zeta potential of ?2.6 ± 0.3 mV and formed aggregates (PDI 0.257) at pH 7.4. The NPs prepared at pH 2.5 with a mean particle size of 196 nm were further used for mineralization studies. The mineralization process was mediated by solution without calcination at 37 °C. The HAP formed on NPs was analyzed by Fourier transform infrared spectroscopy and X-ray diffraction. HAP coated s-GL/a-HEP NPs developed in this study may be used in future as osteoinductive fillers enhancing the mechanical properties of injectable hydrogel or use as potential multifunctional device for nanotherapeutic approaches.  相似文献   

19.
Hydrogen, a clean and flexible energy carrier, can be efficiently produced by electrocatalytic water splitting. To accelerate the sluggish hydrogen evolution reaction and oxygen evolution reaction kinetics in the splitting process, highly active electrocatalysts are essential for lowering the energy barriers, thereby improving the efficiency of overall water splitting. Combining the distinctive advantages of metal–organic frameworks (MOFs) with the physicochemical properties of 2D materials such as large surface area, tunable structure, accessible active sites, and enhanced conductivity, 2D MOFs have attracted intensive attention in the field of electrocatalysis. Different strategies, such as improving the conductivities of MOFs, reducing the thicknesses of MOF nanosheets, and integrating MOFs with conductive particles or substrates, are developed to promote the catalytic performances of pristine MOFs. This review summarizes the recent advances of pristine 2D MOF-based electrocatalysts for water electrolysis. In particular, their intrinsic electrocatalytic properties are detailly analyzed to reveal important roles of inherent MOF active centers, or other in situ generated active phases from MOFs responsible for the catalytic reactions. Finally, the challenges and development prospects of pristine 2D MOFs for the future applications in overall water splitting are discussed.  相似文献   

20.
Poly(hydroxyethyl methacrylate)/silica (PHEMA/SiO2) hybrid organic–inorganic nanocomposites were prepared through the simultaneous polymerization of 2-hydroxyethyl methacrylate and tetraethoxysilane. PHEMA/SiO2 materials were obtained as monolithic and transparent films consisting of silica nanoparticles (diameter below 100 nm) surrounded by the PHEMA matrix. The films were crushed into fine powder and the PHEMA/SiO2 particles were used as filler of methacrylate monomers. The polymeric methacrylate present in the PHEMA/SiO2 hybrid particles improves the compatibility of the filler with the methacrylate monomer to be photopolymerized, resulting in enhanced wetting capabilities. The composites prepared from PHEMA/SiO2-prepolymerized particles offer the possibility of reduced polymerization shrinkage without severe reductions in flow characteristics of the precured polymers. The monomer conversions of composites prepared with either 30 or 60 wt% PHEMA/SiO2 particles were similar. This indicates that the penetration of visible radiation into the sample is not reduced significantly by the presence of the filler.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号