首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
针对新型冠状病毒的战役仍在继续,人类与病毒的对抗尚未停歇。防护工作是抗击疫情的第一防线,防疫用品则是战“疫”中披荆斩棘的铠甲。面对突然爆发的疫情,如何帮助人们做好防护工作?便捷有效的个人防疫用品是关键。本文针对疫情爆发期间暴露的防疫问题和需求进行分析,应用设计思维与方法,提出针对个人防疫产品设计的解决方案。通过具体的设计案例,为个人疫情预防产品的设计提供相关参考,提高防疫效率,确保民众的生命安全。  相似文献   

2.
《工程(英文)》2021,7(7):948-957
The coronavirus disease 2019 (COVID-19) pandemic is a global crisis, and medical systems in many countries are overwhelmed with supply shortages and increasing demands to treat patients due to the surge in cases and severe illnesses. This study aimed to assess COVID-19-related essential clinical resource demands in China, based on different scenarios involving COVID-19 spreads and interventions. We used a susceptible–exposed–infectious–hospitalized/isolated–removed (SEIHR) transmission dynamics model to estimate the number of COVID-19 infections and hospitalizations with corresponding essential healthcare resources needed. We found that, under strict non-pharmaceutical interventions (NPIs) or mass vaccination of the population, China would be able to contain community transmission and local outbreaks rapidly. However, under scenarios involving a low intensity of implemented NPIs and a small proportion of the population vaccinated, the use of a peacetime–wartime transition model would be needed for medical source stockpiles and preparations to ensure a normal functioning healthcare system. The implementation of COVID-19 vaccines and NPIs in different periods can influence the transmission of COVID-19 and subsequently affect the demand for clinical diagnosis and treatment. An increased proportion of asymptomatic infections in simulations will not reduce the demand for medical resources; however, attention must be paid to the increasing difficulty in containing COVID-19 transmission due to asymptomatic cases. This study provides evidence for emergency preparations and the adjustment of prevention and control strategies during the COVID-19 pandemic. It also provides guidance for essential healthcare investment and resource allocation.  相似文献   

3.
With COVID-19 continuing to rage around the world, there is a spread of epidemic-related information on social networking platforms. This phenomenon may inhibit or promote the scale of epidemic transmission. This study constructed a double-layer epidemic spreading–information dissemination network based on the movements of individuals across regions to analyze the dynamic evolution and coupling mechanism of information dissemination and epidemic transmission. We also proposed measures to control the spread of the epidemic by analyzing the factors affecting dynamic transmission. We constructed a state probability equation based on Markov chain theory and performed Monte Carlo simulations to demonstrate the interaction between information dissemination and epidemic transmission. The simulation results showed that the higher the information dissemination rate, the larger the scale of information dissemination and the smaller the scale of epidemic transmission. In addition, the higher the recovery rate of the epidemic or the lower the infection rate of the epidemic, the smaller the scale of information dissemination and the smaller the scale of epidemic transmission. Moreover, the greater the probability of individuals moving across regions, the larger the spread of the epidemic and information. Finally, the higher the probability of an individual taking preventive behavior, the smaller the spread of the epidemic and information. Therefore, it is possible to suppress epidemic spread by increasing the information dissemination rate, epidemic recovery rate, and probability of individuals taking preventive behavior, while also reducing the infection rate of the epidemic and appropriately implementing regional blockades.  相似文献   

4.
Mathematical delay modelling has a significant role in the different disciplines such as behavioural, social, physical, biological engineering, and bio-mathematical sciences. The present work describes mathematical formulation for the transmission mechanism of a novel coronavirus (COVID-19). Due to the unavailability of vaccines for the coronavirus worldwide, delay factors such as social distance, quarantine, travel restrictions, extended holidays, hospitalization, and isolation have contributed to controlling the coronavirus epidemic. We have analysed the reproduction number and its sensitivity to parameters. If,  相似文献   

5.
6.
Novel Coronavirus-19 (COVID-19) is a newer type of coronavirus that has not been formally detected in humans. It is established that this disease often affects people of different age groups, particularly those with body disorders, blood pressure, diabetes, heart problems, or weakened immune systems. The epidemic of this infection has recently had a huge impact on people around the globe with rising mortality rates. Rising levels of mortality are attributed to their transmitting behavior through physical contact between humans. It is extremely necessary to monitor the transmission of the infection and also to anticipate the early stages of the disease in such a way that the appropriate timing of effective precautionary measures can be taken. The latest global coronavirus epidemic (COVID-19) has brought new challenges to the scientific community. Artificial Intelligence (AI)-motivated methodologies may be useful in predicting the conditions, consequences, and implications of such an outbreak. These forecasts may help to monitor and prevent the spread of these outbreaks. This article proposes a predictive framework incorporating Support Vector Machines (SVM) in the forecasting of a potential outbreak of COVID-19. The findings indicate that the suggested system outperforms cutting-edge approaches. The method could be used to predict the long-term spread of such an outbreak so that we can implement proactive measures in advance. The findings of the analyses indicate that the SVM forecasting framework outperformed the Neural Network methods in terms of accuracy and computational complexity. The proposed SVM system model exhibits 98.88% and 96.79% result in terms of accuracy during training and validation respectively.  相似文献   

7.
The ongoing coronavirus disease 2019 (COVID-19) pandemic has wreaked havoc worldwide with millions of lives claimed, human travel restricted and economic development halted. Leveraging city-level mobility and case data, our analysis shows that the spatial dissemination of COVID-19 can be well explained by a local diffusion process in the mobility network rather than a global diffusion process, indicating the effectiveness of the implemented disease prevention and control measures. Based on the constructed case prediction model, it is estimated that there could be distinct social consequences if the COVID-19 outbreak happened in different areas. During the epidemic control period, human mobility experienced substantial reductions and the mobility network underwent remarkable local and global structural changes toward containing the spread of COVID-19. Our work has important implications for the mitigation of disease and the evaluation of the socio-economic consequences of COVID-19 on society.  相似文献   

8.
Such large-scale disruptions as the pandemic increase the uncertainty and risk related to business. Therefore, the business continuity management (BCM) has become an essential technical solution for enterprise emergency response. Since the beginning of 2020, the COVID-19 has spread worldwide at an alarming rate causing many threats to sustainable development of the business sector. The decline in consumer demand has hugely impacted service industries, such as wholesale and retail sales, tourism. Enterprise production and operations have faced severe challenges. In this study, we develop a risk factor analysis of BCM under the presence of COVID-19 in China. Based on a statistical survey of 940 enterprises in Hangzhou City, China, this study employs ordinal logistic regression to explore the hindering effect of risk factors introduced by the epidemic on business performance. Then, the interpretive structure model (ISM) is applied to analyze the hierarchical structure of the factors under examination. The key factors influencing the enterprise production and operation during COVID-19 outbreak significantly differ across the sub-sectors of the service industry. Therefore, this paper assesses the resilience of the productive technologies and business models of different industries amid the pandemic. This paper proposes epidemic prevention and control strategy focusing on investment and government regulation to ensure sustainable business development.  相似文献   

9.
Ever since the COVID-19 pandemic started in Wuhan, China, much research work has been focusing on the clinical aspect of SARS-CoV-2. Researchers have been leveraging on various Artificial Intelligence techniques as an alternative to medical approach in understanding the virus. Limited studies have, however, reported on COVID-19 transmission pattern analysis, and using geography features for prediction of potential outbreak sites. Predicting the next most probable outbreak site is crucial, particularly for optimizing the planning of medical personnel and supply resources. To tackle the challenge, this work proposed distance-based similarity measures to predict the next most probable outbreak site together with its magnitude, when would the outbreak likely to happen and the duration of the outbreak. The work began with preprocessing of 1365 patient records from six districts in the most populated state named Selangor in Malaysia. The dataset was then aggregated with population density information and human elicited geography features that might promote the transmission of COVID-19. Empirical findings indicated that the proposed unified decision-making approach outperformed individual distance metric in predicting the total cases, next outbreak location, and the time interval between start dates of two similar sites. Such findings provided valuable insights for policymakers to perform Active Case Detection.  相似文献   

10.
11.
《工程(英文)》2020,6(10):1141-1146
The majority of cases infected with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in China centered in the city of Wuhan. Despite a rapid increase in the number of cases and deaths due to the coronavirus disease 2019 (COVID-19), the epidemic was stemmed via a combination of epidemic mitigation and control measures. This study evaluates how the implementation of clinical diagnostics and universal symptom surveys contributed to epidemic control in Wuhan. We extended the susceptibles-exposed-infectious-removed (SEIR) transmission dynamics model by considering three quarantined compartments (SEIR+Q). The SEIR+Q dynamics model was fitted using the daily reported number of confirmed infections and unconfirmed cases by clinical diagnostic criteria up to February 14, 2020, in Wuhan. Applying the model to carry forward the pre-February 14 trend in Wuhan, the number of daily new diagnosed cases would be expected to drop below 100 by March 25, below 10 by April 29, and reach 0 by May 31, 2020. The observed case counts after February 14 demonstrated that the daily new cases fell below 100 by March 6, below 10 by March 11, and reached 0 by March 18, respectively, 19, 49, and 74 d earlier than model predictions. By March 30, the observed number of cumulative confirmed cases was 50 006, which was 19 951 cases fewer than the predicted count. Effective reproductive number R(t) analysis using observed frequencies showed a remarkable decline after the implementation of clinical diagnostic criteria and universal symptom surveys, which was significantly below the R(t) curve estimated by the model assuming that the pre-February 14 trend was carried forward. In conclusion, the proposed SEIR+Q dynamics model was a good fit for the epidemic data in Wuhan and explained the large increase in the number of infections during February 12–14, 2020. The implementation of clinical diagnostic criteria and universal symptom surveys contributed to a contraction in both the magnitude and the duration of the epidemic in Wuhan.  相似文献   

12.
本文总结了新型冠状病毒肺炎疫情防控中所涉及的计量器具类别,以及对其进行检定、校准、检测等量值保障活动所适用的技术规范。围绕计量工作在新型冠状病毒肺炎疫情防控中的重要作用,文章重点从体温筛查、设备消毒、病毒检测、临床诊断、医疗救治、科学研究等方面分析了计量工作对新冠肺炎疫情防控的技术支撑和量值保障作用。为各疫情防控单位和医疗机构判断防控设备测量结果是否准确、可靠等问题是提供解决路径,也为各级计量技术机构和广大计量工作者针对疫情防控建立相关计量标准提供参考。  相似文献   

13.
In an attempt to maintain the elimination of COVID-19 in New Zealand, all international arrivals are required to spend 14 days in government-managed quarantine and to return a negative test result before being released. We model the testing, isolation and transmission of COVID-19 within quarantine facilities to estimate the risk of community outbreaks being seeded at the border. We use a simple branching process model for COVID-19 transmission that includes a time-dependent probability of a false-negative test result. We show that the combination of 14-day quarantine with two tests is highly effective in preventing an infectious case entering the community, provided there is no transmission within quarantine facilities. Shorter quarantine periods, or reliance on testing only with no quarantine, substantially increases the risk of an infectious case being released. We calculate the fraction of cases detected in the second week of their two-week stay and show that this may be a useful indicator of the likelihood of transmission occurring within quarantine facilities. Frontline staff working at the border risk exposure to infected individuals and this has the potential to lead to a community outbreak. We use the model to test surveillance strategies and evaluate the likely size of the outbreak at the time it is first detected. We conclude with some recommendations for managing the risk of potential future outbreaks originating from the border.  相似文献   

14.
《工程(英文)》2020,6(10):1076-1084
Coronavirus disease 2019 (COVID-19)—the third in a series of coronavirus infections—has caused a global public health event in the 21st century, resulting in substantial global morbidity and mortality. Building on its legacy of managing severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), China has played a key role in the scientific community by revealing the viral transmission routes and clinical characteristics of COVID-19 and developing novel therapeutic interventions and vaccines. Despite these rapid scientific and technological advances, uncertainties remain in tracing the original sources of infection, determining the routes of transmission and pathogenesis, and addressing the lack of targeted clinical management of COVID-19. Here, we summarize the major COVID-19 research advances in China in order to provide useful information for global pandemic control.  相似文献   

15.
The COVID-19 outbreak initiated from the Chinese city of Wuhan and eventually affected almost every nation around the globe. From China, the disease started spreading to the rest of the world. After China, Italy became the next epicentre of the virus and witnessed a very high death toll. Soon nations like the USA became severely hit by SARS-CoV-2 virus. The World Health Organisation, on 11th March 2020, declared COVID-19 a pandemic. To combat the epidemic, the nations from every corner of the world has instituted various policies like physical distancing, isolation of infected population and researching on the potential vaccine of SARS-CoV-2. To identify the impact of various policies implemented by the affected countries on the pandemic spread, a myriad of AI-based models have been presented to analyse and predict the epidemiological trends of COVID-19. In this work, the authors present a detailed study of different artificial intelligence frameworks applied for predictive analysis of COVID-19 patient record. The forecasting models acquire information from records to detect the pandemic spreading and thus enabling an opportunity to take immediate actions to reduce the spread of the virus. This paper addresses the research issues and corresponding solutions associated with the prediction and detection of infectious diseases like COVID-19. It further focuses on the study of vaccinations to cope with the pandemic. Finally, the research challenges in terms of data availability, reliability, the accuracy of the existing prediction models and other open issues are discussed to outline the future course of this study.  相似文献   

16.
自新型冠状病毒肺炎爆发以来,防疫设计再度成为国内外设计界关注的热门课题。在人类战疫设计史上,不同的空间规划、产品设计在不同程度上帮助人们对抗疫情。防疫抗疫成为人类社会设计实践活动的重要驱动力之一。在针对疫情的设计中,应当从顶层设计出发,以HiAP为指引,用人类为中心的创新设计思维和生产、生活、生态“三生和谐”的设计理念,加速“设计”与“产业+生活+环境”的融合创新,构建防疫抗疫整体设计新格局。结合具有东方智慧的设计文化,搭建人与自然、人与社会、人与人之间和谐共生的美好未来,助力人类命运共同体的构建。  相似文献   

17.
Host immunity and demographics (the recruitment of susceptibles via birthrate) have been demonstrated to be a key determinant of the periodicity of measles, pertussis and dengue epidemics. However, not all epidemic cycles are from pathogens inducing sterilizing immunity or are driven by demographics. Many sexually transmitted infections are driven by sexual behaviour. We present a mathematical model of disease transmission where individuals can disconnect and reconnect depending on the infectious status of their contacts. We fit the model to historic syphilis (Treponema pallidum) and gonorrhea (Neisseria gonorrhoeae) incidence in the USA and explore potential intervention strategies against syphilis. We find that cycles in syphilis incidence can be driven solely by changing sexual behaviour in structured populations. Our model also explains the lack of similar cycles in gonorrhea incidence even if the two infections share the same propagation pathways. Our model similarly illustrates how sudden epidemic outbreaks can occur on time scales smaller than the characteristic demographic time scale of the population and that weaker infections can lead to more violent outbreaks. Behaviour also appears to be critical for control strategies as we found a bigger sensitivity to behavioural interventions than antibiotic treatment. Thus, behavioural interventions may play a larger role than previously thought, especially in the face of antibiotic resistance and low intervention efficacies.  相似文献   

18.
The growing number of COVID-19 cases puts pressure on healthcare services and public institutions worldwide. The pandemic has brought much uncertainty to the global economy and the situation in general. Forecasting methods and modeling techniques are important tools for governments to manage critical situations caused by pandemics, which have negative impact on public health. The main purpose of this study is to obtain short-term forecasts of disease epidemiology that could be useful for policymakers and public institutions to make necessary short-term decisions. To evaluate the effectiveness of the proposed attention-based method combining certain data mining algorithms and the classical ARIMA model for short-term forecasts, data on the spread of the COVID-19 virus in Lithuania is used, the forecasts of epidemic dynamics were examined, and the results were presented in the study. Nevertheless, the approach presented might be applied to any country and other pandemic situations. The COVID-19 outbreak started at different times in different countries, hence some countries have a longer history of the disease with more historical data than others. The paper proposes a novel approach to data registration and machine learning-based analysis using data from attention-based countries for forecast validation to predict trends of the spread of COVID-19 and assess risks.  相似文献   

19.
In December 2019, a group of people in Wuhan city of Hubei province of China were found to be affected by an infection called dark etiology pneumonia. The outbreak of this pneumonia infection was declared a deadly disease by the China Center for Disease Control and Prevention on January 9, 2020, named Novel Coronavirus 2019 (nCoV-2019). This nCoV-2019 is now known as COVID-19. There is a big list of infections of this coronavirus which is present in the form of a big family. This virus can cause several diseases that usually develop with a serious problem. According to the World Health Organization (WHO), 2019-nCoV has been placed as the modern generation of Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS) coronaviruses, so COVID-19 can repeatedly change its internal genome structure to extend its existence. Understanding and accurately predicting the mutational properties of the genome structure of COVID-19 can form a good leadership role in preventing and fighting against coronavirus. In this research paper, an analytical approach has been presented which is based on the k-means cluster technique of machine learning to find the clusters over the mutational properties of the COVID-19 viruses’ complete genome. This method would be able to act as a promising tool to monitor and track pathogenic infections in their stable and local genetics/hereditary varieties. This paper identifies five main clusters of mutations with as best in most cases in the coronavirus that could help scientists and researchers develop disease control vaccines for the transformation of coronaviruses.  相似文献   

20.
In their response to the COVID-19 outbreak, governments face the dilemma to balance public health and economy. Mobility plays a central role in this dilemma because the movement of people enables both economic activity and virus spread. We use mobility data in the form of counts of travellers between regions, to extend the often-used SEIR models to include mobility between regions. We quantify the trade-off between mobility and infection spread in terms of a single parameter, to be chosen by policy makers, and propose strategies for restricting mobility so that the restrictions are minimal while the infection spread is effectively limited. We consider restrictions where the country is divided into regions, and study scenarios where mobility is allowed within these regions, and disallowed between them. We propose heuristic methods to approximate optimal choices for these regions. We evaluate the obtained restrictions based on our trade-off. The results show that our methods are especially effective when the infections are highly concentrated, e.g. around a few municipalities, as resulting from superspreading events that play an important role in the spread of COVID-19. We demonstrate our method in the example of the Netherlands. The results apply more broadly when mobility data are available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号