首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
为探究煤矸石机制砂对低强度等级C20混凝土力学性能的影响,调控煤矸石机制砂掺量和水灰比浇筑混凝土试块,开展抗压和抗折强度试验。结果表明:相同水灰比下,随煤矸石机制砂掺量增加,混凝土的抗压强度先增强后降低;相同取代率下,混凝土的抗压和抗折强度随水灰比增大而降低。相较于煤矸石机制砂取代率,水灰比对混凝土抗折强度的影响更大。取代率不超过30%时,对混凝土的抗压和抗折强度均有利,水灰比为0.55、取代率为25%时,混凝土抗压和抗折强度提高最多。  相似文献   

2.
煤矸石已成为我国排放量最大的工业固体废弃物之一。为促进煤矸石在土木工程中的资源化利用,该文以陕北矿区不同矿源煤矸石为粗骨料,设计48组不同配合比的煤矸石混凝土,浇筑720块立方体试块与288块棱柱体试块,研究陕北矿区煤矸石混凝土立方体抗压强度、轴心抗压强度与弹性模量。试验结果表明:受不同矿源煤矸石粗骨料材性差异的影响,在C15~C45强度内,煤矸石混凝土抗压强度越低,其强度标准差反而越大。建议对于陕北矿区煤矸石混凝土,当强度等级不高于C25时,其抗压强度标准差取6.0MPa;当强度等级在C30~C45时,其抗压强度标准差取5.0MPa。综合考虑了煤矸石含碳量、煤矸石取代率及水灰比对煤矸石混凝土抗压强度的影响,建立适用于陕北矿区煤矸石混凝土抗压强度的计算公式。此外,文中还分别给出煤矸石混凝土轴心抗压强度、弹性模量与立方体抗压强度之间的换算关系。  相似文献   

3.
通过改变粉煤灰取代率及超掺系数,研究了粉煤灰对不同水灰比及再生混凝土粗骨料取代率透水再生混凝土力学性能的影响。结果表明,粉煤灰等量取代水泥的透水再生混凝土立方体抗压强度、抗折强度及折压比均低于基准透水再生混凝土;当粉煤灰超量取代水泥时,粉煤灰取代率低于20%时的立方体抗压强度、抗折强度及折压比均随超量系数增加而增大,但超量系数超过1.4后效果不明显;粉煤灰取代率为30%时,不同粉煤灰超量系数下力学性能均低于基准试验值;随着再生混凝土粗骨料取代率或水灰比的增大,立方体抗压强度、抗折强度及折压比均随之下降,相同水灰比或再生混凝土粗骨料取代率时,立方体抗压强度、抗折强度及折压比均随粉煤灰超量系数增大而增大,但超量系数超过1.4后效果同样不明显。  相似文献   

4.
针对煤矿煤矸石产量大、利用率低等问题,对煤矸石作为混凝土骨料的理化性能和力学性能进行了探究。试验结果表明:与普通碎石相比,非自燃煤矸石的堆积密度与表观密度小、吸水率高、压碎值大,当水灰比不变时,煤矸石混凝土的强度随着煤矸石粗骨料掺量的增加先增加后减小;当非自燃煤矸石混凝土掺量不变时,煤矸石混凝土的强度随着水灰比的增加先增加后减小。水胶比为0.5,煤矸石粗骨料取代率为40%时,煤矸石混凝土的强度最高为最优配合比。煤矸石可以作为混凝土粗骨料使用,但若全部采用煤矸石作为混凝土粗骨料,应限制煤矸石粗骨料在强度要求较高的混凝土中使用。  相似文献   

5.
为研究掺入再生粗骨料对混凝土抗折强度的影响,进行了抗折强度试验研究,考虑的参数包括再生粗骨料取代率、基体混凝土水灰比、基体混凝土龄期、再生粗骨料级配、再生混凝土水灰比以及再生混凝土配制方法等,确定了再生混凝土抗折强度的关键影响因素。在总结了现有的再生混凝土抗折强度计算公式基础上,采用本文及已有文献的试验数据对各公式预测精度进行了分析。以此为基础,提出了考虑关键参数影响的再生混凝土抗折强度计算公式。研究结果表明:再生粗骨料取代率与粗骨料级配是再生混凝土抗折强度的主要影响因素,取代率为100%的再生混凝土抗折强度比普通混凝土低3.9%~26.8%,采用不同粗骨料级配的再生混凝土抗折强度相差可达15.5%;再生混凝土抗折强度降低幅度随混凝土水灰比的增大而增大,不同水灰比的再生混凝土抗折强度降低幅度相差可达14.7%,而且再生粗骨料对混凝土抗折强度的影响低于其对抗压强度的影响,导致现有的计算公式不能有效预测再生混凝土抗折强度;基于普通混凝土抗折强度计算公式形式,并考虑混凝土水灰比及再生粗骨料取代率综合影响的再生混凝土抗折强度计算公式具有较高的预测精度,公式预测结果与试验结果比值的均值为0.991,判定系数为0.772。  相似文献   

6.
为研究掺入再生粗骨料对混凝土抗折强度的影响,进行了抗折强度试验研究,考虑的参数包括再生粗骨料取代率、基体混凝土水灰比、基体混凝土龄期、再生粗骨料级配、再生混凝土水灰比以及再生混凝土配制方法等,确定了再生混凝土抗折强度的关键影响因素。在总结了现有的再生混凝土抗折强度计算公式基础上,采用本文及已有文献的试验数据对各公式预测精度进行了分析。以此为基础,提出了考虑关键参数影响的再生混凝土抗折强度计算公式。研究结果表明:再生粗骨料取代率与粗骨料级配是再生混凝土抗折强度的主要影响因素,取代率为100%的再生混凝土抗折强度比普通混凝土低3.9%~26.8%,采用不同粗骨料级配的再生混凝土抗折强度相差可达15.5%;再生混凝土抗折强度降低幅度随混凝土水灰比的增大而增大,不同水灰比的再生混凝土抗折强度降低幅度相差可达14.7%,而且再生粗骨料对混凝土抗折强度的影响低于其对抗压强度的影响,导致现有的计算公式不能有效预测再生混凝土抗折强度;基于普通混凝土抗折强度计算公式形式,并考虑混凝土水灰比及再生粗骨料取代率综合影响的再生混凝土抗折强度计算公式具有较高的预测精度,公式预测结果与试验结果比值的均值为0.991,判定系数为0.772。  相似文献   

7.
为了提高煤矸石混凝土的力学与耐久性能,将煤系偏高岭土部分取代率水泥,研究了不同取代率的煤系偏高岭土对煤矸石混凝土抗压强度、劈拉强度、耐磨性和抗硫酸盐侵蚀性能的影响。结果表明:掺加煤系偏高岭土可显著提高煤矸石混凝土的力学性能;当煤系偏高岭土取代率为30%时,煤矸石混凝土的抗压强度和劈拉强度均最大;掺入适量煤系偏高岭土能够有效改善煤矸石混凝土的耐磨性和抗硫酸盐侵蚀性能,其最佳取代率为30%。  相似文献   

8.
主要研究煤矸石及孔结构特征对煤矸石混凝土性能的影响。研究方法采用自燃煤矸石,按50%和100%取代碎石配制C30混凝土,测试煤矸石混凝土工作性、强度、氯离子扩散系数;研究煤矸石混凝土水泥浆体与骨料交界面孔特征。试验结果表明:随着煤矸石取代量的提高,煤矸石混凝土流动性降低、强度下降,孔隙率提高,孔径、电通量增大。结论:随着煤矸石取代率的增加,煤矸石混凝土流动性降低10~20 mm,抗压强度降低8.62~11.47 MPa;当煤矸石取代率达到100%时,煤矸石混凝土孔体积是普通配合比体积的2倍,而平均孔径增大了2.6倍;氯离子扩散系数也明显增大。  相似文献   

9.
再生混凝土抗折强度的影响因素及其计算方法   总被引:1,自引:0,他引:1  
为研究掺入再生粗骨料对混凝土抗折强度的影响,进行了抗折强度试验研究,考虑的参数包括再生粗骨料取代率、基体混凝土水灰比、基体混凝土龄期、再生粗骨料级配、再生混凝土水灰比以及再生混凝土配制方法等,确定了再生混凝土抗折强度的关键影响因素。在总结了现有的再生混凝土抗折强度计算公式基础上,采用本文及已有文献的试验数据对各公式预测精度进行了分析。以此为基础,提出了考虑关键参数影响的再生混凝土抗折强度计算公式。研究结果表明:再生粗骨料取代率与粗骨料级配是再生混凝土抗折强度的主要影响因素,取代率为100%的再生混凝土抗折强度比普通混凝土低3.9%~26.8%,采用不同粗骨料级配的再生混凝土抗折强度相差可达15.5%;再生混凝土抗折强度降低幅度随混凝土水灰比的增大而增大,不同水灰比的再生混凝土抗折强度降低幅度相差可达14.7%,而且再生粗骨料对混凝土抗折强度的影响低于其对抗压强度的影响,导致现有的计算公式不能有效预测再生混凝土抗折强度;基于普通混凝土抗折强度计算公式形式,并考虑混凝土水灰比及再生粗骨料取代率综合影响的再生混凝土抗折强度计算公式具有较高的预测精度,公式预测结果与试验结果比值的均值为0.991,判定系数为0.772。  相似文献   

10.
力学性能是再生混凝土的重要性能之一,许多因素对再生混凝土的力学性能有着不同程度的影响。将废弃混凝土破碎、筛分作为骨料制成再生混凝土路面砖,并以不同比例(2%、4%、6%)粉煤灰取代再生混凝土中的水泥和细骨料,对比7组再生砖试块在14、28 d龄期下的孔隙率、抗压强度、抗折强度。试验结果表明,再生混凝土路面砖的孔隙率随粉煤灰取代率的增加而增加。不同龄期下,粉煤灰取代率在4%以内时,再生砖的抗压、抗折强度基本随着取代率的增加而增加,其中抗折强度增加显著;粉煤灰取代率为4%时,再生砖的抗压、抗折强度均达到较大值;当粉煤灰取代率超过4%时,强度有所降低,但仍高于水泥再生混凝土砖的强度。  相似文献   

11.
本文针对煤矸石的工程性质,简要论述了煤矸石作为道路基层材料的指标和煤矸石道路基层强度的形成机理;对石灰、水泥、石灰和粉煤灰稳定煤矸石性能进行了比较;并就煤矸石作为道路基层材料存在的问题,提出其在工程应用方面的注意事项。  相似文献   

12.
借助于X-射线衍射分析、激光粒度分析、宏观力学性能测试等手段,对煤矸石进行了系统的机械-热力复合活化研究,研究结果表明:采用机械-热力复合活化,煤矸石中的活性来源矿物高岭石转变为偏高岭石的温度明显低于纯高岭石的转变温度.机械-热力复合活化的煅烧温度、粉磨时间参数对掺煤矸石水泥早期强度的影响不大,但对后期强度有较大影响.在保持细度相同的情况下,对于煤矸石的热力活化存在最佳活化温度;在相同的热力活化制度条件下,对于煤矸石的机械活化存在最佳机械粉磨时间.在相同的热力活化制度、相同的粉磨时间条件下,采用“先混后磨”的粉磨方式优于“先磨后混”.  相似文献   

13.
以焦作矿区煤矸石为研究对象,采用XRF、XRD研究了煤矸石的化学组成和矿物组成,用HR—ICP—MS、AFS分析了微量元素的含量。结果表明,煤矸石主要化学成分为SiO2和Al2O3,以及Fe2O3、CaO、MgO、Na20、K2O、Ti2O等,矿物组成为石英、高岭石、白云母、方解石及埃洛石。最后,对焦作矿区煤矸石在制备建筑材料、微量元素利用及农业生产等方面的应用进行了评价。  相似文献   

14.
煤矸石在建筑中的综合利用   总被引:1,自引:0,他引:1  
史鸣军  叶海军 《山西建筑》2007,33(30):188-189
综述了煤矸石在建筑中用于生产煤矸石水泥、煤矸石制砖、煤矸石生产混凝土轻骨料、煤矸石微晶玻璃等方面的应用,并在此基础上对煤矸石在建筑中的应用前景做了分析与展望,指出应大力提倡建筑中对煤矸石的综合利用。  相似文献   

15.
竖窑煅烧煤矸石的火山灰活性初探   总被引:1,自引:0,他引:1  
研究了利用石灰竖窑煅烧煤矸石的火山灰活性.结果表明,煅烧煤矸石可作为水泥的混合材而大量利用.  相似文献   

16.
煤矸石的活化过程及其胶凝活性   总被引:1,自引:0,他引:1  
研究了两种煤矸石在不同煅烧温度下的物相、活性SiO2和Al2O3含量及胶凝活性。研究表明,在700~800℃煅烧的煤矸石的物相中含有大量的偏高岭土,其活性SiO2和Al2O3含量处于较高水平,具有最佳的胶凝活性,煤矸石的最佳活化温度范围为700~800℃。  相似文献   

17.
刘宁 《江苏建材》2021,(1):18-21
以800kg/m3为设计干密度,采取物理发泡的方式,将泡沫与煤矸石水泥净浆混合均匀,分别加入不同用量的PVA或EVA乳液制成聚合物-煤矸石泡沫混凝土,测量干密度、导热系数、28 d抗压强度,并利用Nano Measurer软件测量平均孔径.PVA的加入量选取水泥质量的1%、2%、3%,EVA乳液的加入量选取水泥质量的3...  相似文献   

18.
慕利荣 《山西建筑》2011,37(14):136-137
根据李村矿井进场道路工程施工的实际情况,结合我国目前道路工程施工的特点,主要阐述了道路工程中路基翻浆形成的原因,翻浆的种类和一些简单而可行的处理方法,并用工程施工中的实际应用来举例说明。  相似文献   

19.
煤矸石路基施工一例   总被引:2,自引:0,他引:2  
温丽萍 《山西建筑》2002,28(5):18-19
通过分析煤矸石填料的特性,对煤矸石路基的特点进行了论述,提出了煤矸石路基的施工工艺和现场环境保护方法,并在现场施工中得到了有效的应用,从而减少了矿区用地,美化了矿区环境,消除了煤矸石对大气的污染,建议有关部门多积累一些资料,以便在今后的施工中规范作业程序,提高施工质量。  相似文献   

20.
作为煤矸石烧结制品的节能型升级产品,煤矸石烧结自保温砌块性能能够满足江苏省建筑节能65%的要求。介绍了煤矸石烧结自保温砌块的生产工艺特点,性能参数和工程应用中的注意问题,为煤矸石烧结自保温砌块的生产应用提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号