首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对不同石膏对超硫酸盐水泥水化行为的影响,测试了分别掺有硬石膏、二水石膏和磷石膏的超硫酸盐水泥的各龄期抗压强度,对比了其早期放热速率及放热曲线的差异,以及水化产物相的变化.结果表明:上述3类超硫酸盐水泥3d抗压强度均为14MPa左右;磷石膏基超硫酸盐水泥28,90d抗压强度分别为412,491MPa,明显高于其他两种水泥.超硫酸盐水泥早期强度主要受水化速率的影响.后期强度测试结果表明,磷石膏的激发效果优于硬石膏及二水石膏,用其制备的水泥浆体后期形成更多的水化硅酸钙与钙矾石,硬化浆体更加密实.  相似文献   

2.
研究了过硫磷石膏矿渣水泥制备制品的不同养护温度、养护时间、静停时间等对水泥制品性能的影响。深入探讨了过硫磷石膏矿渣水泥制品适宜的养护制度,并对养护制度与水泥水化过程、水化产物形成及微观结构发展等的关系及其对过硫磷石膏矿渣水泥制品性能的影响机理进行了探讨。结果表明,过硫磷石膏矿渣水泥的最佳养护制度为:静停2d后,在40℃温度下养护16h。随着养护温度提高,水泥水化速度加快,早期强度增加但后期强度降低,当养护温度达到80℃时,由于不能形成水化产物钙矾石,强度明显降低。  相似文献   

3.
研究NaOH激活粉煤灰的最佳反应条件,探究浮选磷石膏、激活粉煤灰、煅烧磷尾矿、水泥对胶凝材料性能的影响,通过扫描电镜、X射线衍射分析强度形成机理。结果表明:在NaOH质量分数为5%、反应时间为3 h、反应温度为80℃下,碱激活效果最佳。在m(磷石膏)∶m(激活粉煤灰)∶m(煅烧尾矿)∶m(水泥)=55∶40∶15∶5时,材料的7、28 d无侧限抗压强度最高,分别为8.3、9.1 MPa,可满足T/HBTS 003—2022《公路磷石膏复合稳定碎石基层应用技术规范》中一级公路基层的强度要求。胶凝材料水化产物为硅酸钙凝胶和针状钙矾石,其穿插交联在未反应的磷石膏之间,填补材料的空隙,提高材料的强度。  相似文献   

4.
探究不同的水灰比对过硫磷石膏矿渣水泥(磷石膏基水泥)强度的影响,并通过XRD、SEM、DSC对不同水灰比过硫磷石膏矿渣水泥的水化产物、水化过程和机理进行了分析,结果表明:与普通硅酸盐水泥不同,过硫磷石膏矿渣水泥的强度在水灰比0.36时强度最高,继续降低水灰比,水泥强度反而下降。这是由于矿渣是在碱性的液相中溶解和形成水化产物,如果水灰比太低,水在早期形成水化产物而消耗完毕,阻碍了矿渣的后期水化,水化产物减少,从而使强度降低。  相似文献   

5.
脱硫石膏是常见的工业副产物,主要作为胶凝材料应用于石膏基自流平砂浆。研究了硅酸盐水泥对石膏基材料物理力学性能和水化特性的影响,结果表明,水泥的掺入减小了新拌石膏浆体的流动度:当水泥掺量大于5%时,会降低石膏的1 d强度;当水泥掺量大于2.5%时,会提高石膏的28 d绝干强度;满足规范JC/T 1023-2021《石膏基自流平砂浆》中G20的性能指标要求。水泥的掺入会延迟石膏水化的第一放热峰,使第二放热峰提前,缩短石膏水化的诱导期,提高石膏水化累计放热量.  相似文献   

6.
通过对超硫酸盐水泥中原样磷石膏的改性处理,制备出7 d、28 d强度分别达29.4 MPa、48.5 MPa的超硫酸盐水泥;并采用压汞法、扫描电镜及X射线衍射分析仪对其水化产物进行了分析。结果表明:改性磷石膏基超硫酸盐水泥硬化浆体体系致密,水化产物主要为水化硅酸钙、钙矾石及少量石膏晶体;在此基础上,利用该水泥制备出工作性能、力学性能良好的C40超硫酸盐水泥混凝土,为高性能超硫酸盐水泥及其混凝土的研制提供了思路。  相似文献   

7.
将海盐石膏作为水泥增强剂,实验考察了海盐石膏对水泥强度的影响,并采用线性回归进行拟合,确定了由水泥的3 d强度对其28 d强度进行预测的模型。结果表明,添加800℃煅烧海盐石膏时水泥强度提高幅度最大,可用煅烧海盐石膏替代天然石膏作为水泥增强剂;由水泥的3 d强度通过模型预测28 d强度,拟合效果良好,对指导水泥生产和控制质量具有现实意义。  相似文献   

8.
实现高固废利用率及探明磷石膏激发的效果,主要研究了不同掺量磷石膏对磷渣-矿渣-水泥复合胶凝材料体系抗压强度的影响规律,并采用XRD、TG和SEM分析了体系的水化产物。结果表明:适量的磷石膏对磷渣-矿渣-水泥复合胶凝材料体系3 d的水化具有促进作用,当磷石膏掺量达到5%时,其含有的磷、氟等杂质会延缓胶凝材料的水化进程,导致3 d强度降低;磷石膏的掺入对体系7、28、90 d的强度都有一定激发效果,并且随着磷石膏的掺量增加,其主要水化产物C-S-H和钙矾石生成量逐渐增多,当磷石膏的掺量为5%时,水化至28 d后,体系中仍含有石膏,但当磷石膏掺量超过8%时,硬化浆体中残余大量石膏,反而会降低体系的机械强度。  相似文献   

9.
本实验通过复配激发剂对增钙煅烧高岭土(Cao掺量15%,煅烧温度800℃)-水泥体系性能影响分析可知:以50%增钙煅烧高岭土替代水泥,在5%SMJ激发剂作用下,其体系28 d抗压强度达到42.03 MPa,与未掺激发剂相比,强度增长了22%。采用XRD分析该体系的水化过程,结果显示:水化产物以水化硅酸钙为主。  相似文献   

10.
通过凝结时间、流动度、孔溶液pH值、抗折强度、抗压强度、吸水率、软化系数、水化热和水化产物分析测试,探究了磷建筑石膏(CPG)掺量对石膏矿渣水泥水化过程与耐水性能的影响.结果表明:随着CPG掺量的增加,石膏矿渣水泥的凝结时间缩短,流动度减小,吸水率与3 d水化累计放热量均增大;水泥净浆孔溶液的pH值在水化早期快速下降,56 d时保持不变;当CPG掺量从40%增加到70%时,56 d水泥净浆孔溶液的pH值从11.02减小到10.62,水泥胶砂的软化系数从0.98减小到0.91,主要水化产物均为二水石膏和钙矾石,并且钙矾石的含量随着CPG掺量的增加而减少.  相似文献   

11.
通过中温煅烧制备煅烧硬石膏,分析了磷石膏在不同煅烧温度下得到的煅烧硬石膏标准稠度用水量、力学强度等物理性能,并采用物相分析、X射线衍射仪、扫描电镜以及激光粒度分析仪分析煅烧温度对煅烧硬石膏性能影响机理。结果表明:磷石膏在500℃下煅烧2 h得到的煅烧硬石膏性能最佳,标准稠度用水量为56%,28 d抗压强度为18.89 MPa,水化体二水石膏含量为75.3%。煅烧硬石膏物性受煅烧温度影响的原因为随着煅烧温度上升,Ⅱ型无水石膏相逐渐增加,β-半水石膏相逐渐减少,Ⅱ型无水石膏缺少β-半水石膏激发,造成水化率降低,强度降低,且Ⅱ型无水石膏随着煅烧温度升高,粒径增大,比表面积减小,造成稠度升高,强度提高。  相似文献   

12.
潘钢华  夏艺  孙伟  王然良 《混凝土》2006,(10):17-20,23
某些经过高温煅烧后的凹凸棒石粘土粉掺入砂浆后,能显著地提高砂浆的抗压强度等方面的性能.尤其是Z型凹土粉,在经850℃煅烧2h后,掺入20%(与水泥质量比)煅烧Z型凹土粉可以大大增加砂浆的抗压强度、粘结强度和抗渗压力等.这是因为煅烧处理后的凹土内产生了大量的活性氧化硅和活性氧化铝,具有很高的活性效应,因此对砂浆产生了很高的增强作用.通过对砂浆28d样品的XRD衍射分析、DTA-TG分析和孔结构分析后,发现经850℃煅烧2h后的Z型凹土粉加入砂浆可以大大减少水泥水化反应产物中的Ca(OH)2浓度,同时可以很好的改善砂浆的孔径结构,从而大幅度的提高其强度和抗渗性能.  相似文献   

13.
本文以改性后的磷石膏、矿渣、钢渣和少量硅酸盐熟料粉制备磷石膏基水泥,并用此水泥拌制干硬性混凝土。通过测定3d、7d、28d强度和SEM测试方法,研究了磷石膏改性方式、水灰比、减水剂用量和胶凝材料用量对干硬性混凝土性能的影响。结果表明:提高磷石膏的细度能有效改善磷石膏基水泥过分缓凝的缺陷;同种改性方式的磷石膏,存放时间不同也会对混凝土强度产生影响。  相似文献   

14.
研究了煅烧煤矸石-水泥熟料-石膏胶材体系的力学和水化特性。结果表明,煅烧煤矸石适当取代部分熟料制备的胶凝材料具有较好的力学性能,最佳取代量为35%,7d和28d强度可达23.8MPa和29MPa。无水硫酸钠的掺入可明显提升胶材体系的早期和后期强度,最佳掺量为5%,3d、7d和28d强度分别提升100%、32.4%和40%。利用XRD和SEM对胶凝材料改性前后的物相组成分析发现,无水硫酸钠的掺入使体系早期生成了大量的Ca(OH)2贯穿于C-S-H凝胶中,且Ca(OH)2的存在加速石膏溶解,加快AFt生成,填充孔隙,使体系结构致密,提高了早期强度。  相似文献   

15.
通过X射线衍射(XRD)、扫描电镜(SEM)、热重差示扫描量热分析(TG DSC)和高压压榨法(PWE),研究了不同磷石膏掺量的微膨胀道路基层水泥中水化产物与孔隙液主要元素浓度的演化.结果表明:在水化3d时,硬化水泥浆体中钙矾石的生成量随着磷石膏掺量的增加先增大后减小;水化28d后钙矾石的生成量随着磷石膏掺量的增加而增加;磷石膏溶解生成的SO2-4对粉煤灰活性有很好的激发作用,粉煤灰中的Al相在水化7d后开始大量溶出,孔溶液中Al、Ca和S元素浓度的变化能很好地反映水泥的水化进程;不同磷石膏掺量下各龄期水泥的孔隙液pH值均在1255上下波动;水化60d时硬化水泥浆体均比较密实,磷石膏掺量较大的水泥在水化产物表面仍有大量钙矾石生成,孔隙中有更多的针棒状钙矾石存在.  相似文献   

16.
为促进煤矸石集料在水泥混凝土中的应用,选用自燃(活性)和非自燃(非活性)煤矸石作为细集料,研究水灰比、掺量、养护制度等不同条件下两种矸石细集料-水泥基材料力学性能的发展规律,分析煤矸石的种类、活性、掺量等因素对水泥基材料力学性能的影响。试验结果表明:活性矸石作为细集料,能够在水化初期与水泥水化产物发生一定程度的二次水化反应,水化反应能提高其早期强度;非活性矸石细集料-水泥基材料的强度随水灰比的增大而减小,而活性矸石则存在合理的水灰比范围;高温养护能够促进煤矸石细集料-水泥基材料的早龄期的水化进程,提高其早期抗压强度,但28d龄期中小掺量的矸石细集料-水泥基材料的抗压强度会产生高温负效应,而对抗折强度的影响则相反。  相似文献   

17.
研究了碳酸锂(Li2CO3)对硫铝酸盐水泥凝结时间、水化历程和强度发展的影响.结果表明,Li2CO3可大幅度加速硫铝酸盐水泥的凝结,显著缩短硫铝酸盐水泥的水化诱导期,提高硫铝酸盐水泥早期水化放热速率和水化放热量,但降低后期的水化放热量:Li2CO3降低硫铝酸盐水泥后期强度,这是由于掺入Li2CO3后,水泥水化早期生成的致密水化产物层包裹了水化矿物,从而使得后期水化进程被延缓所致.  相似文献   

18.
煤矸石细集料-水泥基材料力学性能影响的试验研究   总被引:1,自引:0,他引:1  
为促进煤矸石集料在水泥混凝土中的应用,选用自燃(活性)和非自燃(非活性)煤矸石作为细集料,研究水灰比、掺量、养护制度等不同条件下两种矸石细集料-水泥基材料力学性能的发展规律,分析煤矸石的种类、活性、掺量等因素对水泥基材料力学性能的影响。试验结果表明:活性矸石作为细集料,能够在水化初期与水泥水化产物发生一定程度的二次水化反应,水化反应能提高其早期强度;非活性矸石细集料-水泥基材料的强度随水灰比的增大而减小,而活性矸石则存在合理的水灰比范围;高温养护能够促进煤矸石细集料-水泥基材料的早龄期的水化进程,提高其早期抗压强度,但28d龄期中小掺量的矸石细集料-水泥基材料的抗压强度会产生高温负效应,而对抗折强度的影响则相反。  相似文献   

19.
通过胶砂强度、水化热及扫描电镜(SEM),对纯水泥、掺粉煤灰、掺煤气化渣微粉三种胶凝体系的水化机理进行研究,结果表明:在同水胶比、同掺量的条件下,掺煤气化渣微粉组胶砂跳桌流动度较小,早期强度高于粉煤灰组,后期强度低于粉煤灰组;掺煤气化渣微粉组的水化热温度与放热速率要高于粉煤灰组;对三种胶凝体系水化产物的微观形貌分析发现纯水泥组与粉煤灰组的水化产物相似,而掺煤气化渣微粉组3 d水化产物生成了大量结晶度较低的纤维状水化硅酸钙凝胶,28 d水化产物由结晶度较低的纤维状水化硅酸钙凝胶转化为结晶度较高的类似于硬硅钙石的针状晶体,使得胶砂强度随之增强。  相似文献   

20.
为将磷石膏应用于水泥缓凝剂,采用水洗等方式对磷石膏进行预处理。确定水洗磷石膏的最优用水量和水洗时间。对比研究天然石膏、原状磷石膏和改性磷石膏对硅酸盐水泥凝结时间和强度的影响。通过水化热、XRD和SEM分析改性磷石膏对硅酸盐水泥水化特性的影响机理。结果表明,磷石膏在液固比为4和水洗时间为25 min条件下水洗效果最佳;生石灰单掺以及生石灰和膨润土复掺对磷石膏中可溶性磷和可溶性氟表现出较好的固化效果;水洗改性后磷石膏可有效缩短水泥的凝结时间,提高早期强度,其中生石灰与膨润土按2∶1复掺水洗改性后磷石膏用于硅酸盐水泥,水泥初、终凝时间比使用原状磷石膏时缩短了50%和31%;改性磷石膏制备的水泥早期水化速率正常,水泥固结体结构致密,缺陷较少,早期强度高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号