首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study is designed to develop Artificial Intelligence (AI) based analysis tool that could accurately detect COVID-19 lung infections based on portable chest x-rays (CXRs). The frontline physicians and radiologists suffer from grand challenges for COVID-19 pandemic due to the suboptimal image quality and the large volume of CXRs. In this study, AI-based analysis tools were developed that can precisely classify COVID-19 lung infection. Publicly available datasets of COVID-19 (N = 1525), non-COVID-19 normal (N = 1525), viral pneumonia (N = 1342) and bacterial pneumonia (N = 2521) from the Italian Society of Medical and Interventional Radiology (SIRM), Radiopaedia, The Cancer Imaging Archive (TCIA) and Kaggle repositories were taken. A multi-approach utilizing deep learning ResNet101 with and without hyperparameters optimization was employed. Additionally, the features extracted from the average pooling layer of ResNet101 were used as input to machine learning (ML) algorithms, which twice trained the learning algorithms. The ResNet101 with optimized parameters yielded improved performance to default parameters. The extracted features from ResNet101 are fed to the k-nearest neighbor (KNN) and support vector machine (SVM) yielded the highest 3-class classification performance of 99.86% and 99.46%, respectively. The results indicate that the proposed approach can be better utilized for improving the accuracy and diagnostic efficiency of CXRs. The proposed deep learning model has the potential to improve further the efficiency of the healthcare systems for proper diagnosis and prognosis of COVID-19 lung infection.  相似文献   

2.
Lightweight deep convolutional neural networks (CNNs) present a good solution to achieve fast and accurate image-guided diagnostic procedures of COVID-19 patients. Recently, advantages of portable Ultrasound (US) imaging such as simplicity and safe procedures have attracted many radiologists for scanning suspected COVID-19 cases. In this paper, a new framework of lightweight deep learning classifiers, namely COVID-LWNet is proposed to identify COVID-19 and pneumonia abnormalities in US images. Compared to traditional deep learning models, lightweight CNNs showed significant performance of real-time vision applications by using mobile devices with limited hardware resources. Four main lightweight deep learning models, namely MobileNets, ShuffleNets, MENet and MnasNet have been proposed to identify the health status of lungs using US images. Public image dataset (POCUS) was used to validate our proposed COVID-LWNet framework successfully. Three classes of infectious COVID-19, bacterial pneumonia, and the healthy lung were investigated in this study. The results showed that the performance of our proposed MnasNet classifier achieved the best accuracy score and shortest training time of 99.0% and 647.0 s, respectively. This paper demonstrates the feasibility of using our proposed COVID-LWNet framework as a new mobile-based radiological tool for clinical diagnosis of COVID-19 and other lung diseases.  相似文献   

3.
4.
It is difficult to identify suspected cases of atypical patients with coronavirus disease 2019 (COVID-19), and data on severe or critical patients are scanty. This retrospective study presents the clinical, laboratory, and radiological profiles, treatments, and outcomes of atypical COVID-19 patients without respiratory symptoms or fever at onset. The study examined ten atypical patients out of 909 severe or critical patients diagnosed with COVID-19 in Wuhan Union Hospital West Campus between 25 January 2020 and 10 February 2020. Data were obtained from the electronic medical records of severe or critical patients without respiratory symptoms or fever at onset. Outcomes were followed up to discharge or death. Among 943 COVID-19 patients, 909 (96.4%) were severe or critical type. Of the severe or critical patients, ten (1.1%) presented without respiratory symptoms or fever at admission. The median age of the ten participants was 63 years (interquartile range (IQR): 57–72), and seven participants were men. The median time from symptom onset to admission was 14 d (IQR: 7–20). Eight of the ten patients had chronic diseases. The patients had fatigue (n = 5), headache or dizziness (n = 4), diarrhea (n = 5), anorexia (n = 3), nausea or vomiting (n = 3), and eye discomfort (n = 1). Four patients were found to have lymphopenia. Imaging examination revealed that nine patients had bilateral pneumonia and one had unilateral pneumonia. Eventually, two patients died and eight were discharged. In the discharged patients, the median time from admission to discharge lasted 24 d (IQR: 13–43). In summary, some severe or critical COVID-19 patients were found to have no respiratory symptoms or fever at onset. All such atypical cases should be identified and quarantined as early as possible, since they tend to have a prolonged hospital stay or fatal outcomes. Chest computed tomography (CT) scan and nucleic acid detection should be performed immediately on close contacts of COVID-19 patients to screen out those with atypical infections, even if the contacts present without respiratory symptoms or fever at onset.  相似文献   

5.
Coronavirus (COVID-19) infection was initially acknowledged as a global pandemic in Wuhan in China. World Health Organization (WHO) stated that the COVID-19 is an epidemic that causes a 3.4% death rate. Chest X-Ray (CXR) and Computerized Tomography (CT) screening of infected persons are essential in diagnosis applications. There are numerous ways to identify positive COVID-19 cases. One of the fundamental ways is radiology imaging through CXR, or CT images. The comparison of CT and CXR scans revealed that CT scans are more effective in the diagnosis process due to their high quality. Hence, automated classification techniques are required to facilitate the diagnosis process. Deep Learning (DL) is an effective tool that can be utilized for detection and classification this type of medical images. The deep Convolutional Neural Networks (CNNs) can learn and extract essential features from different medical image datasets. In this paper, a CNN architecture for automated COVID-19 detection from CXR and CT images is offered. Three activation functions as well as three optimizers are tested and compared for this task. The proposed architecture is built from scratch and the COVID-19 image datasets are directly fed to train it. The performance is tested and investigated on the CT and CXR datasets. Three activation functions: Tanh, Sigmoid, and ReLU are compared using a constant learning rate and different batch sizes. Different optimizers are studied with different batch sizes and a constant learning rate. Finally, a comparison between different combinations of activation functions and optimizers is presented, and the optimal configuration is determined. Hence, the main objective is to improve the detection accuracy of COVID-19 from CXR and CT images using DL by employing CNNs to classify medical COVID-19 images in an early stage. The proposed model achieves a classification accuracy of 91.67% on CXR image dataset, and a classification accuracy of 100% on CT dataset with training times of 58 min and 46 min on CXR and CT datasets, respectively. The best results are obtained using the ReLU activation function combined with the SGDM optimizer at a learning rate of 10−5 and a minibatch size of 16.  相似文献   

6.
Early diagnosis of a pandemic disease like COVID-19 can help deal with a dire situation and help radiologists and other experts manage human resources more effectively. In a recent pandemic, laboratories perform diagnostics manually, which requires a lot of time and expertise of the laboratorial technicians to yield accurate results. Moreover, the cost of kits is high, and well-equipped labs are needed to perform this test. Therefore, other means of diagnosis is highly desirable. Radiography is one of the existing methods that finds its use in the diagnosis of COVID-19. The radiography observes change in Computed Tomography (CT) chest images of patients, developing a deep learning-based method to extract graphical features which are used for automated diagnosis of the disease ahead of laboratory-based testing. The proposed work suggests an Artificial Intelligence (AI) based technique for rapid diagnosis of COVID-19 from given volumetric chest CT images of patients by extracting its visual features and then using these features in the deep learning module. The proposed convolutional neural network aims to classify the infectious and non-infectious SARS-COV2 subjects. The proposed network utilizes 746 chests scanned CT images of 349 images belonging to COVID-19 positive cases, while 397 belong to negative cases of COVID-19. Our experiment resulted in an accuracy of 98.4%, sensitivity of 98.5%, specificity of 98.3%, precision of 97.1%, and F1-score of 97.8%. The additional parameters of classification error, mean absolute error (MAE), root-mean-square error (RMSE), and Matthew’s correlation coefficient (MCC) are used to evaluate our proposed work. The obtained result shows the outstanding performance for the classification of infectious and non-infectious for COVID-19 cases.  相似文献   

7.
COVID-19 remains to proliferate precipitously in the world. It has significantly influenced public health, the world economy, and the persons’ lives. Hence, there is a need to speed up the diagnosis and precautions to deal with COVID-19 patients. With this explosion of this pandemic, there is a need for automated diagnosis tools to help specialists based on medical images. This paper presents a hybrid Convolutional Neural Network (CNN)-based classification and segmentation approach for COVID-19 detection from Computed Tomography (CT) images. The proposed approach is employed to classify and segment the COVID-19, pneumonia, and normal CT images. The classification stage is firstly applied to detect and classify the input medical CT images. Then, the segmentation stage is performed to distinguish between pneumonia and COVID-19 CT images. The classification stage is implemented based on a simple and efficient CNN deep learning model. This model comprises four Rectified Linear Units (ReLUs), four batch normalization layers, and four convolutional (Conv) layers. The Conv layer depends on filters with sizes of 64, 32, 16, and 8. A 2 × 2 window and a stride of 2 are employed in the utilized four max-pooling layers. A soft-max activation function and a Fully-Connected (FC) layer are utilized in the classification stage to perform the detection process. For the segmentation process, the Simplified Pulse Coupled Neural Network (SPCNN) is utilized in the proposed hybrid approach. The proposed segmentation approach is based on salient object detection to localize the COVID-19 or pneumonia region, accurately. To summarize the contributions of the paper, we can say that the classification process with a CNN model can be the first stage a highly-effective automated diagnosis system. Once the images are accepted by the system, it is possible to perform further processing through a segmentation process to isolate the regions of interest in the images. The region of interest can be assesses both automatically and through experts. This strategy helps so much in saving the time and efforts of specialists with the explosion of COVID-19 pandemic in the world. The proposed classification approach is applied for different scenarios of 80%, 70%, or 60% of the data for training and 20%, 30, or 40% of the data for testing, respectively. In these scenarios, the proposed approach achieves classification accuracies of 100%, 99.45%, and 98.55%, respectively. Thus, the obtained results demonstrate and prove the efficacy of the proposed approach for assisting the specialists in automated medical diagnosis services.  相似文献   

8.
The purpose of this research is the segmentation of lungs computed tomography (CT) scan for the diagnosis of COVID-19 by using machine learning methods. Our dataset contains data from patients who are prone to the epidemic. It contains three types of lungs CT images (Normal, Pneumonia, and COVID-19) collected from two different sources; the first one is the Radiology Department of Nishtar Hospital Multan and Civil Hospital Bahawalpur, Pakistan, and the second one is a publicly free available medical imaging database known as Radiopaedia. For the preprocessing, a novel fuzzy c-mean automated region-growing segmentation approach is deployed to take an automated region of interest (ROIs) and acquire 52 hybrid statistical features for each ROIs. Also, 12 optimized statistical features are selected via the chi-square feature reduction technique. For the classification, five machine learning classifiers named as deep learning J4, multilayer perceptron, support vector machine, random forest, and naive Bayes are deployed to optimize the hybrid statistical features dataset. It is observed that the deep learning J4 has promising results (sensitivity and specificity: 0.987; accuracy: 98.67%) among all the deployed classifiers. As a complementary study, a statistical work is devoted to the use of a new statistical model to fit the main datasets of COVID-19 collected in Pakistan.  相似文献   

9.
The prompt spread of Coronavirus (COVID-19) subsequently adorns a big threat to the people around the globe. The evolving and the perpetually diagnosis of coronavirus has become a critical challenge for the healthcare sector. Drastically increase of COVID-19 has rendered the necessity to detect the people who are more likely to get infected. Lately, the testing kits for COVID-19 are not available to deal it with required proficiency, along with-it countries have been widely hit by the COVID-19 disruption. To keep in view the need of hour asks for an automatic diagnosis system for early detection of COVID-19. It would be a feather in the cap if the early diagnosis of COVID-19 could reveal that how it has been affecting the masses immensely. According to the apparent clinical research, it has unleashed that most of the COVID-19 cases are more likely to fall for a lung infection. The abrupt changes do require a solution so the technology is out there to pace up, Chest X-ray and Computer tomography (CT) scan images could significantly identify the preliminaries of COVID-19 like lungs infection. CT scan and X-ray images could flourish the cause of detecting at an early stage and it has proved to be helpful to radiologists and the medical practitioners. The unbearable circumstances compel us to flatten the curve of the sufferers so a need to develop is obvious, a quick and highly responsive automatic system based on Artificial Intelligence (AI) is always there to aid against the masses to be prone to COVID-19. The proposed Intelligent decision support system for COVID-19 empowered with deep learning (ID2S-COVID19-DL) study suggests Deep learning (DL) based Convolutional neural network (CNN) approaches for effective and accurate detection to the maximum extent it could be, detection of coronavirus is assisted by using X-ray and CT-scan images. The primary experimental results here have depicted the maximum accuracy for training and is around 98.11 percent and for validation it comes out to be approximately 95.5 percent while statistical parameters like sensitivity and specificity for training is 98.03 percent and 98.20 percent respectively, and for validation 94.38 percent and 97.06 percent respectively. The suggested Deep Learning-based CNN model unleashed here opts for a comparable performance with medical experts and it is helpful to enhance the working productivity of radiologists. It could take the curve down with the downright contribution of radiologists, rapid detection of COVID-19, and to overcome this current pandemic with the proven efficacy.  相似文献   

10.
The immunological mechanisms that modulate immune response to SARS-CoV-2 infection remain elusive. Little is known on the magnitude and the durability of antibody response against COVID-19. There is consensus that patients with immune dysfunction, such as dialysis patients, may be unable to mount a robust and durable humoral immunity after infections. Recent studies showed that dialysis patients seroconverted after COVID-19, but data on the durability of the immune response are missing. We reported the data of a durable anti-spike protein seroconversion after natural SARS-CoV-2 infection in three patients on hemodialysis with a mean age of 67.2 ± 13.8 years. A mean antibody titer of 212.6 ± 174.9 UA/ml (Liaison®, DiaSorin) was found after one year (range, 366–374 days) from the diagnosis of COVID-19. In conclusion, this case series provided evidence that patients receiving hemodialysis who recovered from severe COVID-19 were able to mount a long-lasting immune response against SARS-CoV-2. Although the protective capacity of this long-term immunity remains to be determined, these patients did not report signs of reinfection after recovery from COVID-19.  相似文献   

11.
《工程(英文)》2020,6(10):1099-1107
The recent coronavirus disease 2019 (COVID-19) pandemic outbreak has caused a serious global health emergency. Supporting evidence shows that COVID-19 shares a genomic similarity with other coronaviruses, such as severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV), and that the pathogenesis and treatment strategies that were applied 17 years ago in combating SARS-CoV and other viral infections could be taken as references in today’s antiviral battle. According to the clinical pathological features of COVID-19 patients, patients can suffer from five steps of progression, starting with severe viral infection and suppression of the immune system and eventually progressing to cytokine storm, multi-organ damage, and lung fibrosis, which is the cause of mortality. Therefore, early prevention of disease progression is important. However, no specific effective drugs and vaccination are currently available, and the World Health Organization is urging the development of novel prevention and treatment strategies. Traditional Chinese medicine could be used as an alternative treatment option or in combination with Western medicine to treat COVID-19, due to its basis on historical experience and holistic pharmacological action. Here, we summarize the potential uses and therapeutic mechanisms of Chinese herbal formulas (CHFs) from the reported literature, along with patent drugs that have been recommended by institutions at the national and provincial levels in China, in order to verify their scientific foundations for treating COVID-19. In perspective, more basic and clinical studies with multiple high-tech and translational technologies are suggested to further confirm the therapeutic efficacies of CHFs.  相似文献   

12.
13.
Corona is a viral disease that has taken the form of an epidemic and is causing havoc worldwide after its first appearance in the Wuhan state of China in December 2019. Due to the similarity in initial symptoms with viral fever, it is challenging to identify this virus initially. Non-detection of this virus at the early stage results in the death of the patient. Developing and densely populated countries face a scarcity of resources like hospitals, ventilators, oxygen, and healthcare workers. Technologies like the Internet of Things (IoT) and artificial intelligence can play a vital role in diagnosing the COVID-19 virus at an early stage. To minimize the spread of the pandemic, IoT-enabled devices can be used to collect patient’s data remotely in a secure manner. Collected data can be analyzed through a deep learning model to detect the presence of the COVID-19 virus. In this work, the authors have proposed a three-phase model to diagnose covid-19 by incorporating a chatbot, IoT, and deep learning technology. In phase one, an artificially assisted chatbot can guide an individual by asking about some common symptoms. In case of detection of even a single sign, the second phase of diagnosis can be considered, consisting of using a thermal scanner and pulse oximeter. In case of high temperature and low oxygen saturation levels, the third phase of diagnosis will be recommended, where chest radiography images can be analyzed through an AI-based model to diagnose the presence of the COVID-19 virus in the human body. The proposed model reduces human intervention through chatbot-based initial screening, sensor-based IoT devices, and deep learning-based X-ray analysis. It also helps in reducing the mortality rate by detecting the presence of the COVID-19 virus at an early stage.  相似文献   

14.
Coronavirus (COVID-19) outbreak was first identified in Wuhan, China in December 2019. It was tagged as a pandemic soon by the WHO being a serious public medical condition worldwide. In spite of the fact that the virus can be diagnosed by qRT-PCR, COVID-19 patients who are affected with pneumonia and other severe complications can only be diagnosed with the help of Chest X-Ray (CXR) and Computed Tomography (CT) images. In this paper, the researchers propose to detect the presence of COVID-19 through images using Best deep learning model with various features. Impressive features like Speeded-Up Robust Features (SURF), Features from Accelerated Segment Test (FAST) and Scale-Invariant Feature Transform (SIFT) are used in the test images to detect the presence of virus. The optimal features are extracted from the images utilizing DeVGGCovNet (Deep optimal VGG16) model through optimal learning rate. This task is accomplished by exceptional mating conduct of Black Widow spiders. In this strategy, cannibalism is incorporated. During this phase, fitness outcomes are rejected and are not satisfied by the proposed model. The results acquired from real case analysis demonstrate the viability of DeVGGCovNet technique in settling true issues using obscure and testing spaces. VGG 16 model identifies the image which has a place with which it is dependent on the distinctions in images. The impact of the distinctions on labels during training stage is studied and predicted for test images. The proposed model was compared with existing state-of-the-art models and the results from the proposed model for disarray grid estimates like Sen, Spec, Accuracy and F1 score were promising.  相似文献   

15.
《工程(英文)》2020,6(10):1185-1191
No therapeutics have been proven effective yet for the treatment of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To assess the efficacy and safety of Triazavirin therapy for COVID-19, we conducted a randomized, double-blinded controlled trial involving hospitalized adult patients with COVID-19. Participants were enrolled from ten sites, and were randomized into two arms of the study with a ratio of 1:1. Patients were treated with Triazavirin 250 mg versus a placebo three or four times a day for 7 d. The primary outcome was set as the time to clinical improvement, defined as normalization of body temperature, respiratory rate, oxygen saturation, cough, and absorption of pulmonary infection by chest computed tomography (CT) until 28 d after randomization. Secondary outcomes included individual components of the primary outcome, the mean time and proportion of inflammatory absorption in the lung, and the conversion rate to a repeated negative SARS-CoV-2 nucleic acid test of throat swab sampling. Concomitant therapeutic treatments, adverse events, and serious adverse events were recorded. Our study was halted after the recruitment of 52 patients, since the number of new infections in the participating hospitals decreased greatly. We randomized 52 patients for treatment with Triazavirin (n = 26) or a placebo (n = 26). We found no differences in the time to clinical improvement (median, 7 d versus 12 d; risk ratio (RR), 2.0; 95% confidence interval (CI), 0.7–5.6; p = 0.2), with clinical improvement occurring in ten patients in the Triazavirin group and six patients in the placebo group (38.5% versus 23.1%; RR, 2.1; 95% CI, 0.6–7.0; p = 0.2). All components of the primary outcome normalized within 28 d, with the exception of absorption of pulmonary infection (Triazavirin 50.0%, placebo 26.1%). Patients in the Triazavirin group used less frequent concomitant therapies for respiratory, cardiac, renal, hepatic, or coagulation supports. Although no statistically significant evidence was found to indicate that Triazavirin benefits COVID-19 patients, our observations indicated possible benefits from its use to treat COVID-19 due to its antiviral effects. Further study is required for confirmation.  相似文献   

16.
Coronavirus disease 2019 (COVID-19) epidemic has devastating effects on personal health around the world. It is significant to achieve accurate segmentation of pulmonary infection regions, which is an early indicator of disease. To solve this problem, a deep learning model, namely, the content-aware pre-activated residual UNet (CAPA-ResUNet), was proposed for segmenting COVID-19 lesions from CT slices. In this network, the pre-activated residual block was used for down-sampling to solve the problems of complex foreground and large fluctuations of distribution in datasets during training and to avoid gradient disappearance. The area loss function based on the false segmentation regions was proposed to solve the problem of fuzzy boundary of the lesion area. This model was evaluated by the public dataset (COVID-19 Lung CT Lesion Segmentation Challenge—2020) and compared its performance with those of classical models. Our method gains an advantage over other models in multiple metrics. Such as the Dice coefficient, specificity (Spe), and intersection over union (IoU), our CAPA-ResUNet obtained 0.775 points, 0.972 points, and 0.646 points, respectively. The Dice coefficient of our model was 2.51% higher than Content-aware residual UNet (CARes-UNet). The code is available at https://github.com/malu108/LungInfectionSeg .  相似文献   

17.
The COVID-19 pandemic poses an additional serious public health threat due to little or no pre-existing human immunity, and developing a system to identify COVID-19 in its early stages will save millions of lives. This study applied support vector machine (SVM), k-nearest neighbor (K-NN) and deep learning convolutional neural network (CNN) algorithms to classify and detect COVID-19 using chest X-ray radiographs. To test the proposed system, chest X-ray radiographs and CT images were collected from different standard databases, which contained 95 normal images, 140 COVID-19 images and 10 SARS images. Two scenarios were considered to develop a system for predicting COVID-19. In the first scenario, the Gaussian filter was applied to remove noise from the chest X-ray radiograph images, and then the adaptive region growing technique was used to segment the region of interest from the chest X-ray radiographs. After segmentation, a hybrid feature extraction composed of 2D-DWT and gray level co-occurrence matrix was utilized to extract the features significant for detecting COVID-19. These features were processed using SVM and K-NN. In the second scenario, a CNN transfer model (ResNet 50) was used to detect COVID-19. The system was examined and evaluated through multiclass statistical analysis, and the empirical results of the analysis found significant values of 97.14%, 99.34%, 99.26%, 99.26% and 99.40% for accuracy, specificity, sensitivity, recall and AUC, respectively. Thus, the CNN model showed significant success; it achieved optimal accuracy, effectiveness and robustness for detecting COVID-19.  相似文献   

18.
Considerable resources, technology, and efforts are being utilized worldwide to eradicate the coronavirus. Although certain measures taken to prevent the further spread of the disease have been successful, efforts to completely wipe out the coronavirus have been insufficient. Coronavirus patients have symptoms similar to those of chest Tuberculosis (TB) or pneumonia patients. Chest tuberculosis and coronavirus are similar because both diseases affect the lungs, cause coughing and produce an irregular respiratory system. Both diseases can be confirmed through X-ray imaging. It is a difficult task to diagnose COVID-19, as coronavirus testing kits are neither excessively available nor very reliable. In addition, specially trained staff and specialized equipment in medical laboratories are needed to carry out a coronavirus test. However, most of the staff is not fully trained, and several laboratories do not have special equipment to perform a coronavirus test. Therefore, hospitals and medical staff are under stress to meet necessary workloads. Most of the time, these staffs confuse the tuberculosis or pneumonia patient with a coronavirus patient, as these patients present similar symptoms. To meet the above challenges, a comprehensive solution based on a deep learning model has been proposed to distinguish COVID-19 patients from either tuberculosis patients or healthy people. The framework contains a fusion of Visual Geometry Group from Oxford (VGG16) and Residual Network (ResNet18) algorithms as VGG16 contains robust convolutional layers, and Resnet18 is a good classifier. The proposed model outperforms other machine learning and deep learning models as more than 94% accuracy for multiclass identification has been achieved.  相似文献   

19.
COVID-19 has been considered one of the recent epidemics that occurred at the last of 2019 and the beginning of 2020 that world widespread. This spread of COVID-19 requires a fast technique for diagnosis to make the appropriate decision for the treatment. X-ray images are one of the most classifiable images that are used widely in diagnosing patients’ data depending on radiographs due to their structures and tissues that could be classified. Convolutional Neural Networks (CNN) is the most accurate classification technique used to diagnose COVID-19 because of the ability to use a different number of convolutional layers and its high classification accuracy. Classification using CNNs techniques requires a large number of images to learn and obtain satisfactory results. In this paper, we used SqueezNet with a modified output layer to classify X-ray images into three groups: COVID-19, normal, and pneumonia. In this study, we propose a deep learning method with enhance the features of X-ray images collected from Kaggle, Figshare to distinguish between COVID-19, Normal, and Pneumonia infection. In this regard, several techniques were used on the selected image samples which are Unsharp filter, Histogram equal, and Complement image to produce another view of the dataset. The Squeeze Net CNN model has been tested in two scenarios using the 13,437 X-ray images that include 4479 for each type (COVID-19, Normal and Pneumonia). In the first scenario, the model has been tested without any enhancement on the datasets. It achieved an accuracy of 91%. But, in the second scenario, the model was tested using the same previous images after being improved by several techniques and the performance was high at approximately 95%. The conclusion of this study is the used model gives higher accuracy results for enhanced images compared with the accuracy results for the original images. A comparison of the outcomes demonstrated the effectiveness of our DL method for classifying COVID-19 based on enhanced X-ray images.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号