首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 78 毫秒
1.
以某透水性土层较深的悬挂式止水帷幕基坑为背景,采用ABAQUS建立考虑分级降水开挖全过程的三维流固耦合模型,研究降水对于基坑变形发展的影响规律和不利因素,分析开挖前预降水深度、止水帷幕深度对基坑变形性状的影响. 研究表明:渗流与开挖支护具有明显的耦合效应,降水引起的围护结构侧移增量模式随开挖和支撑施作情况不同而差异较大,降水引起的地表沉降是由土体固结和渗流引起的围护结构侧移引发的地表沉降组成;地表沉降影响范围较经验预测值明显偏大,在基坑西侧地表沉降最大点,降水施工期累积产生的沉降约占48%;各级降水中第1级降水对基坑变形最不利,围护结构初始侧移随第1级降水深度的增加而快速增长,使得竣工后的最大围护结构侧移和坑外地表沉降呈指数增长;止水帷幕对于减少坑外水位下降和控制地表沉降有显著作用,随着帷幕深度的增加,地表最大沉降和沉降影响范围降低,存在最优止水帷幕深度使得帷幕超过最优深度后地表沉降趋于稳定.  相似文献   

2.
深基坑开挖引起的土体变形模拟   总被引:6,自引:0,他引:6  
采用FLAC3D软件对某深基坑开挖引起的坑底隆起及地表变形进行了数值模拟.计算中采用摩尔库仑弹塑性模型模拟土体特征,采用接触单元模拟土体与基坑围护结构之间的相互作用.通过模拟开挖过程,获得了不同开挖阶段的地表沉降、坑底隆起和墙后土体水平位移资料,可供工程设计和施工参考.  相似文献   

3.
三重管高压喷射注浆作为一种工效很高的隔水防水工艺,在深基坑隔水防渗工程中发挥着重要作用.结合工程实例介绍了在复杂周边环境及强透水性地层条件下,以三重管高压喷射注浆进行基坑隔水帷幕的施工方法.  相似文献   

4.
为明确基坑开挖过程中邻近隧道的力学响应特征,利用有限元数值模拟软件,对隧道管片的变形和内力进行分析,通过控制开挖过程中水头和水压力的变化,分析基坑开挖过程中地下水渗流对邻近隧道的影响。结果表明:基坑开挖会导致邻近隧道的变形和内力变化,考虑地下水渗流作用时隧道的变形和内力会显著增加,并且随着基坑开挖深度的增加,隧道管片的变形和内力也随之增大。  相似文献   

5.
以上海大型深基坑在建工程为依托,采用有限元数值模拟方法,研究了基坑降水及加固等施工措施对基坑开挖过程中地下连续墙水平侧移、坑外地层以及隧道变形的影响规律,计算结果与现场实测数据有较好的一致性.研究表明:地下连续墙两侧SMW工法加固以及坑内土体加固可有效控制周边地层以及临近隧道的扰动变形,在采取加固措施后上行线仰拱测点的沉降量降低43.2%;相对于跨层降水,采取逐层降水方案时,坑外地表沉降、地下墙水平侧移以及运营隧道水平和竖向变形的最大值分别减小4.8%,4.2%,12.3%和12.7%,通过优化降水方案控制临近隧道变形的效果较为明显.  相似文献   

6.
基于某软土地铁站深基坑工程项目,依据勘察与抽水试验数据采用有限元软件Midas GTS建立三维模型,研究渗流-应力耦合作用下基坑降水开挖过程中孔隙水压力及地表沉降变化规律,分析土体渗透系数及降水深度、降水速率等设计参数对地表沉降的影响。研究表明:基坑降水开挖使得地下水渗流路径呈降落漏斗形,基坑底部出现凹弧形等孔压线;地表最大沉降点与基坑的距离约为降水深度的1.0~0.75倍,孔压消散是地表沉降的主要因素;最终降水深度每增加1 m相应地表最大沉降量增加约2 mm,采取回灌措施比未采取引起的基坑周边地表最大沉降小26.2%。  相似文献   

7.
依托天津某地铁车站基坑实测资料开展一系列数值模拟研究,考虑邻近结构阻隔影响,探讨在坑外有/无地下结构及既有地下结构与基坑不同间距条件下开挖前降水引发的围护结构及坑外土体变形特性,通过对比各工况下基坑围挡与坑外土体变形模式、最大围挡侧移与最大地面沉降发展规律、墙后地表沉陷与基坑围挡侧移的面积关系等,揭示邻近结构对开挖前抽水引发基坑变形的影响机理. 研究表明,坑外地下结构的存在对地层运动发展有一定阻隔作用,且地下结构与基坑间间距越小,这种阻隔效应越明显;地下结构对其后方地层变形具有牵引效应,导致地下结构后方出现明显沉降槽,但随着地下结构与基坑间间距的增大,牵引效应不断减弱. 阻隔、牵引效应发挥的临界值分别为1倍、2倍的目标降水深度;当地下结构与基坑间间距处于相应临界值以内时,在基坑设计中应考虑阻隔与牵引效应的影响以得到更合理的支护与施工监测方案.  相似文献   

8.
采用Plaxis 3D建立了合肥市地铁3号线上方天鹅湖隧道基坑分区开挖的三维数值模型,通过与监测数据对比验证了数值模型的合理性。研究了分区参数和开挖顺序对隧道竖向变形的控制效果,综合考虑变形控制效果和实际工程造价后给出了相关参数的建议取值。基坑分区越细致对隧道竖向变形的控制效果越好,但分区基坑尺寸处于15~20 m后控制效果的提升并不显著;先开挖隧道两侧分区产生的隧道竖向变形小于先开挖隧道上方分区变形;先后开挖区不相邻顺序施工产生的隧道竖向变形小于先后开挖区相邻产生的变形。  相似文献   

9.
为了分析在降水影响下地铁车站基坑的稳定性和现场实测的精确性,建立了基坑体系二维有限元数值模拟.采用弹性模型考虑地基上的非线性性质,针对深基坑开挖过程引起的承载体系受力变形特性,分析了基坑降水和不降水两种情况引起的基坑变形,考虑了地下连续墙与周围土体的相互作用,包括地下连续墙变形、地表沉降及坑底回弹.结果表明,理论分析和实际监测结果较吻合,为工程的顺利实施提供了依据.  相似文献   

10.
临近地铁轨道的深基坑受开挖影响而产生位移和变形,这将影响到轨道交通的运营安全.以南宁地铁某深基坑为背景,结合数值模拟等分析手段,通过建立三维模型,预测基坑的开挖对地铁联络线区间造成的影响以及危害,从而为指导基坑工程的设计、施工以及施工过程中的加固和监测提供参考.结果表明,深基坑大规模开挖情况下,产生的卸荷效应明显,会对已经运营的地铁区间产生一定的影响,引起隧道的水平与竖向变形,但在采取有针对性的支撑方案的情况下,可以将变形降低至安全限值以下.  相似文献   

11.
考虑降水、支护结构变形以及基坑隆起3个因素引起的基坑周围土体的沉降,根据降水引起土体沉降的机理,运用修正的分层总和法单独计算出由降水引起的周围土体沉降。通过研究基坑开挖引起坑外土体沉降的规律,推导出由基坑开挖引起的坑外土体沉降理论公式。把降水引起的沉降及基坑开挖引起的沉降进行叠加,加入修正系数,最终以简化的理论公式合理地计算出基坑周围土体沉降。具体工程验证表明,推导的理论解析解与实测数据十分接近,能有效预估基坑周围土体沉降,为施工方案编制提供可靠的理论依据,最大限度减少基坑施工对周围环境的影响。  相似文献   

12.
文章结合具体工程实例,分析了基坑降水方案,进行了基坑降水设计计算,提出了基坑降水施工的建议。  相似文献   

13.
考虑渗流影响的深基坑开挖三维弹塑性数值模拟   总被引:1,自引:0,他引:1  
为了分析在降水影响下地铁车站基坑的稳定性和现场实测的精确性,以沈阳某地铁车站深基坑为研究对象,根据工程地质条件及围护结构的深度和基坑开挖深度,运用ABAQUS对基坑进行了地下水渗流与开挖的三维数值模拟分析,利用试验推理法来模拟渗流问题.对基坑降水条件下开挖和支护体系的变形情况进行了验证,并将模拟结果与实测值进行了对比.结果表明,理论分析和实际监测结果较吻合,该方法对ABAQUS在基坑渗流数值模拟方面具有良好的借鉴性.  相似文献   

14.
基坑开挖对邻近既有下卧隧道的影响分析   总被引:1,自引:1,他引:0  
随着城市化的发展,骑跨于邻近地铁隧道之上的基坑开挖工程越来越多,在基坑开挖过程中如何更好的控制对既有隧道变形的影响是一个亟待解决的问题。本文运用ABAQUS有限元软件,对下卧地铁上、下行线隧道顶、侧、底面的水平和竖向位移进行了三维数值模拟计算和对比分析,结果表明:基坑开挖对邻近既有下卧隧道的变形影响明显,位于基坑中部位置以下的隧道竖向位移相对较大,靠近基坑边缘位置的隧道水平位移相对较大;同一隧道顶部位置的竖向位移大于侧面和底部的位移,隧道侧面的水平位移大于顶、底部的位移;受基坑开挖卸荷的影响,隧道的自身变形表现为竖向直径增大,水平向直径减小。对位于既有隧道上方的基坑开挖要引起关注。  相似文献   

15.
针对某市南北快速干线隧道17. 8 m深基坑工程,采用同济启明星Qimstar~?基坑支护结构软件,对基坑开挖过程中围护桩的受力情况进行模拟计算,并用测斜仪对围护桩的水平位移进行现场实时监测,研究桩体受力特点及变形规律.结果表明:模拟结果与监测结果在数值上比较接近,且变化趋势一致;桩身最大水平位移与基坑土层的开挖深度密切相关,随开挖深度的增加而发生非线性增大;受基坑时空效应的影响,桩体最大变形部位不断下移,桩身形状也由最初的前倾形曲线逐步向弓形曲线发展,最终在距基坑设计开挖总深度的2/3处达到11. 25 mm的最大值;在基坑底板浇筑完成后,围护桩变形趋于稳定.  相似文献   

16.
运用ABAQUS有限元软件,对下卧地铁上、下行线隧道顶、侧、底面的水平和竖向位移进行了三维数值模拟计算和对比分析,结果表明:基坑开挖对邻近既有下卧隧道的变形影响明显,位于基坑中部位置以下的隧道竖向位移相对较大,靠近基坑边缘位置的隧道水平位移相对较大;同一隧道顶部位置的竖向位移大于侧面和底部的位移,隧道侧面的水平位移大于顶、底部的位移;受基坑开挖卸荷的影响,隧道的自身变形表现为竖向直径增大,水平向直径减小。对位于既有隧道上方的基坑开挖要引起关注。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号