共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Juanjuan Xu Zhengrong Yin Yu Liu Sufei Wang Limin Duan Yi An Jinshuo Fan Tingting Liao Yang Jin Jianguo Chen 《工程(英文)》2021,7(10):1452-1458
It is difficult to identify suspected cases of atypical patients with coronavirus disease 2019 (COVID-19), and data on severe or critical patients are scanty. This retrospective study presents the clinical, laboratory, and radiological profiles, treatments, and outcomes of atypical COVID-19 patients without respiratory symptoms or fever at onset. The study examined ten atypical patients out of 909 severe or critical patients diagnosed with COVID-19 in Wuhan Union Hospital West Campus between 25 January 2020 and 10 February 2020. Data were obtained from the electronic medical records of severe or critical patients without respiratory symptoms or fever at onset. Outcomes were followed up to discharge or death. Among 943 COVID-19 patients, 909 (96.4%) were severe or critical type. Of the severe or critical patients, ten (1.1%) presented without respiratory symptoms or fever at admission. The median age of the ten participants was 63 years (interquartile range (IQR): 57–72), and seven participants were men. The median time from symptom onset to admission was 14 d (IQR: 7–20). Eight of the ten patients had chronic diseases. The patients had fatigue (n = 5), headache or dizziness (n = 4), diarrhea (n = 5), anorexia (n = 3), nausea or vomiting (n = 3), and eye discomfort (n = 1). Four patients were found to have lymphopenia. Imaging examination revealed that nine patients had bilateral pneumonia and one had unilateral pneumonia. Eventually, two patients died and eight were discharged. In the discharged patients, the median time from admission to discharge lasted 24 d (IQR: 13–43). In summary, some severe or critical COVID-19 patients were found to have no respiratory symptoms or fever at onset. All such atypical cases should be identified and quarantined as early as possible, since they tend to have a prolonged hospital stay or fatal outcomes. Chest computed tomography (CT) scan and nucleic acid detection should be performed immediately on close contacts of COVID-19 patients to screen out those with atypical infections, even if the contacts present without respiratory symptoms or fever at onset. 相似文献
3.
Ankur Dumka Parag Verma Rajesh Singh Anuj Bhardwaj Khalid Alsubhi Divya Anand Irene Delgado Noya Silvia Aparicio Obregon 《计算机、材料和连续体(英文)》2022,72(3):4453-4466
In December 2019, a group of people in Wuhan city of Hubei province of China were found to be affected by an infection called dark etiology pneumonia. The outbreak of this pneumonia infection was declared a deadly disease by the China Center for Disease Control and Prevention on January 9, 2020, named Novel Coronavirus 2019 (nCoV-2019). This nCoV-2019 is now known as COVID-19. There is a big list of infections of this coronavirus which is present in the form of a big family. This virus can cause several diseases that usually develop with a serious problem. According to the World Health Organization (WHO), 2019-nCoV has been placed as the modern generation of Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS) coronaviruses, so COVID-19 can repeatedly change its internal genome structure to extend its existence. Understanding and accurately predicting the mutational properties of the genome structure of COVID-19 can form a good leadership role in preventing and fighting against coronavirus. In this research paper, an analytical approach has been presented which is based on the k-means cluster technique of machine learning to find the clusters over the mutational properties of the COVID-19 viruses’ complete genome. This method would be able to act as a promising tool to monitor and track pathogenic infections in their stable and local genetics/hereditary varieties. This paper identifies five main clusters of mutations with as best in most cases in the coronavirus that could help scientists and researchers develop disease control vaccines for the transformation of coronaviruses. 相似文献
4.
5.
Dominik Wodarz Natalia L. Komarova Luis M. Schang 《Journal of the Royal Society Interface》2021,18(176)
Epidemiological data about SARS-CoV-2 spread indicate that the virus is not transmitted uniformly in the population. The transmission tends to be more effective in select settings that involve exposure to relatively high viral dose, such as in crowded indoor settings, assisted living facilities, prisons or food processing plants. To explore the effect on infection dynamics, we describe a new mathematical model where transmission can occur (i) in the community at large, characterized by low-dose exposure and mostly mild disease, and (ii) in so-called transmission hot zones, characterized by high-dose exposure that can be associated with more severe disease. The model yields different types of epidemiological dynamics, depending on the relative importance of hot zone and community transmission. Interesting dynamics occur if the rate of virus release/deposition from severely infected people is larger than that of mildly infected individuals. Under this assumption, we find that successful infection spread can hinge upon high-dose hot zone transmission, yet the majority of infections are predicted to occur in the community at large with mild disease. In this regime, residual hot zone transmission can account for continued virus spread during community lockdowns, and the suppression of hot zones after community interventions are relaxed can cause a prolonged lack of infection resurgence following the reopening of society. This gives rise to the notion that targeted interventions specifically reducing virus transmission in the hot zones have the potential to suppress overall infection spread, including in the community at large. Epidemiological trends in the USA and Europe are interpreted in light of this model. 相似文献
6.
One of the more widely advocated solutions for slowing down the spread of COVID-19 has been automated contact tracing. Since proximity data can be collected by personal mobile devices, the natural proposal has been to use this for automated contact tracing providing a major gain over a manual implementation. In this work, we study the characteristics of voluntary and automated contact tracing and its effectiveness for mapping the spread of a pandemic due to the spread of SARS-CoV-2. We highlight the infrastructure and social structures required for automated contact tracing to work. We display the vulnerabilities of the strategy to inadequate sampling of the population, which results in the inability to sufficiently determine significant contact with infected individuals. Of crucial importance will be the participation of a significant fraction of the population for which we derive a minimum threshold. We conclude that relying largely on automated contact tracing without population-wide participation to contain the spread of the SARS-CoV-2 pandemic can be counterproductive and allow the pandemic to spread unchecked. The simultaneous implementation of various mitigation methods along with automated contact tracing is necessary for reaching an optimal solution to contain the pandemic. 相似文献
7.
Ashish Goyal Daniel B. Reeves Joshua T. Schiffer 《Journal of the Royal Society Interface》2022,19(189)
The emergence of new SARS-CoV-2 variants of concern (VOC) has hampered international efforts to contain the COVID-19 pandemic. VOCs have been characterized to varying degrees by higher transmissibility, worse infection outcomes and evasion of vaccine and infection-induced immunologic memory. VOCs are hypothesized to have originated from animal reservoirs, communities in regions with low surveillance and/or single individuals with poor immunologic control of the virus. Yet, the factors dictating which variants ultimately predominate remain incompletely characterized. Here we present a multi-scale model of SARS-CoV-2 dynamics that describes population spread through individuals whose viral loads and numbers of contacts (drawn from an over-dispersed distribution) are both time-varying. This framework allows us to explore how super-spreader events (SSE) (defined as greater than five secondary infections per day) contribute to variant emergence. We find stochasticity remains a powerful determinant of predominance. Variants that predominate are more likely to be associated with higher infectiousness, an SSE early after variant emergence and ongoing decline of the current dominant variant. Additionally, our simulations reveal that most new highly infectious variants that infect one or a few individuals do not achieve permanence in the population. Consequently, interventions that reduce super-spreading may delay or mitigate emergence of VOCs. 相似文献
8.
Testing asymptomatic people for SARS-CoV-2 aims to reduce COVID-19 transmission. Screening programmes’ effectiveness depends upon testing strategy, sample handling logistics, test sensitivity and individual behaviour, in addition to dynamics of viral transmission. The interaction between these factors is not fully characterized. We investigated the interaction between these factors to determine how to optimize reduction of transmission. We estimate that under idealistic assumptions 70% of transmission may be averted, but under realistic assumptions only 7% may be averted. We show that programmes that overwhelm laboratory capacity or reduce isolation of those with minor symptoms have increased transmission compared with those that do not: programmes need to be designed to avoid these issues, or they will be ineffective or even counter-productive. Our model allows optimal selection of whom to test, quantifies the balance between accuracy and timeliness, and quantifies potential impacts of behavioural interventions. We anticipate our model can be used to understand optimal screening strategies for other infectious diseases with substantially different dynamics. 相似文献
9.
Wei-Chiao Huang Shiqi Zhou Xuedan He Kevin Chiem Moustafa T. Mabrouk Ruth H. Nissly Ian M. Bird Mike Strauss Suryaprakash Sambhara Joaquin Ortega Elizabeth A. Wohlfert Luis Martinez-Sobrido Suresh V. Kuchipudi Bruce A. Davidson Jonathan F. Lovell 《Advanced materials (Deerfield Beach, Fla.)》2020,32(50):2005637
The receptor-binding domain (RBD) of the SARS-CoV-2 spike protein is a candidate vaccine antigen that binds angiotensin-converting enzyme 2 (ACE2), leading to virus entry. Here, it is shown that rapid conversion of recombinant RBD into particulate form via admixing with liposomes containing cobalt-porphyrin-phospholipid (CoPoP) potently enhances the functional antibody response. Antigen binding via His-tag insertion into the CoPoP bilayer results in a serum-stable and conformationally intact display of the RBD on the liposome surface. Compared to other vaccine formulations, immunization using CoPoP liposomes admixed with recombinant RBD induces multiple orders of magnitude higher levels of antibody titers in mice that neutralize pseudovirus cell entry, block RBD interaction with ACE2, and inhibit live virus replication. Enhanced immunogenicity can be accounted for by greater RBD uptake into antigen-presenting cells in particulate form and improved immune cell infiltration in draining lymph nodes. QS-21 inclusion in the liposomes results in an enhanced antigen-specific polyfunctional T cell response. In mice, high dose immunization results in minimal local reactogenicity, is well-tolerated, and does not elevate serum cobalt levels. Taken together, these results confirm that particulate presentation strategies for the RBD immunogen should be considered for inducing strongly neutralizing antibody responses against SARS-CoV-2. 相似文献
10.
The swift development of SARS-CoV-2 vaccines has been met with worldwide commendation. However, in the context of an ongoing pandemic there is an interplay between infection and vaccination. While infection can grow exponentially, vaccination rates are generally limited by supply and logistics. With the first SARS-CoV-2 vaccines receiving medical approval requiring two doses, there has been scrutiny on the spacing between doses; an elongated period between doses allows more of the population to receive a first vaccine dose in the short-term generating wide-spread partial immunity. Focusing on data from England, we investigated prioritization of a one dose or two dose vaccination schedule given a fixed number of vaccine doses and with respect to a measure of maximizing averted deaths. We optimized outcomes for two different estimates of population size and relative risk of mortality for at-risk groups within the Phase 1 vaccine priority order. Vaccines offering relatively high protection from the first dose favour strategies that prioritize giving more people one dose, although with increasing vaccine supply eventually those eligible and accepting vaccination will receive two doses. While optimal dose timing can substantially reduce the overall mortality risk, there needs to be careful consideration of the logistics of vaccine delivery. 相似文献
11.
Sang Woo Park Benjamin M. Bolker Sebastian Funk C. Jessica E. Metcalf Joshua S. Weitz Bryan T. Grenfell Jonathan Dushoff 《Journal of the Royal Society Interface》2022,19(191)
Inferring the relative strength (i.e. the ratio of reproduction numbers) and relative speed (i.e. the difference between growth rates) of new SARS-CoV-2 variants is critical to predicting and controlling the course of the current pandemic. Analyses of new variants have primarily focused on characterizing changes in the proportion of new variants, implicitly or explicitly assuming that the relative speed remains fixed over the course of an invasion. We use a generation-interval-based framework to challenge this assumption and illustrate how relative strength and speed change over time under two idealized interventions: a constant-strength intervention like idealized vaccination or social distancing, which reduces transmission rates by a constant proportion, and a constant-speed intervention like idealized contact tracing, which isolates infected individuals at a constant rate. In general, constant-strength interventions change the relative speed of a new variant, while constant-speed interventions change its relative strength. Differences in the generation-interval distributions between variants can exaggerate these changes and modify the effectiveness of interventions. Finally, neglecting differences in generation-interval distributions can bias estimates of relative strength. 相似文献
12.
《工程(英文)》2020,6(10):1085-1098
Identifying the first infected case (patient zero) is key in tracing the origin of a virus; however, doing so is extremely challenging. Patient zero for coronavirus disease 2019 (COVID-19) is likely to be permanently unknown. Here, we propose a new viral transmission route by focusing on the environmental media containing viruses of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or RaTG3-related bat-borne coronavirus (Bat-CoV), which we term the “environmental quasi-host.” We reason that the environmental quasi-host is likely to be a key node in helping recognize the origin of SARS-CoV-2; thus, SARS-CoV-2 might be transmitted along the route of natural host–environmental media–human. Reflecting upon viral outbreaks in the history of humanity, we realize that many epidemic events are caused by direct contact between humans and environmental media containing infectious viruses. Indeed, contacts between humans and environmental quasi-hosts are greatly increasing as the space of human activity incrementally overlaps with animals’ living spaces, due to the rapid development and population growth of human society. Moreover, viruses can survive for a long time in environmental media. Therefore, we propose a new potential mechanism to trace the origin of the COVID-19 outbreak. 相似文献
13.
Sha Peng Fengqiang Cao Yufei Xia Xiao-Dong Gao Lianpan Dai Jinghua Yan Guanghui Ma 《Advanced materials (Deerfield Beach, Fla.)》2020,32(40):2004210
For rapid response against the prevailing COVID-19 (coronavirus disease 19), it is a global imperative to exploit the immunogenicity of existing formulations for safe and efficient vaccines. As the most accessible adjuvant, aluminum hydroxide (alum) is still the sole employed adjuvant in most countries. However, alum tends to attach on the membrane rather than entering the dendritic cells (DCs), leading to the absence of intracellular transfer and process of the antigens, and thus limits T-cell-mediated immunity. To address this, alum is packed on the squalene/water interphase is packed, forming an alum-stabilized Pickering emulsion (PAPE). “Inheriting” from alum and squalene, PAPE demonstrates a good biosafety profile. Intriguingly, with the dense array of alum on the oil/water interphase, PAPE not only adsorbs large quantities of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) antigens, but also harbors a higher affinity for DC uptake, which provokes the uptake and cross-presentation of the delivered antigens. Compared with alum-treated groups, more than six times higher antigen-specific antibody titer and three-fold more IFN-γ-secreting T cells are induced, indicating the potent humoral and cellular immune activations. Collectively, the data suggest that PAPE may provide potential insights toward a safe and efficient adjuvant platform for the enhanced COVID-19 vaccinations. 相似文献
14.
Qihui Yang Don M. Gruenbacher Caterina M. Scoglio 《Journal of the Royal Society Interface》2022,19(188)
After one pandemic year of remote or hybrid instructional modes, universities struggled with plans for an in-person autumn (fall) semester in 2021. To help inform university reopening policies, we collected survey data on social contact patterns and developed an agent-based model to simulate the spread of severe acute respiratory syndrome coronavirus 2 in university settings. Considering a reproduction number of R0 = 3 and 70% immunization effectiveness, we estimated that at least 80% of the university population immunized through natural infection or vaccination is needed for safe university reopening with relaxed non-pharmaceutical interventions (NPIs). By contrast, at least 60% of the university population immunized through natural infection or vaccination is needed for safe university reopening when NPIs are adopted. Nevertheless, attention needs to be paid to large-gathering events that could lead to infection size spikes. At an immunization coverage of 70%, continuing NPIs, such as wearing masks, could lead to a 78.39% reduction in the maximum cumulative infections and a 67.59% reduction in the median cumulative infections. However, even though this reduction is very beneficial, there is still a possibility of non-negligible size outbreaks because the maximum cumulative infection size is equal to 1.61% of the population, which is substantial. 相似文献
15.
Matthieu Domenech de Cells Anabelle Wong Laura Andrea Barrero Guevara Pejman Rohani 《Journal of the Royal Society Interface》2022,19(190)
Deciphering the properties of vaccines against an emerging pathogen is essential for optimizing immunization strategies. Early after vaccine roll-out, however, uncertainties about vaccine immunity raise the question of how much time is needed to estimate these properties, particularly the durability of vaccine protection. Here we designed a simulation study, based on a generic transmission model of vaccination, to simulate the impact of a breadth of vaccines with different mean (range: 10 months–2 years) and variability (coefficient of variation range: 50–100%) of the duration of protection. Focusing on the dynamics of SARS-CoV-2 in the year after start of mass immunization in Germany as a case study, we then assessed how confidently the duration of protection could be estimated under a range of epidemiological scenarios. We found that lower mean and higher heterogeneity facilitated estimation of the duration of vaccine protection. Across the vaccines tested, rapid waning and high heterogeneity permitted complete identification of the duration of protection; by contrast, slow waning and low heterogeneity allowed only estimation of the fraction of vaccinees with rapid loss of immunity. These findings suggest that limited epidemiological data can inform the duration of vaccine immunity. More generally, they highlight the need to carefully consider immunological heterogeneity when designing transmission models to evaluate vaccines. 相似文献
16.
The Delta variant is a major SARS-CoV-2 variant of concern first identified in India. To better understand COVID-19 pandemic dynamics and Delta, we use multiple datasets and model-inference to reconstruct COVID-19 pandemic dynamics in India during March 2020–June 2021. We further use the large discrepancy in one- and two-dose vaccination coverage in India (53% versus 23% by end of October 2021) to examine the impact of vaccination and whether prior non-Delta infection can boost vaccine effectiveness (VE). We estimate that Delta escaped immunity in 34.6% (95% CI: 0–64.2%) of individuals with prior wild-type infection and was 57.0% (95% CI: 37.9–75.6%) more infectious than wild-type SARS-CoV-2. Models assuming higher VE among non-Delta infection recoverees, particularly after the first dose, generated more accurate predictions than those assuming no such increases (best-performing VE setting: 90/95% versus 30/67% baseline for the first/second dose). Counterfactual modelling indicates that high vaccination coverage for first vaccine dose in India combined with the boosting of VE among recoverees averted around 60% of infections during July–mid-October 2021. These findings provide support to prioritizing first-dose vaccination in regions with high underlying infection rates, given continued vaccine shortages and new variant emergence. 相似文献
17.
Francesca A. Lovell-Read Sebastian Funk Uri Obolski Christl A. Donnelly Robin N. Thompson 《Journal of the Royal Society Interface》2021,18(178)
During infectious disease epidemics, an important question is whether cases travelling to new locations will trigger local outbreaks. The risk of this occurring depends on the transmissibility of the pathogen, the susceptibility of the host population and, crucially, the effectiveness of surveillance in detecting cases and preventing onward spread. For many pathogens, transmission from pre-symptomatic and/or asymptomatic (together referred to as non-symptomatic) infectious hosts can occur, making effective surveillance challenging. Here, by using SARS-CoV-2 as a case study, we show how the risk of local outbreaks can be assessed when non-symptomatic transmission can occur. We construct a branching process model that includes non-symptomatic transmission and explore the effects of interventions targeting non-symptomatic or symptomatic hosts when surveillance resources are limited. We consider whether the greatest reductions in local outbreak risks are achieved by increasing surveillance and control targeting non-symptomatic or symptomatic cases, or a combination of both. We find that seeking to increase surveillance of symptomatic hosts alone is typically not the optimal strategy for reducing outbreak risks. Adopting a strategy that combines an enhancement of surveillance of symptomatic cases with efforts to find and isolate non-symptomatic infected hosts leads to the largest reduction in the probability that imported cases will initiate a local outbreak. 相似文献
18.
19.
Abdu Gumaei Mabrook Al-Rakhami Mohamad Mahmoud Al Rahhal Fahad Raddah H. Albogamy Eslam Al Maghayreh Hussain AlSalman 《计算机、材料和连续体(英文)》2021,66(1):315-329
The fast spread of coronavirus disease (COVID-19) caused by SARSCoV-2 has become a pandemic and a serious threat to the world. As of May 30,2020, this disease had infected more than 6 million people globally, with hundredsof thousands of deaths. Therefore, there is an urgent need to predict confirmed casesso as to analyze the impact of COVID-19 and practice readiness in healthcare systems.This study uses gradient boosting regression (GBR) to build a trained model to predictthe daily total confirmed cases of COVID-19. The GBR method can minimize the lossfunction of the training process and create a single strong learner from weak learners.Experiments are conducted on a dataset of daily confirmed COVID-19 cases from January 22, 2020, to May 30, 2020. The results are evaluated on a set of evaluation performance measures using 10-fold cross-validation to demonstrate the effectiveness ofthe GBR method. The results reveal that the GBR model achieves 0.00686 root meansquare error, the lowest among several comparative models. 相似文献
20.
Kris V. Parag Benjamin J. Cowling Christl A. Donnelly 《Journal of the Royal Society Interface》2021,18(185)
Inferring the transmission potential of an infectious disease during low-incidence periods following epidemic waves is crucial for preparedness. In such periods, scarce data may hinder existing inference methods, blurring early-warning signals essential for discriminating between the likelihoods of resurgence versus elimination. Advanced insight into whether elevating caseloads (requiring swift community-wide interventions) or local elimination (allowing controls to be relaxed or refocussed on case-importation) might occur can separate decisive from ineffective policy. By generalizing and fusing recent approaches, we propose a novel early-warning framework that maximizes the information extracted from low-incidence data to robustly infer the chances of sustained local transmission or elimination in real time, at any scale of investigation (assuming sufficiently good surveillance). Applying this framework, we decipher hidden disease-transmission signals in prolonged low-incidence COVID-19 data from New Zealand, Hong Kong and Victoria, Australia. We uncover how timely interventions associate with averting resurgent waves, support official elimination declarations and evidence the effectiveness of the rapid, adaptive COVID-19 responses employed in these regions. 相似文献