首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 57 毫秒
1.
A comparative study of AlGaN/GaN high-electron-mobility transistor (HEMT) surface passivation using ex situ and in situ deposited SiN x is presented. Performing ex situ SiN x passivation increased the reverse gate leakage and off-state channel leakage by about three orders of magnitude. The in situ SiN x layer was characterized using transmission electron microscopy (TEM) and capacitance–voltage (CV) measurements. Photoluminescence (PL) spectra indicated a reduction of nonradiative recombination centers in in situ SiN x -passivated samples, indicating improved crystal quality. CV measurements indicated a reduction of surface state density as well, and thus better overall passivation using in situ SiN x . Electroluminescence (EL) images of the channel regions in AlGaN/GaN HEMT devices operating in forward blocking mode with up to 400 V drain bias demonstrated reduced channel emission profiles of in situ-passivated devices. Compared with a nonpassivated reference sample, the reduced EL emission profiles correlated with a reduced channel temperature on ex situ SiN x -passivated devices.  相似文献   

2.
Mg2Si1−x Ge x compounds were prepared from pure elements by melting in tantalum crucibles. The reaction was conducted under an inert gas in a special laboratory setup. Samples for thermoelectric measurements were formed by hot pressing. Structure and phase composition of the obtained materials were investigated by x-ray diffraction (XRD). Morphology and chemical composition were examined by scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDS), respectively. Thermoelectric properties, i.e., the Seebeck coefficient, the electrical conductivity, and the thermal conductivity, were measured in the temperature range of 500 K to 900 K. The effect of Bi and Ag doping on the thermoelectric performance of Mg-Si-Ge ternary compounds was investigated. The electronic structures of binary compounds were calculated using the Korringa–Kohn–Rostoker (KKR) method. The effects of disorder, including Ge substitution and Bi or Ag doping, were accounted for in the KKR method with coherent potential approximation calculations. The thermoelectric properties of doped Mg2Si1−x Ge x are discussed with reference to computed density of states as well as the complex energy band structure.  相似文献   

3.
Structural properties of Hg1–x Cd x Te are investigated by using first-principles calculations based on density functional theory. An energetically minimized and geometrically optimized model for Hg1–x Cd x Te was formulated. A virtual crystal approximation model for Hg1–x Cd x Te produced a poor fit to experimental lattice parameters and Vegard’s law. However, the virtual crystal approximation model provides reasonably accurate values for the band gap␣energy. An ordered alloy approximation model produced a good fit to Hg1–x Cd x Te lattice parameters and followed Vegard’s law. The ordered alloy approximation also produced a bimodal distribution in Hg-Te and Cd-Te bond lengths in agreement with experimental results.  相似文献   

4.
The search for alternative energy sources is presently at the forefront of applied research. In this context, thermoelectricity for direct energy conversion from thermal to electrical energy plays an important role. This paper is concerned with the development of highly efficient p-type Ge x Pb1−x Te alloys for thermoelectric applications, using spark plasma sintering. The carrier concentration of GeTe was varied by alloying of PbTe and/or by Bi2Te3 doping. Very high ZT values up to ~1.8 at 500°C were obtained by doping Pb0.13Ge0.87Te with 3 mol% Bi2Te3.  相似文献   

5.
The electrochemical behavior of nonaqueous dimethyl sulfoxide solutions of BiIII, TeIV, and SbIII was investigated using cyclic voltammetry. On this basis, Bi x Sb2−x Te y thermoelectric films were prepared by the potentiodynamic electrodeposition technique in nonaqueous dimethyl sulfoxide solution, and the composition, structure, morphology, and thermoelectric properties of the films were analyzed. Bi x Sb2−x Te y thermoelectric films prepared under different potential ranges all possessed a smooth morphology. After annealing treatment at 200°C under N2 protection for 4 h, all deposited films showed p-type semiconductor properties, and their resistances all decreased to 0.04 Ω to 0.05 Ω. The Bi0.49Sb1.53Te2.98 thermoelectric film, which most closely approaches the stoichiometry of Bi0.5Sb1.5Te3, possessed the highest Seebeck coefficient (85 μV/K) and can be obtained under potentials of −200 mV to −400 mV.  相似文献   

6.
Bi1?x Sb x solid solutions have attracted much attention as promising thermoelectric (TE) materials for cooling devices at temperatures below ~200 K and as unique model materials for solid-state science because of a high sensitivity of their band structure to changes in composition, temperature, pressure, etc. Earlier, we revealed a non-monotonic behavior of the concentration dependences of TE properties for polycrystalline Bi1?x Sb x solid solutions and attributed these anomalies to percolation effects in the solid solution, transition to a gapless state, and to a semimetal–semiconductor transition. The goal of the present work is to find out whether the non-monotonic behavior of the concentration dependences of TE properties is observed in the thin film state as well. The objects of the study are Bi1?x Sb x thin films with thicknesses in the range d = 250–300 nm prepared by thermal evaporation of Bi1?x Sb x crystals (x = 0–0.09) onto mica substrates. It was shown that the anomalies in the dependence of the TE properties on Bi1?x Sb x crystal composition are reproduced in thin films.  相似文献   

7.
The field dependences of the magnetization (temperatures T = 2.0–70 K, magnetic fields B ≤ 7.5 T) of the samples from a single-crystalline Pb1 – yFe y Te ingot (y = 0.02) grown by the Bridgman method are studied. It is established that the sample magnetization contains several major contributions such as the paramagnetism of iron ions, diamagnetism of the crystal lattice, and the contributions of charge carriers and clusters of iron atoms. The field dependences of the paramagnetic contribution of iron ions and the contribution of clusters of iron atoms are approximated by theoretical dependences based on the Brillouin and Langevin functions, respectively. The average concentrations and magnetic moment of clusters as well as the total magnetic momentum of clusters in the volume unit in the samples upon increasing the impurity concentration along the ingot are determined.  相似文献   

8.
β-Ag2Se is a narrow-bandgap semiconductor with a high electrical conductivity, reasonably large Seebeck coefficient, and low thermal conductivity. It is regarded as a potential candidate for thermoelectric applications. In this work, we prepared powders of β-Ag2Se by hydrothermal reaction at 180°C. The spark plasma sintering technique was employed to form compact samples. The thermoelectric properties were measured in a temperature range between 20 K and 350 K. A maximum figure of merit of over 0.6 was found around room temperature. Theoretical calculations were carried out to estimate the Seebeck coefficient of β-Ag2Se, reproducing the experimental trend qualitatively.  相似文献   

9.
A Bi-15 at.%Sb alloy, homogenized by equal channel angular extrusion (ECAE) at T = 523 K, has been treated just above its solidus temperature, causing segregation of a secondary Bi-rich phase at the grain boundaries. This process results in an in situ composite. The thermoelectric properties of the composite have been measured in the range of 5 K < T < 300 K. The results are compared with those of the homogeneous alloy. The presence of a Bi-rich phase improves the Seebeck coefficient at T < 50 K, and enhances the electrical conductivity by a factor of 1.4 at T = 300 K up to a factor of 3.4 at T = 50 K; unfortunately, the thermal conductivity also increases by about 50% in the same temperature range. As a result, the figure of merit, Z, is slightly suppressed above T = 110 K, but increases at lower temperatures, reaching a peak value of 4.2 × 10−3 K−1 at T = 90 K. The power factor considerably increases over the whole temperature range, rendering this material suitable as the n-type leg of a cryogenic thermoelectric generator for cold energy recovery in a liquefied natural gas plant.  相似文献   

10.
n-Type CoSb2.875−x Ge0.125Te x (x = 0.125 to 0.275) compounds with different Te contents have been synthesized by a melt–quench–anneal–spark plasma sintering method, and the effects of Te content on the structure and thermoelectric properties have been investigated. The results show that all specimens exhibited n-type conduction characteristics. The solubility limit of Te in CoSb2.875−x Ge0.125Te x is found to be x = 0.25. The solubility of Te in CoSb3 is increased through charge compensation of the element Ge. The room-temperature carrier concentration N p of CoSb2.875−x Ge0.125Te x skutterudites increases with increasing Te content, and the compounds possess high power factors. The maximum power factor of 3.89 × 10−3 W m−1 K−2 was obtained at 720 K for the CoSb2.625Ge0.125Te0.25 compound. The thermal conductivity decreases dramatically with increasing Te content due to strong point defect scattering. The maximum value of the thermoelectric figure of merit ZT = 1.03 was obtained at 800 K for CoSb2.625Ge0.125Te0.25, benefiting from a lower thermal conductivity and a higher power factor. The figure of merit is competitive with values reported for single-filled skutterudites.  相似文献   

11.
The search for alternative energy sources is at the forefront of applied research. In this context, thermoelectricity, i.e., direct conversion of thermal into electrical energy, plays an important role, particularly for exploitation of waste heat. Materials for such applications should exhibit thermoelectric potential and mechanical stability. PbTe-based compounds include well-known n-type and p-type compounds for thermoelectric applications in the 50°C to 600°C temperature range. This paper is concerned with the mechanical and transport properties of p-type Pb0.5Sn0.5Te:Te and PbTe<Na> samples, both of which have a hole concentration of ∼1 × 1020 cm−3. The ZT values of PbTe<Na> were found to be higher than those of Pb0.5Sn0.5Te:Te, and they exhibited a maximal value of 0.8 compared with 0.5 for Pb0.5Sn0.5Te:Te at 450°C. However, the microhardness value of 49 HV found for Pb0.5Sn0.5Te:Te was closer to that of the mechanically stable n-type PbTe (30 HV) than to that of PbTe<Na> (71 HV). Thus, although lower ZT values were obtained, from a mechanical point of view Pb0.5Sn0.5Te:Te is preferable over PbTe<Na> for practical applications.  相似文献   

12.
We have investigated the crystal growth of single-phase MnSi1.75−x by a temperature gradient solution growth (TGSG) method using Ga and Sn as solvents and MnSi1.7 alloy as the solute, and measured the thermoelectric properties of the resulting crystals. Single-phase Mn11Si19 and Mn4Si7 crystals were grown successfully using Ga and Sn as solvents, respectively. The typical size of a grown ingot of Mn11Si19 was 2 mm to 4 mm in thickness and 12 mm in diameter, whereas Mn4Si7 had polyhedral shape with dimensions in the range of several millimeters. The single-phase Mn11Si19 has good electrical conduction (ρ = 0.89 × 10−3 Ω cm to 1.09 × 10−3 Ω cm) compared with melt-grown multiphase higher-manganese silicide (HMS) crystals. The Seebeck coefficient, power factor, and thermal conductivity were 77 μV K−1 to 85 μV K−1, 6.7 μW cm−1 K−2 to 7.2 μW cm−1 K−2, and 0.032 W cm−1 K−1, respectively, at 300 K.  相似文献   

13.
Polycrystalline L4Sb3 (L = La, Ce, Sm, and Yb) and Yb4−x Sm x Sb3, which crystallizes in the anti-Th3P4 structure type (I-43d no. 220), were synthesized via high-temperature reaction. Structural and chemical characterization were performed by x-ray diffraction and electronic microscopy with energy-dispersive x-ray analysis. Pucks were densified by spark plasma sintering. Transport property measurements showed that these compounds are n-type with low Seebeck coefficients, except for Yb4Sb3, which shows semimetallic behavior with hole conduction above 523 K. By partially substituting Yb by a trivalent rare earth we successfully improved the thermoelectric figure of merit of Yb4Sb3 up to 0.7 at 1273 K.  相似文献   

14.
The steady-state photocurrent in the fundamental absorption region of Pb1 ? x Sn x Te:In films is calculated with the field injection of electrons from the contact and their capture by traps in the bulk taken into account. The calculated and experimental current-voltage characteristics are compared at liquid-helium temperature. The represented experimental data on the dependence of the Hall effect on the injection level agree well with the considered model.  相似文献   

15.
Sn-doped, Mg2Si1−x Sn x (x = 0 to 0.6) bulk alloys were prepared using Mg and Sn ingots as raw materials by suspended induction melting combined with the spark plasma sintering method, and the effects of Sn doping on thermoelectric transport properties were studied systematically. The results showed that Mg site vacancies caused by evaporation during the reaction process were filled by excess Mg addition (108 wt.% of the stoichiometric ratio of Mg2Si). The resulting alloy samples were found to be single phase and relatively dense (above 98%). n-Type semiconducting characteristic of Sn-doped Mg2Si1−x Sn x alloy was observed, and the electrical resistivity of all samples decreased with increasing temperature. The absolute Seebeck coefficient increased and the thermal conductivity was not changed significantly within the experimental Sn doping range. The dimensionless figure of merit (ZT) for Mg2Si0.4Sn0.6 alloy reached its highest value of 0.25 at 400°C.  相似文献   

16.
Optical studies of unstrained narrow-gap Al x In1 − x Sb semiconductor alloy layers are carried out. The layers are grown by molecular-beam epitaxy on semi-insulating GaAs substrates with an AlSb buffer. The composition of the alloys is varied within the range of x = 0–0.52 and monitored by electron probe microanalysis. The band gap E g is determined from the fundamental absorption edge with consideration for the nonparabolicity of the conduction band. The refined bowing parameter in the experimental dependence E g (x) for the Al x In1 − x Sb alloys is 0.32 eV. This value is by 0.11 eV smaller than the commonly referred one.  相似文献   

17.
The temperature and concentration dependences of the electrical (conductivity σ, the Hall coefficient R), thermoelectric (thermovoltage α), and thermal (thermal conductivity K tot) characteristics of Sm x Pb1 − x Te alloys (x = 0, 0.02, 0.04, 0.08) are studied in the temperature range 100–500 K. Using the data for σ, α, and K tot, the thermoelectric power α2σ, figure of merit Z, and efficiency δ are calculated. It is established that at room-temperature α2σ and Z peak at the hole concentration p ≈ 1.2 × 1018 cm−3.  相似文献   

18.
Mercury cadmium telluride (HgCdTe, or MCT) with low n-type indium doping concentration offers a means for obtaining high performance infrared detectors. Characterizing carrier transport in materials with ultra low doping (ND?=?1014 cm?3 and lower), and multi-layer material structures designed for infrared detector devices, is particularly challenging using traditional methods. In this work, Hall effect measurements with a swept B-field were used in conjunction with a multi-carrier fitting procedure and Fourier-domain mobility spectrum analysis to analyze multi-layered MCT samples. Low temperature measurements (77 K) were able to identify multiple carrier species, including an epitaxial layer (x?=?0.2195) with n-type carrier concentration of n?=?1?×?1014 cm?3 and electron mobility of μ?=?280000 cm2/Vs. The extracted electron mobility matches or exceeds prior empirical models for MCT, illustrating the outstanding material quality achievable using current epitaxial growth methods, and motivating further study to revisit previously published material parameters for MCT carrier transport. The high material quality is further demonstrated via observation of the quantum Hall effect at low temperature (5 K and below).  相似文献   

19.
Polycrystalline samples of In4(Se1−x Te x )3 were synthesized by using a melting–quenching–annealing process. The thermoelectric performance of the samples was evaluated by measuring the transport properties from 290 K to 650 K after sintering using the spark plasma sintering (SPS) technique. The results indicate that Te substitution can effectively reduce the thermal conductivity while maintaining good electrical transport properties. In4Te3 shows the lowest thermal conductivity of all compositions tested.  相似文献   

20.
Liquid-phase epitaxy is used to fabricate Pb0.8Sn0.2Te films, undoped or doped with indium to different levels. The depth profiles of the carrier density and dopant concentration in the films are measured and examined. A uniform dopant concentration to a depth of 15 μm is obtained. Electrical-conduction inversion is observed at a temperature of 77.3 K as the doping level is varied. The liquid-phase epitaxial method is shown to be a more suitable technology for the reproducible manufacture of epitaxial films with a given carrier density, such as the ones used in terahertz detectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号