首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The properties of Co4Sb12 with various In additions were studied. X-ray diffraction revealed the presence of the pure δ-phase of In0.16Co4Sb12, whereas impurity phases (γ-CoSb2 and InSb) appeared for x = 0.25, 0.40, 0.80, and 1.20. The homogeneity and morphology of the samples were observed by Seebeck microprobe and scanning electron microscopy, respectively. All the quenched ingots from which the studied samples were cut were inhomogeneous in the axial direction. The temperature dependence of the Seebeck coefficient (S), electrical conductivity (σ), and thermal conductivity (κ) was measured from room temperature up to 673 K. The Seebeck coefficient of all In-added Co4Sb12 materials was negative. When the filler concentration increases, the Seebeck coefficient decreases. The samples with In additions above the filling limit (x = 0.22) show an even lower Seebeck coefficient due to the formation of secondary phases: InSb and CoSb2. The temperature variation of the electrical conductivity is semiconductor-like. The thermal conductivity of all the samples decreases with temperature. The central region of the In0.4Co4Sb12 ingot shows the lowest thermal conductivity, probably due to the combined effect of (a) rattling due to maximum filling and (b) the presence of a small amount of fine-dispersed secondary phases at the grain boundaries. Thus, regardless of the non-single-phase morphology, a promising ZT (S 2 σT/κ) value of 0.96 at 673 K has been obtained with an In addition above the filling limit.  相似文献   

2.
An experimental study was carried out on CoSb3-based skutterudites. Tests were carried out at room temperature and in air. Firstly, static compression tests were conducted to determine the compressive strength of the materials. Then stress-controlled low-cycle fatigue tests were performed using a sinusoidal waveform of constant amplitude. The influence of the maximum stress on fatigue life was analyzed. The surfaces and fracture surfaces of the specimens were observed by scanning electron microscopy. Fatigue crack initiation was observed to occur from pre-existing defects in the specimen surface, and the fatigue fracture surface showed intergranular fracture behavior. Finally, interrupted low-cycle fatigue tests were conducted to analyze residual strength degradation.  相似文献   

3.
In this work, Te-doped and S-filled S x Co4Sb11.2Te0.8 (x = 0.1, 0.15, 0.2, 0.25, 0.3, 0.4) skutterudite compounds have been prepared using solid state reaction and spark plasma sintering. Thermoelectric measurements of the consolidated samples were examined in a temperature range of 300–850 K, and the influences of S-addition on the thermoelectric properties of S x Co4Sb11.2Te0.8 skutterudites are systematically investigated. The results indicate that the addition of sulfur and tellurium is effective in reducing lattice thermal conductivity due to the point-defect scattering caused by tellurium substitutions and the cluster vibration brought by S-filling. The solubility of tellurium in skutterudites is enhanced with sulfur addition via charge compensation. The thermal conductivity decreases with increasing sulfur content. The highest figure of merit, ZT = 1.5, was obtained at 850 K for S0.3Co4Sb11.2Te0.8 sample, because of the low lattice thermal conductivity.  相似文献   

4.
Filled skutterudites have long been singled out as one of the prime examples of phonon glass electron crystal materials. Recently the double-filling approach in these materials has been attracting increased attention. In this study, Yb0.2In y Co4Sb12 (y = 0.0 to 0.2) samples have been prepared by a simple melting method and their thermoelectric properties have been investigated. The power factor is increased dramatically when increasing the In content, while the lattice thermal conductivity is lowered considerably, leading to a large increase of the ZT value. A state-of-the-art ZT value of 1.0 is attained in Yb0.2In0.2Co4Sb12 at 750 K.  相似文献   

5.
n-Type Bi2Te3 nanocomposites with enhanced figure of merit, ZT, were fabricated by a simple, high-throughput method of mixing nanostructured Bi2Te3 particles obtained through melt spinning with micron-sized particles. Moderately high power factors were retained, while the thermal conductivity of the nanocomposites was found to decrease with increasing weight percent of nanoinclusions. The peak ZT values for all the nanocomposites were above 1.1, and the maximum shifted to higher temperature with increasing amount of nanoinclusions. A maximum ZT of 1.18 at 42°C was obtained for the 10 wt.% nanocomposite, which is a 43% increase over the bulk sample at the same temperature. This is the highest ZT reported for n-type Bi2Te3 binary material, and higher ZT values are expected if state-of-the-art Bi2Te3−x Se x materials are used.  相似文献   

6.
n-Type nanoporous Bi2Te3-based thermoelectric materials with different porosity ratios have been prepared by spark plasma sintering (SPS). The microstructure and phase morphology have been analyzed by x-ray diffraction (XRD) and field-emission scanning electron microscopy (FESEM), and the thermoelectric properties of the SPS samples have been measured. Experimental results show that the nanoporous structures lying in the sheet layers and among the plate grains of the Bi2Te3 bulk material can lead to an increase in the Seebeck coefficient and a decrease in the thermal conductivity, thus leading to an enhanced figure of merit.  相似文献   

7.
Bulk thermoelectric (TE) nanocomposite materials have attracted considerable attention due to their great potential to exhibit higher dimensionless figure of merit ZT. Filled skutterudites of both n-type and p-type have already demonstrated their excellent high-temperature TE performance, good mechanical properties, and thermal stability. Herein, we extend this work to Yb-filled p-type skutterudite nanocomposites with in?situ precipitated FeSb2 nanoinclusions. Such a nanocomposite material can be easily synthesized by fine control of starting stoichiometry and the subsequent heat treatment process. By taking advantage of these naturally occurring FeSb2 nanoparticles, we achieve ZT max?=?0.74 in Yb0.6Fe2Co2Sb12/0.05FeSb2 at 780?K. We apply the method of four coefficients to calculate the density-of-states effective mass and the carrier scattering parameter. We find that a larger effective mass induced by the presence of nanoparticles is the origin of the enhanced Seebeck coefficient.  相似文献   

8.
Ca5Al2Sb6 is a relatively inexpensive Zintl compound exhibiting promising thermoelectric efficiency at temperatures suitable for waste heat recovery. Motivated by our previous studies of Ca5Al2Sb6 doped with Na and Zn, this study focuses on doping with Mn2+ at the Al3+ site. While Mn is a successful p-type dopant in Ca5Al2Sb6, we find that incomplete dopant activation yields lower hole concentrations than obtained with either previously investigated dopant. High-temperature Hall effect and Seebeck coefficient measurements show a transition from nondegenerate to degenerate semiconducting behavior in Ca5Al2−x Mn x Sb6 samples (x = 0.05, 0.1, 0.2, 0.3, 0.4) with increasing Mn content. Ultimately, no improvement in zT is achieved via Mn doping, due in part to the limited carrier concentration range achieved.  相似文献   

9.
The thermoelectric properties of the Zintl compound YbZn2Sb2 with isoelectronic substitution of Zn by Mn in the anionic (Zn2Sb2)2− framework have been studied. The p-type YbZn2−x Mn x Sb2 (0.0 ≤ x ≤ 0.4) samples were prepared via melting followed by annealing and hot-pressing. Thermoelectric property measurement showed that the Mn substitution effectively lowered the thermal conductivity for all the samples, while it significantly increased the Seebeck coefficient for x < 0.2. As a result, a dimensionless figure of merit ZT of approximately 0.61 to 0.65 was attained at 726 K for x = 0.05 to 0.15, compared with the ZT of ~0.48 in the unsubstituted YbZn2Sb2.  相似文献   

10.
Because of their good electrical transport properties, skutterudites have been widely studied as potential next-generation thermoelectric (TE) materials. One of the main obstacles to further improving their thermoelectric performance has been reducing their relatively high thermal conductivity. To some extent, this hindrance has been partially resolved by filling the voids found in the skutterudite structure with so-called “rattling” atoms. It has been predicted that reducing the dimensionality in a TE material would have a positive effect in enhancing its thermoelectric properties, for example increasing the thermopower and reducing the thermal conductivity. Introducing nanoparticles into the skutterudite materials could therefore have favorable effects on their electrical properties and should also reduce lattice thermal conductivity by introducing extra scattering centers throughout the sample. Nanoparticles may also be used in conjunction with void filling for further reduction of the thermal conductivity of skutterudites. Cobalt triantimonide (CoSb3) samples with different amounts of embedded nanoparticles have been grown, and the electrical and thermal transport properties for these composites have been measured from 10 K to 650 K. The synthetic techniques and electrical and thermal transport data are discussed in this paper.  相似文献   

11.
The thermal stability of the thermoelectric Zn4Sb3 has been investigated by synchrotron power diffraction measurements in the temperature range of 300 K to 625 K in a capillary sealed under Ar. Data were also collected in air on a 1% Cd-doped sample. Rietveld refinements of the data indicate that a variety of impurity phases are formed. After heat treatment, more than 85% of the Zn4Sb3 phase remains in the 1% Cd-doped sample heated in air, and 97% remains in the undoped Zn4Sb3 heated in Ar. These stabilities are better than those previously observed in pure samples heated in air. This suggests that doping, as well as oxygen or oxidation impurities, play important roles in the thermal stability of this compound.  相似文献   

12.
Mo3Sb7, crystallizing in the Ir3Ge7 type structure, has poor thermoelectric (TE) properties due to its metallic behavior. However, by a partial Sb-Te exchange, it becomes semiconducting without noticeable structure changes and so achieves a significant enhancement in the thermopower with the composition of Mo3Sb5Te2. Meanwhile, large cubic voids in the Mo3Sb5Te2 crystal structure provide the possibility of filling the voids with small cations to decrease the thermal conductivity by the so-called rattling effect. As part of the effort to verify this idea, we report herein the growth as well as measurements of the thermal and electrical transport properties of Mo3Sb5.4Te1.6 and Ni0.06Mo3Sb5.4Te1.6.  相似文献   

13.
Because of its complex structure, Zn4Sb3 exhibits relatively low thermal conductivity. This, in combination with large values of the Seebeck coefficient and moderate to high electrical conductivity, makes the material especially interesting for thermoelectric application in temperatures up to 400°C. The phase purity and thermal stability of Zn4Sb3 are major issues for its thermoelectric performance and are strongly dependent on the synthesis method, atmosphere, density, and grain size. Therefore, Zn4Sb3 was prepared by both zone melting and quenching in this study, and pressed samples from crushed powders of three different grain sizes were compared. The effect of thermal cycling was studied, along with repeated structural analysis and Seebeck mapping. It was found that zone melting leads to improved thermal stability regarding decomposition via Zn loss, which finally may result in the formation of ZnSb. Larger grain size seems to reduce the degradation, because of lower concentration of grain boundaries, thus hindering diffusion inside the material.  相似文献   

14.
Cu0.003Bi0.4Sb1.6Te3 alloys were prepared by using encapsulated melting and hot extrusion (HE). The hot-extruded specimens had the relative average density of 98%. The (00l) planes were preferentially oriented parallel to the extrusion direction, but the specimens showed low crystallographic anisotropy with low orientation factors. The specimens were hot-extruded at 698 K, and they showed excellent mechanical properties with a Vickers hardness of 76 Hv and a bending strength of 59 MPa. However, as the HE temperature increased, the mechanical properties degraded due to grain growth. The hot-extruded specimens showed positive Seebeck coefficients, indicating that the specimens have p-type conduction. These specimens exhibited negative temperature dependences of electrical conductivity, and thus behaved as degenerate semiconductors. The Seebeck coefficient reached the maximum value at 373 K and then decreased with increasing temperature due to intrinsic conduction. Cu-doped specimens exhibited high power factors due to relatively higher electrical conductivities and Seebeck coefficients than those of undoped specimens. A thermal conductivity of 1.00 Wm?1 K?1 was obtained at 373 K for Cu0.003Bi0.4Sb1.6Te3 hot-extruded at 723 K. A maximum dimensionless figure of merit, ZT max = 1.05, and an average dimensionless figure of merit, ZT ave = 0.98, were achieved at 373 K.  相似文献   

15.
Ca z Co4−x (Fe/Mn) x Sb12 skutterudites were prepared by mechanical alloying and hot pressing. The phases of mechanically alloyed powders were identified as γ-CoSb2 and Sb, but they were transformed to δ-CoSb3 by annealing at 873 K for 100 h. All specimens had a positive Hall coefficient and Seebeck coefficient, indicating p-type conduction by holes as majority carriers. For the binary CoSb3, the electrical conductivity behaved like a nondegenerate semiconductor, but Ca-filled and Fe/Mn-doped CoSb3 showed a temperature dependence of a degenerate semiconductor. While the Seebeck coefficient of intrinsic CoSb3 increased with temperature and reached a maximum at 623 K, the Seebeck coefficient increased with increasing temperature for the Ca-filled and Fe/Mn-doped specimens. Relatively low thermal conductivity was obtained because fine particles prepared by mechanical alloying lead to phonon scattering. The thermal conductivity was reduced by Ca filling and Fe/Mn doping. The electronic thermal conductivity was increased by Fe/Mn doping, but the lattice thermal conductivity was decreased by Ca filling. Reasonable thermoelectric figure-of-merit values were obtained for Ca-filled Co-rich p-type skutterudites.  相似文献   

16.
A ternary ordered variant of the skutterudite structure, the Co4Sn6Se6 compound, was prepared. Polycrystalline samples were prepared by a modified ceramic method. The electrical conductivity, the Seebeck coefficient and the thermal conductivity were measured over a temperature range of 300–800 K. The undoped Co4Sn6Se6 compound was of p-type electrical conductivity and had a band gap E g of approximately 0.6 eV. The influence of transition metal (Ni and Ru) doping on the thermoelectric properties was studied. While the thermal conductivity was significantly lowered both for the undoped Co4Sn6Se6 compound and for the doped compounds, as compared with the Co4Sb12 binary skutterudite, the calculated ZT values were improved only slightly.  相似文献   

17.
A thermopile sensor was processed on a glass substrate by electrodeposition of n-type bismuth telluride (Bi-Te) and p-type antimony telluride (Sb-Te) films. The n-type Bi-Te film electrodeposited at −50 mV in a 50 mM electrolyte with a Bi/(Bi + Te) mole ratio of 0.5 exhibited a Seebeck coefficient of −51.6 μV/K and a power factor of 7.1 × 10−4 W/K2 · m. The p-type Sb-Te film electroplated at 20 mV in a 70 mM solution with an Sb/(Sb + Te) mole ratio of 0.9 exhibited a Seebeck coefficient of 52.1 μV/K and a power factor of 1.7 × 10−4 W/K2 · m. A thermopile sensor composed of 196 pairs of the p-type Sb-Te and the n-type Bi-Te thin-film legs exhibited sensitivity of 7.3 mV/K.  相似文献   

18.
The results of studying the galvanomagnetic and thermoelectric properties of thin block Bi92Sb8 and Bi85Sb15 films on mica and polyimide substrates are presented. The method used for measuring the thermoelectric power allowed us to study the temperature dependence the thermoelectric power, without introducing additional deformations into the substrate–film system. A significant difference in the temperature dependences of the galvanomagnetic and thermoelectric properties of films on mica and polyimide is found. The free charge-carrier concentrations and mobilities in the films on mica and polyimide and levels of the chemical potential for electrons and holes are calculated within the two-band approximation. The difference in the charge-carrier parameters for films on mica and polyimide is associated with strains in the film–substrate system.  相似文献   

19.
Filled skutterudite thermoelectric (TE) materials have been extensively studied to search for better TE materials in the past decade. However, there is no detailed investigation about the thermal stability of filled skutterudite TE materials. The evolution of microstructure and TE properties of nanostructured skutterudite materials fabricated with Ba0.3In0.2Co3.95Ni0.05Sb12/SiO2 core–shell composite particles with 3 nm thickness shell was investigated during periodic thermal cycling from room temperature to 723 K in this work. Scanning electronic microscopy and electron probe microscopy analysis were used to investigate the microstructure and chemical composition of the nanostructured skutterudite materials. TE properties of the nanostructured skutterudite materials were measured after every 200 cycles of quenching in the temperature range from 300 K to 800 K. The results show that the microstructure and composition of Ba0.3In0.2Co3.95Ni0.05Sb12/SiO2 nanostructured skutterudite materials were more stable than those of single-phase Ba0.3In0.2Co3.95Ni0.05Sb12 bulk materials. The evolution of TE properties indicates that the electrical and thermal conductivity decrease along with an increase in the Seebeck coefficient with increasing quenching up to 2000 cycles. As a result, the dimensionless TE figure of merit (ZT) of the nanostructured skutterudite materials remains almost constant. It can be concluded that these nanostructured skutterudite materials have good thermal stability and are suitable for use in solar power generation systems.  相似文献   

20.
Kulbachinskii  V. A.  Kytin  V. G.  Zinoviev  D. A.  Maslov  N. V.  Singha  P.  Das  S.  Banerjee  A. 《Semiconductors》2019,53(5):638-640
Semiconductors - Antimony-telluride-based nanocomposite samples containing different weight fractions of graphite (Sb2Te3 + x% graphite, where x = 0.0, 0.5, 1.0, and 2.5%) are synthesized and...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号