首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The temperature dependence of the thermal conductivity κ(T), electrical resistivity ρ(T), and Seebeck coefficient S(T) of Mg2Sn:Ag crystals with 0 at.% to 1 at.% Ag content were measured at T = 2 K to 400 K. The crystals were cut from ingots that were prepared by the vertical Bridgman method. Undoped samples show a dramatic κ ∝ T 3 rise at low temperatures to a peak value κ 15K = 477 W m−1 K−1. This leads to exceptionally large phonon drag effects causing giant thermopower with S rising sharply to a peak value S 20K = 3000 μV K−1. At higher temperatures S decreases and changes sign to intrinsic values S ≈ −60 μV K−1. The addition of Ag changes the transport properties as follows: (a) κ decreases systematically, the peak shifts to 30 K and falls to 7 W m−1 K−1; (b) ρ changes from high to low values; (c) S(T) changes to a linear dependence with S 300K ≈ 150 μV K−1 to 200 μV K−1.  相似文献   

2.
In major applications, optimal power will be achieved when thermoelectric films are at least 100 μm thick. In this paper we demonstrate that screen-printing is an ideal method to deposit around 100 μm of (Bi,Sb)2(Te,Se)3-based films on a rigid or flexible substrate with high Seebeck coefficient value (90 μV K−1 to 160 μV K−1) using a low-temperature process. Conductive films have been obtained after laser annealing and led to acceptable thermoelectric performance with a power factor of 0.06 μW K−2 cm−1. While these initial material properties are not at the level of bulk materials, the complete manufacturing process is cost-effective, compatible with large surfaces, and affords a mass-production technique.  相似文献   

3.
Silver doped p-type Mg2Ge thin films were grown in situ at 773 K using magnetron co-sputtering from individual high-purity Mg and Ge targets. A sacrificial base layer of silver of various thicknesses from 4 nm to 20 nm was initially deposited onto the substrate to supply Ag atoms, which entered the growing Mg2Ge films by thermal diffusion. The addition of silver during film growth led to increased grain size and surface microroughness. The carrier concentration increased from 1.9 × 1018 cm−3 for undoped films to 8.8 × 1018 cm−3 for the most heavily doped films, but it did not reach saturation. Measurements in the temperature range of T = 200–650 K showed a positive Seebeck coefficient for all the films, with maximum values at temperatures between 400 K and 500 K. The highest Seebeck coefficient of the undoped film was 400 μV K−1, while it was 280 μV K−1 for the most heavily doped film at ∼400 K. The electrical conductivity increased with silver doping by a factor of approximately 10. The temperature effects on power factors for the undoped and lightly doped films were very limited, while the effects for the heavily doped films were substantial. The power factor of the heavily doped films reached a non-optimum value of ∼10−5 W cm−1 K−2 at 700 K.  相似文献   

4.
We have investigated the crystal growth of single-phase MnSi1.75−x by a temperature gradient solution growth (TGSG) method using Ga and Sn as solvents and MnSi1.7 alloy as the solute, and measured the thermoelectric properties of the resulting crystals. Single-phase Mn11Si19 and Mn4Si7 crystals were grown successfully using Ga and Sn as solvents, respectively. The typical size of a grown ingot of Mn11Si19 was 2 mm to 4 mm in thickness and 12 mm in diameter, whereas Mn4Si7 had polyhedral shape with dimensions in the range of several millimeters. The single-phase Mn11Si19 has good electrical conduction (ρ = 0.89 × 10−3 Ω cm to 1.09 × 10−3 Ω cm) compared with melt-grown multiphase higher-manganese silicide (HMS) crystals. The Seebeck coefficient, power factor, and thermal conductivity were 77 μV K−1 to 85 μV K−1, 6.7 μW cm−1 K−2 to 7.2 μW cm−1 K−2, and 0.032 W cm−1 K−1, respectively, at 300 K.  相似文献   

5.
Thin films of the semiconducting compound Mg2Ge were deposited by magnetron cosputtering from source targets of high-purity Mg and Ge onto glass substrates at temperatures T s = 300°C to 700°C. X-ray diffraction shows that the Mg2Ge compound begins to form at a substrate temperature T s ≈ 300°C. Films deposited at T s = 400°C to 600°C are single-phase Mg2Ge and have strong x-ray peaks. At higher T s the films tend to be dominated by a Ge-rich phase primarily due to the loss of magnesium vapor from the condensing film.␣At optimum deposition temperatures, 550°C to 600°C, films have an electrical conductivity σ 600 K = 20 Ω−1 cm−1 to 40 Ω−1 cm−1 and a Seebeck coefficient α = 300 μV K−1 to 450 μV K−1 over a broad temperature range of 200 K to 600 K.  相似文献   

6.
The magnetic, transport, and thermoelectric properties of Ca1−x Sr x Ru1−y Mn y O3 have been investigated. Ferromagnetism with relatively high T C (>200 K) was introduced by Mn doping. In particular, ferromagnetism appeared in the Ca0.5Sr0.5Ru1−y Mn y O3 system at y > 0.2. The maximum T C (=270 K) was recorded for a specimen of Ca0.5Sr0.5Ru0.4Mn0.6O3. The ferromagnetism seems to be due to the mixed-valence states of Mn3+, Mn4+, Ru4+, and Ru5+ ions. The metallic character of Ru-rich specimens was suppressed by Mn substitution, and the system was transformed into a semiconductor at relatively low Mn content near y = 0.1. Specimens with higher Mn content (y > 0.8) had large thermoelectric power (50 μV K−1 to 130 μV K−1 at 280 K) accompanied by relatively low resistivity (0.03 Ω cm to 1 Ω cm). The Ca0.5Sr0.5Ru1−y Mn y O3 system seems to have good potential as a thermoelectric material for use above 300 K.  相似文献   

7.
Polycrystalline In2O3 ceramics co-doped with Zn and Nd were prepared by the spark plasma sintering (SPS) process, and microstructure and thermoelectric (TE) transport properties of the ceramics were investigated. Our results indicate that co-doping with Zn2+ and Nd3+ shows a remarkable effect on the transport properties of In2O3-based ceramics. Large electrical conductivity (~130 S cm−1) and thermopower (~220 μV K−1) can be observed in these In2O3-based ceramic samples. The maximum power factor (PF) reaches 5.3 × 10−4 W m−1 K−2 at 973 K in the In1.92Nd0.04Zn0.04O3 sample, with a highest ZT of ~0.25.  相似文献   

8.
An ultralow-thermal-conductivity compound with the ideal formula [(PbSe)1.00]1[MoSe2]1 has been successfully crystallized across a range of compositions. The lattice parameters varied from 1.246 nm to 1.275 nm, and the quality of the observed 00 diffraction patterns varied through the composition region where the structure crystallized. Measured resistivity values ranged over an order of magnitude, from 0.03 Ω m to 0.65 Ω m, and Seebeck coefficients ranged from −181 μV K−1 to 91 μV K−1 in the samples after the initial annealing to form the basic structure. Annealing of samples under a controlled atmosphere of selenium resulted in low conductivities and large negative Seebeck coefficients, suggesting an n-doped semiconductor. Scanning transmission electron microscopy cross-sections confirmed the interleaving of bilayers of PbSe with Se-Mo-Se trilayers. High-angle annular dark-field images revealed an interesting volume defect, where PbSe grew through a region where a layer of MoSe2 would be expected in the perfect structure. Further studies are required to correlate the density of these defects with the observed electrical properties.  相似文献   

9.
In this paper, a novel and simple sodium alginate (SA) gel method was developed to prepare γ-Na x Co2O4. This method involved the chemical gelling of SA in the presence of Co2+ ions by cross-linking. After calcining at 700°C to 800°C, single-phase γ-Na x Co2O4 crystals were obtained. The arrangement of about 1 μm to 4 μm flaky particles exhibited a well-tiled structure along the plane direction of the flaky particles. SA not only acted as the control agent for crystal growth, but also provided a Na source for the γ-Na x Co2O4 crystals. The electrical properties of γ-Na x Co2O4 ceramics prepared via ordinary sintering after cold isostatic pressing were investigated. The Seebeck coefficient and power factor of the bulk material were 177 μV K−1 and 4.3 × 10−4 W m−1 K−2 at 850 K, respectively.  相似文献   

10.
Nanocrystalline diamond (NCD) films were produced by microwave plasma-enhanced chemical vapor deposition (MPECVD) using gas mixtures of Ar, H2, and CH4. The structural properties, electron emission, and electric discharge behaviors of the NCD films varied with H2 flow rates during MPECVD. The turn-on field for electron emission at a pressure of 2.66 × 10−4 Pa increased from 4.2 V μm−1 for the NCD films that were deposited using a H2 flow rate of 10 cm3 min−1 to 7 V μm−1 for films deposited at a H2 flow rate of 20 cm3 min−1. The NCD film with a low turn-on field also induced low breakdown voltages in N2. The grain size and roughness of the NCD films may influence both the electron emission and the electric discharge behaviors of the NCD cathodes.  相似文献   

11.
Rhodamine-101 (Rh101) thin films on n-type Si substrates have been formed by means of evaporation, thus Sn/Rh101/n-Si heterojunctions have been fabricated. The Sn/Rh101/n-Si devices are rectifying. The optical energy gaps have been determined from the absorption spectra in the wavelength range of 400 nm to 700 nm. Rh101 has been characterized by direct optical absorption with an optical edge at 2.05 ± 0.05 eV and by indirect optical absorption with␣an optical edge at 1.80 ± 0.05 eV. It was demonstrated that trap-charge-limited current is the dominant transport mechanism at large forward bias. A␣mobility value of μ = 7.31 × 10−6 cm2 V−1 s−1 for Rh101 has been obtained from the forward-bias current–voltage characteristics.  相似文献   

12.
We report studies of InN grown by plasma-assisted molecular beam epitaxy. GaN templates were first grown on sapphire substrates followed by InN overgrown at 457°C to 487°C. Atomic force microscopy shows the best layers to exhibit step-flow growth mode of the InN, with a root-mean-square roughness of 0.7 nm for the 2 μm × 2 μm scan and 1.4 nm for the 5 μm × 5 μm scan.␣Measurements of the terrace edges indicate a step height of 0.28 nm. Hall measurements at room temperature give mobilities ranging from 1024 cm2/V s to 1904 cm2/V s and the electron concentrations are in the range of 5.9 × 1017 cm−3 to 4.2 × 1018 cm−3. Symmetric and asymmetric reflection x-ray diffraction measurements were performed to obtain lattice constants a␣and c. The corresponding hydrostatic and biaxial stresses are found to range from −0.08 GPa to −0.29 GPa, and −0.05 GPa to −0.32 GPa, respectively. Low-temperature photoluminescence peak energies range from 0.67 eV to 0.70 eV, depending on residual biaxial stress, hydrostatic pressure, and electron concentrations. The electron concentration dependence of the estimated Fermi level is analyzed using Kane’s two-band model and conduction-band renormalization effects.  相似文献   

13.
A new alkaline electrolyte containing SbO2, TeO32−, triethanolamine, and diaminourea polymer (DAUP) was used to deposit Sb2Te x (2 < x < 6) films. Deaeration of the electrolyte with argon was applied to eliminate oxygen interference. Hot uniaxial pressing (HUP) was chosen as the posttreatment process for the deposited films. DAUP can significantly increase the tellurium content in the deposited film, with little influence on deposition thermodynamics. The as-deposited films exhibited amorphous crystal structure. Argon deaeration proved to be favorable for improving the Seebeck coefficient of the films because oxygen contamination was reduced. HUP treatment reduced the electrical resistance of the films by orders of magnitude. The maximum Seebeck coefficient and power factor of 532 μV K−1 and 1.58 mW m−1 K−2, respectively, were obtained with DAUP and argon deaeration, followed by HUP posttreatment.  相似文献   

14.
Oxide thermoelectric materials (Na1−y M y )1.4Co2O4 (M = Sr, Li; y = 0 to 0.4) were prepared by a sol–gel method. The influence of doping on the thermoelectric properties was investigated, and the phase composition was characterized by x-ray diffraction. Experimental results showed that the main crystalline phase of the undoped and Sr/Li-doped samples was γ-Na1.4Co2O4. The thermoelectric properties of Na1.4Co2O4 can be improved slightly by doping with Sr. Doping with Li improves the thermoelectric properties of Na1.4Co2O4. For a doping fraction of y = 0.1, the electrical conductivity of (Na1−y Li y )1.4Co2O4 at 288 K achieves its maximum value of 301.19 (Ω mm)−1. The Seebeck coefficient and power factor of (Na1−y Li y )1.4Co2O4 at 288 K achieve their maximum values of 172.28 μV K−1 and 7.44 mW m−1 K−2 at a doping fraction of y = 0.4.  相似文献   

15.
A thermopile sensor was processed on a glass substrate by electrodeposition of n-type bismuth telluride (Bi-Te) and p-type antimony telluride (Sb-Te) films. The n-type Bi-Te film electrodeposited at −50 mV in a 50 mM electrolyte with a Bi/(Bi + Te) mole ratio of 0.5 exhibited a Seebeck coefficient of −51.6 μV/K and a power factor of 7.1 × 10−4 W/K2 · m. The p-type Sb-Te film electroplated at 20 mV in a 70 mM solution with an Sb/(Sb + Te) mole ratio of 0.9 exhibited a Seebeck coefficient of 52.1 μV/K and a power factor of 1.7 × 10−4 W/K2 · m. A thermopile sensor composed of 196 pairs of the p-type Sb-Te and the n-type Bi-Te thin-film legs exhibited sensitivity of 7.3 mV/K.  相似文献   

16.
In this work, a citrate sol–gel method (Sol–Gel) with polyethylene glycol 400 (Sol-Gel-PEG400) was developed to prepare γ-Na x Co2O4 by using sodium and cobalt nitrates as the raw materials, citric acid as a complexing agent, and PEG400 as a dispersant. At 800°C, single-phase γ-Na x Co2O4 crystals were obtained using Sol-Gel-PEG400. With the addition of 1 vol.% PEG400, smaller, flaky particles exhibited a well-tiled structure along the plane direction of the flaky particles. Moreover, polycrystalline sintered bulk γ-Na x Co2O4 with more highly oriented crystals and greater compact density was fabricated using the Sol-Gel-PEG400 synthesized powders compared with the powders synthesized by citrate Sol–Gel. The electrical conductivity (σ) values of Sol-Gel-PEG400 samples were higher than those of Sol–Gel samples between 400 K and 900 K. The σ value of Sol-Gel-PEG400 increased to 3.13 × 104 Sm−1 at 400 K and to 1.84 × 104 Sm−1 at 900 K. Between 400 K and 850 K, the Seebeck coefficient (α) values of Sol-Gel-PEG400 samples were slightly lower than those of Sol–Gel samples. Near 900 K, the α values of these two methods were nearly equal, at 164 μV K−1. Between 400 K and 900 K, the power factor (P) of Sol-Gel-PEG400 was evidently larger than that of Sol–Gel.  相似文献   

17.
This article demonstrates that carrier concentrations in bismuth telluride films can be controlled through annealing in controlled vapor pressures of tellurium. For the bismuth telluride source with a small excess of tellurium, all the films reached a steady state carrier concentration of 4 × 1019 carriers/cm3 with Seebeck coefficients of −170 μV K−1. For temperatures below 300°C and for film thicknesses of 0.4 μm or less, the rate-limiting step in reaching a steady state for the carrier concentration appeared to be the mass transport of tellurium through the gas phase. At higher temperatures, with the resulting higher pressures of tellurium or for thicker films, it was expected that mass transport through the solid would become rate limiting. The mobility also changed with annealing, but at a rate different from that of the carrier concentration, perhaps as a consequence of the non-equilibrium concentration of defects trapped in the films studied by the low temperature synthesis approach.  相似文献   

18.
We report an experimental investigation of four interband cascade lasers with wavelengths spanning the mid-infrared spectral range, i.e., 2.9 μm to 5.2 μm, near room temperature in pulsed mode. One broad-area device had a pulsed threshold current density of only 3.8 A/cm2 at 78 K (λ = 3.6 μm) and 590  A/cm2 at 300 K (λ = 4.1 μm). The room-temperature threshold for the shortest-wavelength device (λ = 2.6 μm to 2.9 μm) was even lower, 450 A/cm2. A␣cavity-length study of the lasers emitting at 3.6 μm to 4.1 μm yielded an internal loss varying from 7.8 cm−1 at 78 K to 24 cm−1 at 300 K, accompanied by a decrease of the internal efficiency from 77% to 45%.  相似文献   

19.
In-Sn-Te-based alloys usually have low electrical and thermal conductivity. In the present work we substituted Al for In in an In-Sn-Te alloy and prepared an (In1.9Al0.1Te3)0.08(SnTe)0.92 alloy by spark plasma sintering. Substitution of Al for In favors the formation of indium impurity levels in this structure and accounts for the decrease of the band gap (E g) and much of the increase of mobility and electrical conductivity. The thermal conductivity decreases from 1.72 W K−1 m−1 to 1.44 W K−1 m−1 with temperature, while that of the (In2Te3)0.08(SnTe)0.92 alloy increases from 2.29 W K−1 m−1 to 3.50 W K−1 m−1. The thermoelectric figure of merit (ZT) of the sample increases with measurement temperature, and the highest ZT value of 0.28 was obtained at 668 K, being a factor of 4.5 greater than the maximum ZT value for the Al-free (In2Te3)0.08(SnTe)0.92 alloy at 510 K.  相似文献   

20.
Thermoelectric materials are attractive since they can recover waste heat directly in the form of electricity. In this study, the thermoelectric properties of ternary rare-earth sulfides LaGd1+x S3 (x = 0.00 to 0.03) and SmGd1+x S3 (x = 0.00 to 0.06) were investigated over the temperature range of 300 K to 953 K. These sulfides were prepared by CS2 sulfurization, and samples were consolidated by pressure-assisted sintering to obtain dense compacts. The sintered compacts of LaGd1+x S3 were n-type metal-like conductors with a thermal conductivity of less than 1.7 W K−1 m−1. Their thermoelectric figure of merit ZT was improved by tuning the chemical composition (self-doping). The optimized ZT value of 0.4 was obtained in LaGd1.02S3 at 953 K. The sintered compacts of SmGd1+x S3 were n-type hopping conductors with a thermal conductivity of less than 0.8 W K−1 m−1. Their ZT value increased significantly with temperature. In SmGd1+x S3, the ZT value of 0.3 was attained at 953 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号