首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
A new thermodynamic model for gas hydrates was established by combining the modified Patel-Teja equation of state proposed for aqueous electrolyte systems and the simplified Holder -John multi -shell hydrate model. The new hydrate model is capable of predicting the hydrate formation/dissociation conditions of natural gas systems containing pure water/formation water (brine) and polar inhibitor without using activity coefficient model. Extensive test results indicate very encouraging results.  相似文献   

2.
The dissociation rates of methane hydrates formed with and without the presence of sodium dodecyl sulfate(methane-SDS hydrates),were measured under atmospheric pressure and temperatures below ice point to investigate the influence of the hydrate production conditions and manners upon its dissociation kinetic behavior.The experimental results demonstrated that the dissociation rate of methane hydrate below ice point is strongly dependent on the manners of hydrate formation and processing.The dissociation rate of hydrate formed quiescently was lower than that of hydrate formed with stirring;the dissociation rate of hydrate formed at lower pressure was higher than that of hydrate formed at higher pressure;the compaction of hydrate after its formation lowered its stability,i.e.,increased its dissociation rate.The stability of hydrate could be increased by prolonging the time period for which hydrate was held at formation temperature and pressure before it was cooled down,or by prolonging the time period for which hydrate was held at dissociation temperature and formation pressure before it was depressurized to atmospheric pressure.It was found that the dissociation rate of methane hydrate varied with the temperature(ranging from 245.2 to 272.2 K) anomalously as reported on the dissociation of methane hydrate without the presence of surfactant as kinetic promoter.The dissociation rate at 268 K was found to be the lowest when the manners and conditions at which hydrates were formed and processed were fixed.  相似文献   

3.
A型分子筛对甲烷水合物生成的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
The porous medium has an important effect on hydrate formation. In this paper, the formation process and the gas storage capacity of the methane hydrate were investigated with A-type zeolite and Sodium Dodecyl Sulfate (SDS) existing in the system. The results show that A-type zeolite can influence methane hydrate formation. At the temperature of 273.5 K and pressure of 8.3 MPa, the distilled water with A-type zeolite can form methane hydrate with gaseous methane in 12 hours. The formation process of the system with A-type zeolite was quite steady and the amount of A-type zeolite can influence the gas storage capacity significantly. The adding of A-type zeolite with 0.067 g•(g water)-1 into 2×10-3 g•g-1 SDS-water solution can increase the gas storage capacity, and the maxi-mum increase rate was 31%. Simultaneously the promotion effect on hydrate formation of 3A-type zeolite is much more obvious than that of 5A-type zeolite when the water adding amounts are 0.033 g•g-1 and 0.067 g•g-1 at the experimental conditions.  相似文献   

4.
流动体系中的水合物成核诱导期研究   总被引:4,自引:0,他引:4  
The appearance of turbidity due to large numbers of critical size hydrate nuclei may significantly affect the outgoing light intensity and the flow resistance in the pipe loop. The induction period of hydrate formation was determined by analyzing the experimental data——either based on the shading ratio data of laser detector or based on the pressure drop data of the flow system. The induction period of CC12F2 (R12) in pure water and that of CH4 in (tetrahydrofuran + water) systems were then measured with the above two methods. Experimental data show that the induction period depends on the driving force exponentially. Flow rate also has a significant influence on the hydrate nucleation. A new induction period model taking the driving force and liquid flow rate into account was proposed. And it is successfully applied to the calculation of the induction period, which is in good agreement with the experimental data obtained in this study.  相似文献   

5.
A temperature-controlled and pressure-controlled coaxial dielectric barrier discharge(DBD) reactor was developed to decouple the thermal and kinetic effects of radio frequency(RF) discharge on methane conversion,and further to compare the kinetic behaviors of the mechanistically similar reactions of methane conversion with O_2 and CO_2 additives. A kinetic mechanism for RF plasma assisted methane conversion was assembled. The formation of products in the RF plasma reactor was measured with Gas Chromatography(GC–TCD) and the data were used to validate the kinetic model. The experimental and computational results showed the different kinetic roles of carbon dioxide and oxygen additives in methane conversion, due to the different dissociation and ionization energy of the two additive gases, as well as the thus produced electron energy distribution function(EEDF). Fuel oxidation by plasma generated O, O(~1 D), O_2(a~1Δg), O_2(b~1Σ_g~+) and O+in partial oxidation of methane was observed essential for methane consumption, which resulted in an increase in methane conversion rate,compared to pure methane pyrolysis and dry reforming of methane with CO_2 additive. It was also found that dry reforming of methane with CO_2 was by far the easier to produce the syngas as well as C_2 hydrocarbon species,due to the weak oxidation ability of CO_2 and also the significant deposition of the electron energy on CH_4 dissociation in a dry reforming discharge mixture. This kinetic study produced comparative data to demonstrate the contribution of CO_2/O_2 additive in non-equilibrium plasma assisted methane conversion.  相似文献   

6.
The findings were presented from laboratory investigations on the hydrate formation and dissociation processes employed to recover methane from coal mine gas.The separation process of coal mine methane(CMM) was carried out at 273.15K under 4.00 MPa.The key process variables of gas formation rate,gas volume stored in hydrate and separation concentration were closely investigated in twelve THF-SDS-sponge-gas systems to verify the sponge effect in these hydrate-based separation processes.The gas volume stored in hydrate is calculated based on the measured gas pressure.The CH4 mole fraction in hydrate phase is measured by gas chromatography to confirm the separation efficiency.Through close examination of the overall results,it was clearly verified that sponges with volumes of 40,60 and 80 cm 3 significantly increase gas hydrate formation rate and the gas volume stored in hydrate,and have little effect on the CH4 mole fraction in hydrate phase.The present study provides references for the application of the kinetic effect of porous sponge media in hydrate-based technology.This will contribute to CMM utilization and to benefit for local and global environment.  相似文献   

7.
Phase equilibrium conditions of gas hydrate in several systems were measured by the step-heating method using the cylindrical transparent sapphire cell device. The experimental data for pure CH4 or CO2 + deionized water systems showed good agreement with those in the literatures. This kind of method was then applied to CH4/CO2 + sodium dodecyl sulfate (SDS) aqueous solution, CH4/CO2 + SDS aqueous solution + silica sand, and (CH4 + C2H6 + C3H8) gas mixture + SDS aqueous solution systems, where SDS was added to increase the hydrate formation rate without evident influence on the equilibrium conditions. The feasibility and reliability of the step-heating method, especially for porous media systems and gas mixtures systems were determined. The experimental data for CO2 + silica sand data shows that the equilibrium pressure will change significantly when the particle size of silica sand is less than 96 μm. The formation equilibrium pressure was also measured by the reformation of hydrate.  相似文献   

8.
Low dosage kinetic hydrate inhibitors(KHIs) are a kind of alternative chemical additives to high dosage thermodynamic inhibitors for preventing gas hydrate formation in oil & gas production wells and transportation pipelines.In this paper,a new KHI,poly(N-vinyl caprolactam)-co-tert-butyl acrylate(PVCapco-TBA),was successfully synthesized with N-vinyl caprolactam(NVCap) and tert-butyl acrylate.The kinetic inhibition performances of PVCap-co-TBA on the formations of both structure Ⅰ methane hy...  相似文献   

9.
To investigate the characteristics of hydrate formation in oil–water systems, a high-pressure cell equipped with visual windows was used where a series of hydrate formation experiments were performed from natural gas + diesel oil + water systems at different water cuts and anti-agglomerant concentrations. According to the temperature and pressure profiles in test experiments, the processes of hydrate formation under two kinds of experimental procedures were analyzed first. Then, based on the experimental phenomena observed through the visual windows, the influences of water cut and anti-agglomerant on the places of hydrate formation and distribution, hydrate morphologies and hydrate morphological evolvements were investigated. Hydrate agglomeration, hydrate deposition and hydrate film growth on the wall were observed in experiments. Furthermore, three different mechanisms for hydrate film growth on the wall were identified. In addition, the influences of water cut and anti-agglomerant on the induction time of hydrate formation were also studied.  相似文献   

10.
Achievable supercooling for the formation of methane hydrate from water emulsions was studied in seven different crude oils and in decane. The experiments were performed under constant rate cooling from + 20 to-15 °C and a pressure of methane of 12 MPa. It was demonstrated that the shapes and positions of the resulting survival curves depend on the density, viscosity and dispersive power of oil samples used in the experiments, as well as on the degree of oil oxidation. In addition, results of the experiments on ice freezing under the same emulsions are presented. The results obtained in the work allowed us to discuss the possibility and features of primary and secondary nucleation of the hydrate and ice in the systems under consideration.  相似文献   

11.
甲烷水合物在纯水中的生成动力学   总被引:7,自引:0,他引:7       下载免费PDF全文
引言一些低分子量气体,如石油和天然气中C_1~C_4轻烃、氮气、硫化氢、二氧化碳和惰性气体等,在一定压力和温度的条件下可与水形成一类笼形结构的冰状晶体,即所谓的气体水合物.气体水合物是一类较为特殊的包络化合物:主体水分子通过氢键相互结合形成一种内含空隙的笼形框架,客体分子则被笼罩于这些空隙中.主、客体分子之间的作用力为vanderWaals力.水合物晶体最为常见的两种结构分别称为结构I(体心立方构型)和结构Ⅱ(金刚石构型).甲烷和水形成结构I水合物.文献阐述了开展水合物生成动力学研究的重要意义.但由于水合物生成…  相似文献   

12.
甲烷水合物在纯水中的生成动力学   总被引:2,自引:0,他引:2       下载免费PDF全文
裘俊红 《化工学报》1998,49(3):383-386
The kinetic behavior of methane hydrate formation in pure water was investigated.12 sets of experimental data on methane hydrate formation were determined at temperatures ranging from 273.65 to 276.15K and pressures ranging from 4.47 to 8.47MPa.The duration of three stages in methane hydrate formation,known as the dissolution,nucleation and growth periods,that are lacking in open literature,was obtained.The effect of pressure and temperature on the kinetics of methane hydrate formation was also studied.  相似文献   

13.
盐对气体水合物防聚剂作用的影响   总被引:1,自引:0,他引:1  
利用可视化高压磁力反应釜研究无机盐对4种不同类型的水合物防聚剂的影响,结果表明:和纯水体系相比,不含盐的防聚剂增加了甲烷水合物的生成速率以及其生成量,促进了甲烷水合物的生成,而含盐的防聚剂却降低了水合物的生成速率及其生成量,明显地抑制了水合物的生成。另外,盐能增强防聚剂的防聚性能,随着盐浓度的增加,其作用效果逐渐增强,并讨论了盐效应的机理。在工业应用中防聚剂可以和盐混合起来使用,添加的较优浓度为5%~8%(m/m)。  相似文献   

14.
Time‐dependent isochoric formation of methane hydrate was investigated in the presence of low‐dose poly(ethylene oxides) (PEOs). The effect of different molecular weights of PEO on methane hydrate nucleation time and storage capacity was studied and compared. Kinetic measurements revealed a dual effect of PEO, including inhibition and stabilization effects, on methane hydrate formation. The nature and type of the effect arises from the difference in molecular weights and concentration ranges of PEOs. These parameters directly affect the nucleation time and storage capacity of methane hydrate. Generally, in comparison with pure water, PEO improved the storage capacity of methane hydrate. PEO (1000 kD) at a concentration of 0.5 wt % exhibits a significant kinetic inhibitory performance. However, it was an efficient low‐dosage hydrate stabilizer at a concentration of 0.25 wt %, along with producing gas‐rich methane hydrate suitable for gas fuel storage and transportation.  相似文献   

15.
In this communication, the kinetic parameters of methane hydrate formation (induction time, quantity and rate of gas uptake, storage capacity (SC), and apparent rate constant) in the presence of sodium dodecyl sulfate (SDS), synthetized silver nanoparticles (SNPs), and mixture of SDS?+?SNPs have been studied. Experimental measurements were performed at temperature of 273.65?K and initial pressure of 7?MPa in a 460?cm3 stirred batch reactor. Our results show that adding SDS, SNPs and their mixture increases the quantity of gas uptake, water to hydrate conversion, and SC of methane hydrate formation, noticeably. Using 300?ppm SDS increases the SC and the quantity of methane uptake 615, and 770%, respectively, compared with pure water. Investigating the hydrate growth rate at the start of hydrate formation process shows that, using SNPs, SDS, and their mixture increases the initial apparent rate constant of hydrate rate, considerably. Our results show that the system of methane?+?water?+?SDS 500?ppm?+?SNPs 45?µM represents the maximum value of initial apparent rate constant, compared with other tested systems.  相似文献   

16.
Experimental data on the kinetics of methane hydrate formation in aqueous electrolyte solutions are reported. The experiments were carried out in a semi-batch stirred tank reactor in three NaCl and two KCl solutions as well as in a solution containing a mixture of NaCl and KCl at three different nominal temperatures from 270 to 274 K and at pressures ranging from 3.78 to 7.08 MPa. The kinetic model developed by Englezos et al. (1987a) was adapted to predict the growth of hydrates. The model is based on the crystallisation theory coupled with the two-film theory for gas absorption in the liquid phase. The kinetic rate constant which appears in the model was that obtained earlier for methane hydrate formation in pure water. The effect of the electrolytes was taken into account through the computation of the three-phase equilibrium conditions and the corresponding fugacities. Overall, the model predictions match the experimental data very well with the largest prediction error being less than 10%.  相似文献   

17.
气体水合物平衡生成条件的测定及预测   总被引:14,自引:0,他引:14  
建立了一套气体水合物实验测定装置,采用该装置在温度262.6-285.2K范围内分别测定了甲烷,二氧化碳和一种合成天然气在纯水、电解质水溶液以甲醇水溶液中水合物的平衡生成压力,共计9个体系,78个数据点。  相似文献   

18.
Experimental data on the kinetics of carbon dioxide hydrate formation and its solubility in distilled water are reported. The experiments were carried out in a semi-batch stirred tank reactor at nominal temperatures of 274, 276 and 278 K and at pressure ranging from 1.59 to 2.79 MPa for the kinetics experiments and at pressure ranging from 0.89 to 2.09 MPa for the solubility experiments. A minor inconsistency in the kinetic model developed by Englezos et al. (1987a) was removed and the model was modified to determine the intrinsic kinetic rate constant for carbon dioxide hydrate formation. The same model was also used to re-determine the intrinsic kinetic rate constant for methane hydrate formation. The model is based on the crystallization theory coupled with the two-film theory for gas absorption in the liquid phase. The Henry's constant (H) and apparent dissolution rate constant (KLa) required in the model were determined using the experimental solubility data. The kinetic model describes the experimental data very well. The kinetic rate constant obtained for the carbon dioxide hydrate formation was found to be higher than that for methane.  相似文献   

19.
Gas hydrate formation experiments were conducted with a methane-ethane mixture at 273.7 or 273.9 K and 5100 kPa and using water droplets or water contained in cylindrical glass columns. The effect of kinetic inhibitors and the water/solid interface on the induction time for hydrate crystallization and on the hydrate growth and decomposition characteristics was studied. It was found that inhibitors GHI 101 and Luvicap EG delayed the onset of hydrate nucleation. While this inhibition effects has been reported previously some unusual behaviour was observed and reported for the first time. In particular, the water droplet containing GHI 101 or Luvicap EG was found to collapse prior to nucleation and spread out on the Teflon surface. Subsequently, hydrate was formed as a layer on the surface. Catastrophic growth and spreading of the hydrate crystals was also observed during hydrate formation in the glass columns in the presence of the kinetic inhibitor. Finally, when polyethylene oxide (PEO) was added into the kinetic inhibitor solution the memory effect on the induction time decreased dramatically.  相似文献   

20.
Hydrate-based solidified natural gas (SNG) technology provides a promising approach to store and transport natural gas, but demanding formation conditions and low methane storage capacity limit its application. Here, we presented a novel spiral-agitated reactor, and hydrate formation in pure water and amino acid systems was evaluated. It is worth to highlight that spiral agitation significantly enhances initial hydrate grow kinetics, and satisfied methane uptake of 134.9 V/V was obtained under a mild condition (4.3 MPa, 275.15 K, and 30 rpm). Impressively, when amino acids were introduced, late hydrate growth was greatly improved because of secondary uptake, and a large methane uptake (145.97 V/V) was obtained under a milder condition (3.8 MPa, 275.15 K, and 60 rpm), which increases by 82.97% comparing to that in pure water systems. These findings provide a new insight (synergistic effect of spiral agitation and amino acids) on enhanced hydrate production under extremely mild conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号