首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(styrene sulfonic acid) (PSSA)/Poly(vinyl alcohol) (PVA) blend membranes prepared by the solution casting were employed as heterogeneous acid catalysts for biodiesel production from acidic oil obtained from waste cooking oil (WCO). The membranes were annealed at different temperature in order to enhance their stability. The structure and properties of the membranes were investigated by means of Fourier transform infrared spectroscopy (FTIR), thermogravimetry (TG), X-ray diffraction (XRD). It is found that the crosslinking structure among PVA and PSSA chains formed when the thermal treatment temperature was higher than 80 °C. The retention of PSSA in the blend membranes in the methanol/water solvent was markedly increased from 50% to 85% with the increase of the annealing temperature from room temperature (for the untreated membrane) to 150 °C due to the formation of the crosslinking structure. The results of esterification of acidic oil show that the conversion was slightly improve with the PVA content in the membrane at a fixed PSSA content. The thickness of the catalytic membrane had no significant effect on the conversion in the end. The membrane annealed at 120 °C exhibited the best catalytic performance among the membranes, with a stable conversion of 80% with the runs.  相似文献   

2.
Poly(vinyl alcohol) (PVA)‐amino acid (AA) biocomposite membranes are prepared by blending PVA with AAs such as glycine, lysine (LY), and phenyl alanine followed by in situ crosslinking with citric acid (CA) and explored as a new class of biocomposite membrane electrolytes for direct methanol fuel cells (DMFCs). CA crosslinks with PVA through esterification offers adequate chemical, thermal, and morphological stability thereby produces methanol‐obstructing close‐packed polymeric network. These biocomposite membranes are characterized in terms of mechanical, thermal, sorption, and proton‐conducting properties. Hydrophilic nature of AA zwitterions significantly facilitates proton conduction and CA crosslinking mitigates methanol crossover through establishing appropriate balance between hydrophilic/hydrophobic domains. The rational design of membrane microstructure with proper arrangement of hydrophobic/hydrophilic domains is a key to enhance electrochemical selectivity of PVA‐AA/CA biocomposite membranes. Biocomposite membrane comprising LY exhibits nearly threefold higher electrochemical selectivity in relation to PVA/CA blend membrane. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43514.  相似文献   

3.
A class of inorganic–organic hybrid membranes with low methanol permeability characteristics for possible direct methanol fuel cell (DMFC) applications was architected, formulated, and fabricated through the blending of poly(vinyl alcohol) (PVA) and polyacrylamide (PAM) followed by crosslinking with glutaraldehyde (Glu). Cesium salts of different heteropolyacids, including phosphomolybdic acid (PMA), phosphotungstic acid (PWA), and silicotungstic acid (SWA), were incorporated into the polymer network to form corresponding hybrid membrane materials, namely, PVA–PAM–CsPMA–Glu, PVA–PAM–CsPWA–Glu, and PVA–PAM–CsSWA–Glu, respectively (where “Cs” together with a heteropolyacid abbreviation indicates the cesium salt of that acid). All the three hybrid polymer membranes fabricated exhibited excellent swelling, thermal, oxidative, and additive stability properties with desired proton conductivities in the range 10?2 S/cm at 50% relative humidity. A dense network formation was achieved through the blending of PVA and PAM and by crosslinking with Glu, which led to an order of magnitude decrease in the methanol permeability compared to the state‐of‐the‐art commercial Nafion 115 membrane. The hybrid membrane containing CsSWA exhibited a very low methanol permeability (1.4 × 10?8 cm2/s) compared to other membranes containing cesium salt of heteropolyacids such as PMA and PWA. The feasibility of these hybrid membranes as proton‐conducting electrolytes in DMFC was investigated, and the preliminary results were compared with those of Nafion 115. The results illustrate the attractive features and suitability of the fabricated hybrid membranes as an electrolyte for DMFC applications. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

4.
Zeolite 4A-incorporated poly(vinyl alcohol)/poly(vinyl pyrrolidone) (PVA/PVP) membranes were prepared for pervaporation separation of methanol/methyl acetate mixtures. These membranes were characterized by Infrared spectroscopy, X-ray diffraction and Scanning electron microscopy. The results showed that crystallinity of the membrane decreased with the increase of zeolite 4A content. The effect of zeolite loading, feed composition and temperature on the membrane separation performance were discussed in detail. With the increase of zeolite 4A content, permeation flux increased continuously, but separation factor first increased and then decreased. The addition of 2.5 wt% zeolite 4A in the polymer membrane improved the separation factor from 12.9 (for PVA/PVP membrane) to the maximum value of 34.4 for 20 wt% methanol in feed at 45 °C. The separation factor decreased with increasing feed temperature, however, the flux increased with increasing feed temperature. Zeolite 4A-incorporated PVA/PVP membranes provide an effective method for the separation of methanol/methyl acetate azeotropic mixtures.  相似文献   

5.
Sulfonated poly(vinyl alcohol) (PVA) for use as a proton conductive membrane in a direct methanol fuel cell (DMFC) was prepared by reacting the PVA with sulfoacetic acid and poly(acrylic acid). The effects of the amount of sulfoacetic acid and poly(acrylic acid) on proton conductivity, methanol permeability, water uptake, and ion exchange capacity (IEC) of the sulfonated PVA membranes were investigated by using impedance analysis, gas chromatography, gravimetric analysis, and titration techniques, respectively. The water uptake of the membranes decreased with the amount of the sulfoacetic acid and the amount of poly(acrylic acid) used. The proton conductivity and the IEC values of the membranes initially increased and then decreased with the amount of the sulfoacetic acid. The methanol permeability of the sulfonated PVA membranes decreased continuously with the amount of the sulfoacetic acid. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

6.
Poly(vinyl alcohol)(PVA)/poly(acrylic acid)(PAA) and PVA/sulfosuccinic acid (SSA) membrane performances have been studied for the pervaporation separation of methyl tert‐butyl ether (MTBE)/methanol (MeOH) mixtures with varying operating temperatures, amount of cross‐linking agents, and feed compositions. Typically, the separation factor, about 4000, and the permeation rate, 10.1 g/m2/h, were obtained with PVA/PAA = 85/15 membrane for MTBE/MeOH = 80/20 mixtures at 50°C. For PVA/PAA membranes, it could be considered that the flux is affected by the structural changes of the membranes due to the cross‐linking and the free carboxylic acid group also took an important role in the separation characteristics through the hydrogen bonding with PVA and the feed components leading to the increase of flux. The latter membrane of the 5% SSA membrane shows the highest separation factor of 2095 with the flux of 12.79 g/m2/h for MTBE/MeOH = 80/20 mixtures at 30°C. Besides the swelling measurements were carried out for pure MTBE and MeOH, and MTBE/MeOH = 90/10, 80/20 mixtures using PVA/SSA membranes with varying SSA compositions. It has been recognized that there are two factors, the membrane network and the hydrogen bonding in the swelling measurements of PVA/SSA membranes. These two factors act interdependently on the membrane swelling. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 1699–1707, 2000  相似文献   

7.
以聚乙烯醇(PVA)、富马酸(FA)和4A分子筛为原料,利用流延法制备了PVA/FA/4A复合质子交换膜,并对膜的吸水率、溶胀率和离子交换容量、甲醇透过率、电导率等性质进行了测定。结果表明:室温为20℃条件下,测得PVA/FA/4A膜的吸水率为156%,溶胀率为49.1%,离子交换容量为0.804 mmol/L,电导率为3.33×10~(-2)S/cm,甲醇渗透率为0.72×10~(-7) cm~2/S.表明PVA/FA/4A复合质子交换膜具有很好的阻醇效果和高的质子导电性。  相似文献   

8.
The permeation and separation characteristics of alcohol/water systems through porous PVA membranes were investigated. Porous PVA membranes with different pore size and number were prepared by solution blending of PVA with several synthesized polymers or copolymers, such as polyacrylic acid, polyacrylamide, polyacrylonitrile, and methylmethacrylate-co-maleic anhydride, etc. Then casting, and finally extracting the blended polymers or copolymers by solvent from the membranes. The dependency of both permeation and separation on the molecular size and shape of the permeating species was dicussed qualitatively. Moreover, the permselectivity was investigated with attention to the feed composition of alcohol/water mixture and the effect of pore size and number. The selectivity was found to depend on the weight ratio and the molecular weight of polymer introduced to the membrane. When the weight ratio of polymer introduced into the membrane was larger than 0.1, methanol was permeated through membrane preferentially in methanol/water system, and the separation factor increased with increasing the methanol feed concentration. On the other hand, membrane had a selective permeability for water in the other alcohol/water systems. The influence of operating conditions was also studied.  相似文献   

9.
This work reports the preparation and characterization of a new anhydrous proton conducting membrane based on poly(vinyl alcohol) (PVA), sulfosuccinic acid (SSA), and 5‐aminotetrazole (ATet) at various stoichiometric ratios. The proton conductivities of membranes were investigated as a function of ATet composition, SSA composition, and temperature. New anhydrous proton conducting membranes were characterized by infrared spectra, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), methanol permeability, and impedance measurements for proton conductivity. TGA showed that the samples were thermally stable up to 150°C. DSC results illustrated the homogeneity of the materials. Mechanical analysis showed that the storage modulus of the PVA–SSA–ATet blend polymer membranes decreased with increasing ATet content. The membranes with higher tetrazole content, or higher acid doping level presented the higher proton conductivity. PVA–SSA–ATet4 can exhibit an anhydrous proton conductivity of 1.7 × 10−3 S/cm at 130°C and the proton conductivity increased with increasing temperature and acid doping level. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

10.
DMFCs用SPEEK/SiOx-S复合质子交换膜   总被引:1,自引:0,他引:1       下载免费PDF全文
A sulfonated poly(ether ether ketone) (SPEEK) membrane with a fairly high degree of sulfonation (DS) can swell excessively and even dissolve at high temperature. To solve these problems, insolvable functionalized silica powder with sulfonic acid groups (SiOx-S) was added into the SPEEK matrix (DS 55.1%) to prepare SPEEK/ SiOx-S composite membranes. The decrease in both the swelling degree and the methanol permeability of the membranes was a dose-dependent result of addition of the SiOx-S powder. Pure SPEEK membrane swelled 52.6% at 80°C, whereas the SPEEK/SiOx-S (15%, by mass) membrane swelled only 27.3% at the same temperature. From room temperature to 80℃, all SPEEK/SPEEK/SiOx-S composite membranes had methanol permeability of about one order of magnitude lower than that of Nafion115. Compared with pure SPEEK membranes, the addition of the SiOx-S powder not only leads to higher proton conductivity, but also increases the dimensional stability at higher temperatures, and greater proton conductivity can be achieved at higher temperature. The SPEEK/SiOx-S (20%, by mass) membrane could withstand temperature up to 145°C, at which in 100% relative humidity (RH) its proton conductivity exceeded slightly that of Nafion115 membrane and reached 0.17 S•cm-1, while pure SPEEK mem-brane dissolved at 90°C. The SPEEK/SiOx-S composite membranes are promising for use in direct methanol fuel cells because of their good dimensional stability, high proton conductivity, and low methanol permeability.  相似文献   

11.
In this study, imidazolium functionalized poly(vinyl alcohol) (PVA) was synthesized by acetalization and direct quaternization reaction. Afterwards, composite anion exchange membranes based on imidazolium‐ and quaternary ammonium‐ functionalized PVA were used for direct methanol alkaline fuel cell applications. 1H NMR and Fourier transform infrared spectroscopy data indicated that imidazole functionalized PVA was successfully synthesized. Inductively coupled plasma mass spectrometry data demonstrated that the imidazolium structure was efficiently obtained by direct quaternization of the imidazole group. Composite anion exchange membranes were fabricated by application of the functionalized PVA solution on the surface of porous polycarbonate (PC) membranes. Fuel cell related properties of all prepared membranes were investigated systematically. The imidazolium functionalized composite membrane (PVA‐Im/PC) exhibited higher ionic conductivity (7.8 mS cm?1 at 30 °C) despite a lower water uptake and ion exchange capacity value compared to that of quaternary ammonium. In addition, PVA‐Im/PC showed the lowest methanol permeation rate and the highest membrane selectivity as well as high alkaline and oxidative stability. Dynamic mechanical analysis results reveal that both composite membranes were mechanically resistant up to 107 Pa at 140 °C. The superior performance of imidazolium functionalized PVA composite membrane compared to quaternary ammonium functionalized membrane makes it a promising candidate for direct methanol alkaline fuel cell applications. © 2020 Society of Chemical Industry  相似文献   

12.
用13X分子筛负载无机质子导体-磷钨酸,然后加入壳聚糖(CS)中制备得到PWA-13X-CS复合质子交换膜,对其进行扫描电镜表征,测试了其吸水率、溶胀度、质子导电率、甲醇渗透系数等性质。结果表明PWA-13X-CS复合质子交换膜溶胀度较小,机械性能较好,质子导电率明显高于壳聚糖空白膜,且随温度升高呈上升趋势,其质子导电活化能低于壳聚糖空白膜,甲醇渗透系数小于Nafion117膜。将其与同样添加负载磷钨酸的13X分子筛的聚酰亚胺复合膜及聚乙烯醇复合膜性能进行对比,结果表明PWA-13X-CS复合质子交换膜综合性能较优,在直接甲醇燃料电池中具有较好的应用潜力。  相似文献   

13.
In this study, itaconic acid (IA) was grafted on poly(vinyl alcohol) (PVA) at two different grafting percentages, 7.0% (w/w) and 14.0% (w/w), and membranes were prepared from the grafted copolymer (PVA‐g‐IA). Performances of PVA and PVA‐g‐IA membranes for the transdermal release of salicylic acid (SA) at in vitro conditions were investigated by using 2.0 mg/mL SA solutions. Effect of the pH on the release of SA was studied by keeping pH of donor and acceptor solutions in a range of (2.1–7.4). Permeation studies were also carried on at different SA concentrations. Effect of temperature on the release of SA was investigated in the temperature range of (32–39) (±1)°C. Results showed that presence of IA decreased the release of SA from the PVA membranes and 73% SA was released at the end of 48 h at (32 ± 1)°C from the IA‐1 membranes. pH affected the release of SA through the grafted membranes and studies showed that release of SA was high with donor solution pH of 2.1. When the pH of donor and receiver solutions were kept at the same pH value, the overall SA% in permeate increased. Increase in concentration of SA decreased the release of SA for the studied membranes. Release of SA from PVA‐g‐IA membranes was temperature sensitive and increase in temperature from (32 ± 1)°C to (39 ± 1)°C increased the release percentage of SA by 24% (w/w). The overall activation energy for the permeation of SA through IA‐1 membrane was found to be 22.97 kJ/mol. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

14.
Water‐swollen hydrogel (WSH) membranes for gas separation were prepared by the dip‐coating of asymmetric porous polyetherimide (PEI) membrane supports with poly(vinyl alcohol) (PVA)–glutaraldehyde (GA), followed by the crosslinking of the active layer by a solution method. Crosslinked PVA/GA film of different blend compositions (PVA/GA = 1/0.04, 0.06, 0.08, 0.10, 0.12 mol %) were characterized by differential scanning calorimetry (DSC) and their water‐swelling ratio. The swelling behavior of PVA/GA films of different blend compositions was dependent on the crosslinking density and chemical functional groups created by the reaction between PVA and GA, such as the acetal group, ether linkage, and unreacted pendent aldehydes in PVA. The permeation performances of the membranes swollen by the water vapor contained in a feed gas were investigated. The behavior of gas permeation through a WSH membrane was parallel to the swelling behavior of the PVA/GA film in water. The permeation rate of carbon dioxide through the WSH membranes was 105 (cm3 cm?2 s?1 cmHg) and a CO2/N2 separation factor was about 80 at room temperature. The effect of the additive (potassium bicarbonate, KHCO3) and catalyst (sodium arsenite, NaASO2) on the permeation of gases through these WSH membranes was also studied. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1785–1791, 2001  相似文献   

15.
以聚醚醚酮(PEEK)为原料,浓硫酸为磺化剂制备了不同磺化度的磺化聚醚醚酮(SPEEK)膜,以及磺化聚醚醚酮与聚乙烯醇(PVA)、正硅酸乙酯(TEOS)、磷钨酸的复合膜.分别对膜的电导率、阻醇性能和吸水率进行了研究.随着SPEEK膜磺化度的增大,膜的电导率有所提高,然而甲醇渗透系数也增大,膜的机械强度明显降低.SPEEK膜的吸水率低于Nafion 115膜,而PVA膜的吸水率则过高.  相似文献   

16.
《分离科学与技术》2012,47(13):2913-2931
Abstract

In this study, acrylonitrile (AN) and hydroxyl ethyl methacrylate (HEMA) were grafted onto poly(vinyl alcohol) (PVA) using cerium (IV) ammonium nitrate as initiator at 30°C. The graft copolymer was characterized using the Fourier transform infrared spectroscopy (FTIR) and elemental analysis. The grafted PVA membranes (PVA‐g‐AN/HEMA) were prepared by a casting method, and used in the separation of acetic acid‐water mixtures by pervaporation. The effects of the membrane thickness, operating temperature, and feed composition on the permeation rate and separation factor for acetic acid‐water mixtures were studied. Depending on the membrane thickness, the temperature and feed composition PVA‐g‐AN/HEMA membranes gave separation factors 2.26–14.60 and permeation rates of 0.18–2.07 kg/m2h. It was also determined that grafted membranes gave lower permeation rates and greater separation factors than PVA membranes. Diffusion coefficients of acetic acid‐water mixtures were calculated from permeation rate values. The Arrhenius activation parameters were calculated for the 20 wt.% acetic acid content in the feed using the permeation rate and the diffusion data obtained at between 25–50°C.  相似文献   

17.
A series of poly(vinyl alcohol) (PVA)‐based single‐layer organic polymeric membranes were prepared via the crosslinking of PVA with different amounts of formaldehyde. Meanwhile, for comparison, both a three‐layer organic polymeric membrane and a hybrid composite membrane were also prepared by the layer‐upon‐layer method. Their thermal stability and tensile properties were investigated to examine the effect of crosslinking on the membrane performances. Thermogravimetric analysis and differential scanning calorimetry thermal analyses showed that the thermal degradation temperature of the single‐layer crosslinked membrane C reached up to 325°C. Tensile testing indicated that the three‐layer organic polymeric membrane E had excellent tensile strength among these single‐layer and three‐layer membranes. The swelling properties revealed that the swelling degree value of these membranes decreased with an increase in methanol concentration; this suggests that they were not easily swollen by the methanol solution, which is meaningful for the separation of organic mixtures. Field emission scanning electron microscopy images exhibited that the crosslinking of functional groups impacted their structures and confirmed that their mechanical properties were related to their structures. These findings suggest that the crosslinking of functional groups is an effective method for adjusting the tensile strength of PVA‐based organic polymeric membranes and related hybrid composite membranes. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

18.
In this study, acrylamide (AAm) was grafted onto poly(vinyl alcohol) (PVA) in solution with UV radiation, and membranes were prepared from the graft copolymer (PVA‐g‐AAm) for transdermal release of salicylic acid (SA) at in vitro conditions. Permeation studies were carried out using a Franz‐type diffusion cell. Release characteristics of SA through PVA and PVA‐g‐AAm membranes were studied using 2.0 mg/mL SA solutions. Effects of the presence of AAm in the copolymer, pH of donor and acceptor solution, and concentration of SA and temperature on the release of SA were investigated. Permeation of SA through the membranes was found to be pH‐dependent, and increase in pH generally increased the release percentage of SA, and the presence of AAm in the membrane positively affected the permeation. The effect of concentrations of SA on the permeation was also searched using saturated solution of SA, and permeated amount of SA was found to be less than in the case of unsaturated SA solution. Studies showed that the release of SA from PVA‐g‐AAm membranes was temperature‐sensitive and increase in temperature increased the permeation rate. 82.76% (w/w) SA was released at the end of 24 h at (39 ± 1)°C, and the overall activation energy for the permeation of SA through PVA‐g‐AAm membranes was found to be 19.65 kJ/mol. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

19.
Membrane hydrophilicity influences the transport of water through the membrane in osmotically driven separations such as forward osmosis. In this paper, we coated the polysulfone support layer of two types of commercially available reverse osmosis membranes (brackish water and seawater) with hydrophilic polyvinyl alcohol (PVA). The aim of this was to increase the support layer hydrophilicity and, correspondingly, the rate of water transport through the membrane. Previous work with polydopamine coatings of the polysulfone support of reverse osmosis membranes has yielded promising results. In this work, we explore more readily available materials. Specifically, we studied the effects of two different PVA crosslinking agents – maleic acid and glutaraldehyde – on the resultant membrane properties and osmotic performance. For seawater membranes we found that PVA crosslinked to a limited degree with maleic acid creates a significant improvement in water flux in RO and FO systems, as compared to membranes with PVA crosslinked by glutaraldehyde. However, brackish water membranes did not have comparably significant changes in membrane performance. We conclude that the smaller pores of the brackish water membrane become clogged, and this effect is magnified by the lack of fractional free volume available within PVA that is highly crosslinked with glutaraldehyde.  相似文献   

20.
Novel composite sulfonated poly(ether sulfone)(SPES)/phosphotungstic acid (PWA)/attapulgite (AT) membranes were investigated for direct methanol fuel cells (DMFCs). Physical–chemical properties of the composite membranes were characterized by FTIR, DSC, TGA, SEM‐EDX, water uptake, tensile test, proton conductivity, and methanol permeability. Compared with a pure SPES membrane, PWA, and AT doping in the membrane led to a higher thermal stability and glass transition temperature (Tg) as revealed by TGA and DSC. Tensile test indicated that lower AT content (3%) in the composite can significantly increase the tensile strength, while higher AT loading demonstrated a smaller contribution on strength. Proper PWA and AT loadings in the composite membranes can increase the proton conductivity and lower the methanol cross‐over. The proton conductivity of the SPES‐P‐A 10% composite membrane reached 60% of the Nafion 112 membrane conductivity at room temperature while the methanol permeability was only one‐fourth of that of Nafion 112 membrane. This excellent performances of SPES/PWA/AT composite membranes could indicate a potential feasibility as a promising electrolyte for DMFC. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号