首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
本文利用射频等离子体增强化学气相沉积(RFPECVD)工艺在不锈钢基底上制备了含氢非晶碳膜(a-C:H膜)。在沉积碳膜之前,首先在基底表面预先沉积了Ti/TiC、Ti/TiN和Ti/TiN/TiC等过渡层以提高膜基结合力。利用激光Raman光谱分析了过渡层对a-C:H膜生长过程及膜中sp^3含量的影响。实验结果表明,采用Ti/TiN/TiC过渡层时所制备的a-C:H膜中sp^3含量最多,同时膜基结合力最大。  相似文献   

2.
用自行设计的RF PCVD(射频辉光放电等离子体化学气相沉积 )设备沉积类金刚石膜 ,并对膜的力学、光学、化学性能进行了分析。表明用该设备制备的类金刚石膜具有显微硬度高、磨擦系数小、膜基结合力高、对红外有良好的增透性 ,并且耐磨耐蚀、化学稳定性好。  相似文献   

3.
通过用电化学法预先沉积一层碳膜的方法,利用热丝化学汽相沉积法使金刚石在光滑硅片上的成核密度达到107cm-2左右,与未镀碳膜相比提高了近3个数量级。文中还分析了可能的原因。  相似文献   

4.
常温生长类金刚石薄膜的实验研究   总被引:2,自引:0,他引:2  
蔺增  巴德纯  刘铁林  程翔 《真空》2004,41(4):84-87
利用射频等离子体增强化学气相沉积(RFPECVD)工艺在常温下实现在不锈钢、硅片、玻璃等基底上大面积沉积类金刚石(DLC)膜.薄膜表面光滑致密,与衬底的结合力较高.用Raman,FTIR,SEM,EDX研究了薄膜的形貌、结构与组分.用栓-盘摩擦磨损试验机测试了薄膜的摩擦系数.通过优化沉积参数,所沉积的DLC膜在与100Cr6钢球对磨时摩擦系数低于0.01.在摩擦过程中DLC膜的磨损机制借助SEM进行了研究.  相似文献   

5.
采用磁过滤阴极真空弧沉积法,在Cu基底表面上制备了以钛(Ti)和碳化碳(TiC)作为过滤层的类金刚石膜层。利用自制的场致发射特性测试设备,研究了类金刚石膜层的场致发射特性。利用拉曼光谱仪(Raman)和扫描电子显微镜(SEM)等分析方法对类金刚石膜的键合结构和微观形貌进行了表征。研究发现,利用磁过滤阴极真空弧沉积法可以在沉积温度100℃下制备膜基结合力较好的类金刚石膜。沉积速率为15 nm/min。类金刚石膜具有较好的场致发射特性,开启电压约为40 V/μm。Raman分析得到不同基底偏压下的类金刚石膜的I_D/I_G为1.19~1.57;SEM分析显示薄膜的微观结构上具有微米级突起结构。实验表明,应用磁过滤阴极真空弧方法可以制备出高sp~3含量、表面具有微米级突起的类金刚石膜,这种类金刚石膜具有有利于场致发射的特性。  相似文献   

6.
沈明荣  汪浩 《功能材料》1997,28(5):555-556
通过用电化学法预先沉积一层碳膜的方法,利用热丝化学汽相沉积法使金刚石顺光滑硅片上的成核密度达到10^7cm^-2左右,与未镀碳膜相比提高了近3个数量级。文中还分析了可能的原因。  相似文献   

7.
讨论用射频等离子体增强化学气相沉积(RFPECVD)工艺,在室温下实现在1Cr18Ni9Ti不锈钢基底上镀类金刚石(DLC)膜.为提高DLC膜的结合力,首先在不锈钢基底上沉积Ti/TiN/TiC功能梯度膜.借助所设计的界面过渡层,成功地在不锈钢基底上沉积了一定厚度的DLC膜.通过优化沉积参数,所沉积的DLC膜在与100Cr6钢球对磨时摩擦系数低于0.020.在摩擦过程中DLC膜的磨损机制借助SEM、Raman分析进行了研究.  相似文献   

8.
将磁控溅射物理气相沉积(MS-PVD)和电子回旋共振-微波等离子体增强化学气相沉积(ECR—PECVD)技术相结合,在铜基体上通过制备两种不同的过渡层,成功地沉积了类金刚石膜。拉曼光谱结果分析表明,所制备的碳膜都具有典型的类金刚石结构特征。通过原子力显微镜对薄膜的微观形貌进行分析,采用纳米压痕测量薄膜的硬度和模量。并对Ti/TiC过渡层和Si/SixNy过渡层上沉积的类金刚石薄膜进行了研究对比。  相似文献   

9.
在综述现有的测量薄膜(涂层)材料本征硬度方法及模型的基础上,采用超显微硬度仪对不同基体经不同工艺条件沉积的类金刚石碳昨合硬度进行了测量,并借助有限元模型得到的经验公式对测量数据进行拟合处理,得出了各种类金刚石碳膜的本征硬度。硬质合金基体上类金刚石膜本度为02GPa,硅基体上经不同工艺条件沉积的类金刚石碳膜本征硬度在20-30GPa范围。在对膜/基得合体系进行Meyer定律修正的基础上,首次提出了一  相似文献   

10.
弄清化学气相沉积金刚石膜的机理对优化工艺参数具有指导意义。在前期工作中,作者辨析了氢原子、甲基和乙炔在金刚石膜沉积中的作用。本文建立了两个微观指标,即甲基浓度和氢原子与乙炔浓度的比值,分别对应生长金刚石和刻蚀非金刚石碳。通过对G-H和G-H-O反应气氛的模拟,讨论了这两个指标与灯丝温度、气源组成和气压的关系,并构建了含氧气氛生长金刚石的G-H-O三元相图。对热丝法沉积金刚石膜的工艺参数的优化选择进行了机理分析与预测。为工业化生产金刚石膜提供了参考。  相似文献   

11.
SiOx-DLC (diamond-like coating) films as candidates for protection coating of polymers were prepared by using a pulse-biased inductively coupled plasma chemical vapor deposition system with acetylene, tetramethylsilane and oxygen gasses. Effects of the gas composition and O2 plasma pre-treatment on adhesion of the SiOx-DLC films were investigated. Adhesion strength of Si-DLC films (with 0% oxygen) was almost the same to that of undoped DLC films. By employing O2-plasma pre-treatment, adhesion strength of the Si-DLC films was considerably improved, while that of the undoped DLC films was not. The SiOx-DLC films with the carbon to oxygen (O/C) ratio of 0.15 showed adhesion strength as high as that of the Si-DLC films on the O2-plasma pre-treated substrate. However, further improvement of adhesion strength of the SiOx-DLC was not realized by employing the O2-plasma pre-treatment. On the other hand, the SiOx-DLC films showed favorable feature of high deposition rate and large optical band gap although higher O/C ratio (> 0.15) brought about poor adhesion strength of the films.  相似文献   

12.
Diamond-like carbon (DLC) thin films are extensively utilized in the semiconductor, electric and cutting machine industries owing to their high hardness, high elastic modulus, low friction coefficients and high chemical stability. DLC films are prepared by ion beam-assisted deposition (BAD), sputter deposition, plasma-enhanced chemical vapor deposition (PECVD), cathodic arc evaporation (CAE), and filter arc deposition (FAD). The major drawbacks of these methods are the degraded hardness associated with the low sp3/sp2 bonding ratio, the rough surface and poor adhesion caused by the presence of particles. In this study, a self-developed filter arc deposition (FAD) system was employed to prepare metal-containing DLC films with a low particle density. The relationships between the DLC film properties, such as film structure, surface morphology and mechanical behavior, with variation of substrate bias and target current, are examined. Experimental results demonstrate that FAD-DLC films have a lower ratio, suggesting that FAD-DLC films have a greater sp3 bonding than the CAE-DLC films. FAD-DLC films also exhibit a low friction coefficient of 0.14 and half of the number of surface particles as in the CAE-DLC films. Introducing a CrN interfacial layer between the substrate and the DLC films enables the magnetic field strength of the filter to be controlled to improve the adhesion and effectively eliminate the contaminating particles. Accordingly, the FAD system improves the tribological properties of the DLC films.  相似文献   

13.
Diamond-like carbon (DLC) films have been successfully deposited on Y-cut LiNbO3 substrates using the plasma enhanced CVD technique. A thin interlayer of SiC between the DLC films and the LiNbO3 is necessary to ensure a good adhesion of the DLC films to the LiNbO3 substrate. The physical properties and structural network of the DLC films have been investigated in detail. It is observed that the film hardness is increased with increasing the film thickness, as is the adhesion of the DLC films to the LiNbO3 substrates. The effect of accelerating surface acoustic wave by the DLC films has been confirmed.  相似文献   

14.
采用阳极层流离子源与非平衡磁控溅射结合的沉积方法在H13钢基体表面沉积出类金刚石膜(DLC),并对H13钢经不同表面预处理对后沉积的DLC膜的摩擦学性能进行了对比研究.结果表明:DLC膜结构致密,且DLC膜与梯度过渡层及基体三者之间结合牢固;H13钢经离子氮化后,梯度过渡层与氮化层间结合紧密,提高了膜与基体的承载能力;在保持相同摩擦速率的条件下,摩擦系数随着载荷的增加先增大后减小;H13钢离子渗氮处理后沉积的DLC膜其摩擦系数远小于未采用离子渗氮处理沉积的DLC薄膜.  相似文献   

15.
Diamond-like carbon (DLC) films are emerging to be ideal materials in a variety of semiconductor, display, and film media applications. As with any deposited film, adhesion of the film to the substrate is of critical importance. The main objective of this paper is to report on the development of a technique based on acoustic microscopy for the quantitative characterization of the interface strength of thin (submicrometer) films. Preliminary results from 0.5 μm DLC films are presented to establish the feasibility of the new technique. Theoretical models of wave propagation indicate the Rayleigh wave velocity (at 600 MHz) is sensitive to the interface condition and could potentially be used to characterize the same. Acoustic material signatures (AMS) of DLC films which had varying levels of adhesion to silicon coated titanium substrates were obtained at 600 MHz using an acoustic microscope. The Rayleigh velocity (extracted from the AMS) had a strong correlation with the adhesion strength measured destructively using a pull tester. A model-based methodology for prediction of the interface strength of thin films through acoustic microscopy is also addressed.  相似文献   

16.
杨巍  汪爱英  柯培玲  代伟  张栋 《材料导报》2011,(Z2):369-371
类金刚石碳(DLC)膜具有高硬度、低摩擦系数、强化学惰性及生物相容性好等优异性能,镁合金表面制备DLC膜可极大地改善基体的使用性能。综述了采用不同制备技术在镁基体表面获得的多种DLC膜系的抗磨损及耐腐蚀性能,并展望了DLC膜表面改性镁合金的医用前景,指出镁合金表面制备DLC膜是其表面改性技术中具有前景的一个研究方向。  相似文献   

17.
The diamond-like carbon (DLC) film was prepared on various metal substrates with a plasma-based ion implantation and deposition using superimposed RF and negative high-voltage pulses. The adhesion strength of DLC film was enhanced above the epoxy resin strength by implantation of carbon ions or mixed ions of carbon and silicon to the substrate surface before DLC deposition. In order to clarify the mechanism for improvement in adhesive strength, the microstructure of an interface between DLC film and substrate was examined in detail by transmission electron microscopy (TEM) observations in combination with EDS analysis. As a result, the enhancement in adhesion strength of DLC film by C ion implantation resulted from the formation of amorphous-like phase in the ion-implanted region of substrate, the production of carbon-component graded interface, the destruction of the oxide layer on the top surface of substrate, and the reduction of residual stress in DLC film by ion implantation during the deposition. The production of stress-free DLC film allowed us to demonstrate a supra-thick DLC film of more than 400 μm in thickness.  相似文献   

18.
Diamond-like carbon (DLC) films have proven quite advantageous in many tribological applications due to their low friction coefficient, their extreme hardness, and more recently their high adherence on different substrate materials. However, for many applications, DLC films as thick as 2 μm are required, which cause high residual stress. In order to overcome this problem, this study observed the behavior of different thicknesses of silicon interlayer between DLC films and Ti6Al4V substrates. The study also analyzed the relation of growth parameters to the mechanical properties of DLC films. Silicon and DLC films were grown by using a rf-PECVD at 13.56 MHz with silane and methane atmospheres, respectively. The contribution of an interlayer thickness to the adhesion between the DLC films and Ti6Al4V substrate was evaluated by using a micro-scratch technique. The hardness and friction coefficient were evaluated by using microindentation and lateral force microscopy (LFM), respectively. Raman scattering spectroscopy was used to characterize the film quality. A correlation was found between the intrinsic stress and adhesion of DLC film and the parameters of the silicon interlayer growth. The addition of a silicon interlayer successfully reduced intrinsic stress of the films, even as measured by using a perfilometry technique.  相似文献   

19.
Diamond-like carbon (DLC) films were prepared for a protective coating on nitinol substrate by hybrid ion beam deposition technique with an acetelene as a source of hydrocarbon ions. An amorphous silicon (a-Si) interlayer was deposited on the substrates to ensure better adhesion of the DLC films followed by Ar ion beam treatment. The film thickness increased with increase in ion gun anode voltage. The residual stresses in the DLC films decreased with increase in ion gun anode voltage and film thickness, while the stress values were independent of the radio frequency (RF) bias voltage. The adhesion of the DLC film was improved by surface treatment with argon ion beam for longer time and by increasing the thickness of a-Si interlayer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号