首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Klebsiella pneumoniae is a common cause of clinical mastitis in dairy cattle. Wood products are considered to be the main source of Klebsiella on dairy farms. Environmental hygiene and use of inorganic bedding materials such as sand are recommended to control Klebsiella mastitis. However, Klebsiella mastitis still occurs on well-managed dairy farms that use sand as bedding material. In a 5-mo study in a New York State dairy herd performed during the summer of 2005, all of 9 samples of unused sand bedding tested negative for Klebsiella, whereas 14 of 18 samples of used sand bedding contained Klebsiella at a median level of 104.6 cfu/g. We hypothesized that fecal shedding of Klebsiella by dairy cows contributes to the presence of Klebsiella in the environment. Using a cheap and simple method based on ampicillin-containing MacConkey agar for screening, and biochemical tests for confirmation of species identity, 595 fecal samples from healthy dairy cattle were screened for presence of Klebsiella. In a longitudinal study of 100 cows followed over 5 mo, more than 80% of fecal samples tested positive for K. pneumoniae. The average prevalence of K. pneumoniae-positive fecal samples was also above 80% in a cross-sectional study of 100 cows from 10 herds across New York and Massachusetts. Fecal shedding of K. pneumoniae by a large proportion of dairy cows may explain why Klebsiella mastitis occurs in herds that use inorganic bedding material or other bedding material that is free from Klebsiella upon introduction into the barn.  相似文献   

2.
Despite advances in controlling mastitis (inflammation of the mammary gland), udder infections caused by Klebsiella pneumoniae continue to affect dairy cattle. Mastitis caused by K. pneumoniae responds poorly to antibiotic treatment, and as a consequence, infections tend to be severe and long lasting. We sought to determine whether a nonrandom distribution of specific genotypes of K. pneumoniae was associated with mastitis from 6 dairy herds located in 4 different states. A total of 635 isolates were obtained and fingerprinted by repetitive DNA sequence PCR. Significant genetic diversity was observed in 4 of the 6 dairy herds analyzed, and a total of 49 genotypic variants were identified. Within a herd, Simpson's diversity indices were 91.0, 94.1, 91.7, 88.6, 53.3, and 64.3% for dairies A, B, C, D, E, and F, respectively. The association between matrices of genetic similarity and matrices of temporal distance was negative in all the dairies analyzed. Four dairies had a high incidence of K. pneumoniae mastitis during the winter. The majority of genotypes were unique to herds of origin, and only 5 genotypes were detected in more than 2 dairies. Genotype 1 (arbitrary designation) occurred most frequently across dairies and was found in 25.2% of all mastitis cases and among 22.8% of reinfected and culled cows in dairy A. Specific genotypes also tended to be associated with a specific bedding type and dairy location. Analysis of molecular variance showed that 18% of the genetic diversity was due to variation among herds within states, and 82% of the genetic diversity was accounted for by variation of genotypes within herds. The data support the idea that mastitis is caused by a diverse group of K. pneumoniae genotypes and thus has major implications for the diagnosis, prevention, and treatment of udder infections in dairy cows.  相似文献   

3.
This study was designed to explore the relationship between cow and udder cleanliness scores and the risk of isolation of Klebsiella spp. from lower hind legs and teat ends, respectively. The distribution of Klebsiella species was compared among isolates from teat ends, legs, and cases of clinical mastitis obtained from 2 dairy farms in New York State, with 850 and 1,000 cows, respectively. Farms were visited twice approximately 4 wk apart in August and September 2007 to obtain cleanliness scores and swabs from legs and teats. Isolates of Klebsiella clinical mastitis from each farm were collected from July through October 2007. Two studies were conducted. In the first study, whole-cow cleanliness of a purposive sample of 200 lactating cows was scored using a 4-point scale, and swabs were taken from their lower hind legs. In the second study, udder cleanliness of a separate convenience sample of 199 lactating cows was scored in the milking parlor, and swabs were taken from their teat ends before and after premilking udder preparation. Prevalence of Klebsiella spp. on legs and teat ends before udder preparation was 59 and 60%, respectively. Logistic regression was used to explore the association between isolation of Klebsiella spp. and cleanliness scores. Cow cleanliness scores and udder cleanliness scores were not associated with detection of Klebsiella on legs and on teats before udder preparation, respectively. After udder preparation, 43% of previously Klebsiella positive teat end samples remained positive, with significant differences between farms and months. Teats from dirty udders were significantly more likely to test positive for Klebsiella after udder preparation than teats from clean udders. The proportion of Klebsiella pneumoniae and Klebsiella oxytoca isolates was similar for isolates from teat end swabs and clinical mastitis cases, supporting the notion that the presence of Klebsiella on teat ends may lead to opportunistic intramammary infections. Udder cleanliness scores could be used as a management tool to monitor the risk of exposure to Klebsiella spp. on teat ends.  相似文献   

4.
Patterns and persistency of fecal shedding of Klebsiella spp. by healthy adult dairy cattle were explored with probabilistic, statistical, and molecular methods. Fecal shedding was monitored longitudinally in 92 animals in 1 herd for 5 mo. Shedding patterns followed a random binomial distribution, and associations with host factors were not detected. For 12 animals from 4 herds, strain-typing of multiple fecal Klebsiella isolates was performed by means of random-amplified polymorphic DNA typing. For 2 animals, additional typing was performed on isolates from samples collected on several consecutive days. A large variety of Klebsiella strains was detected within samples (on average, 3.1 strains per 4 isolates) and between samples (18 of 20 strains were detected only once in feces from cows that were sampled for 5 d consecutively). Results from each method suggest that fecal shedding of Klebsiella is associated with transient rather than persistent presence of the organism in the gastrointestinal tract.  相似文献   

5.
Klebsiella spp. are a common cause of mastitis, milk loss, and culling on dairy farms. Control of Klebsiella mastitis is largely based on prevention of exposure of the udder to the pathogen. To identify critical control points for mastitis prevention, potential Klebsiella sources and transmission cycles in the farm environment were investigated, including oro-fecal transmission, transmission via the indoor environment, and transmission via the outdoor environment. A total of 305 samples was collected from 3 dairy farms in upstate New York in the summer of 2007, and included soil, feed crops, feed, water, rumen content, feces, bedding, and manure from alleyways and holding pens. Klebsiella spp. were detected in 100% of rumen samples, 89% of water samples, and approximately 64% of soil, feces, bedding, alleyway, and holding pen samples. Detection of Klebsiella spp. in feed crops and feed was less common. Genotypic identification of species using rpoB sequence data showed that Klebsiella pneumoniae was the most common species in rumen content, feces, and alleyways, whereas Klebsiella oxytoca, Klebsiella variicola, and Raoultella planticola were the most frequent species among isolates from soil and feed crops. Random amplified polymorphic DNA-based strain typing showed heterogeneity of Klebsiella spp. in rumen content and feces, with a median of 4 strains per 5 isolates. Observational and bacteriological data support the existence of an oro-fecal transmission cycle, which is primarily maintained through direct contact with fecal contamination or through ingestion of contaminated drinking water. Fecal shedding of Klebsiella spp. contributes to pathogen loads in the environment, including bedding, alleyways, and holding pens. Hygiene of alleyways and holding pens is an important component of Klebsiella control on dairy farms.  相似文献   

6.
Gram-negative bacteria are responsible for almost one-half of the clinical cases of mastitis that occur annually. Of those gram-negative bacteria that induce mastitis, Klebsiella pneumoniae remains one of the most prevalent. Detection of infectious pathogens and the induction of a proinflammatory response are critical components of host innate immunity. The objective of the current study was to characterize several elements of the bovine innate immune response to intramammary infection with Klebsiella pneumoniae. The inflammatory cytokine response and changes in the levels of soluble CD14 (sCD14) and lipopolysaccharide (LPS)-binding protein (LBP), 2 proteins that contribute to host recognition of gram-negative bacteria, were studied. The contralateral quarters of 7 late-lactating Holstein cows were challenged with either saline or K. pneumoniae, and milk and blood samples were collected. Initial increases in the chemoattractants C5a and IL-8, as well as TNF-alpha, were evident in infected quarters within 16 h of challenge and were temporally coincident with increases in milk somatic cells. Augmented levels of TNF-alpha and IL-8 were observed in infected quarters until >48 h postchallenge, respectively. Elevated levels of IL-12, IFN-gamma, and the antiinflammatory cytokine, IL-10, which were first detected between 12 and 20 h postinfection, persisted in infected quarters throughout the study (>96 h). Initial increases in milk LBP and sCD14 were detected 16 and 20 h, respectively, after challenge. Together, these data demonstrate that intramammary infection with K. pneumoniae elicits a host response characterized by the induction of proinflammatory cytokines and elevation of accessory molecules involved in LPS recognition.  相似文献   

7.
Little research has focused on treatment of cows with subclinical mastitis during lactation. Ceftiofur is a new broad-spectrum, third-generation cephalosporin antibiotic for veterinary use that inhibits bacterial cell wall synthesis by interfering with enzymes essential for peptidoglycan synthesis. Ceftiofur should be effective against a wide range of contagious and environmental mastitis pathogens. Objectives of the present study were to evaluate the efficacy of ceftiofur for treatment of subclinical mastitis in lactating dairy cows, and to determine if extended therapy regimens enhanced efficacy of ceftiofur. Holstein and Jersey dairy cows (n = 88) from 3 dairy research herds were used. Cows were enrolled in the study based on milk somatic cell counts >400,000/mL and isolation of the same mastitis pathogen in 2 samples obtained 1 wk apart. Cows with one or more intramammary infections (IMI) were blocked by parity and DIM and allocated randomly to 1 of 3 different ceftiofur treatment regimens: 2-d (n = 49 IMI), 5-d (n = 41 IMI), and 8-d (n = 38 IMI) treatment regimens. For all groups, 125 mg of ceftiofur hydrochloride was administered via intramammary infusion. Eighteen cows with 38 IMI were included as an untreated negative control group. A bacteriological cure was defined as a treated infected mammary quarter that was bacteriologically negative for the presence of previously identified bacteria at 14 and 28 d after the last treatment. Efficacy of ceftiofur therapy against all subclinical IMI was 38.8, 53.7, and 65.8% for the 2-, 5-, and 8-d ceftiofur treatment regimens, respectively. Four of 38 (10.5%) IMI in control cows were cured spontaneously without treatment. All 3 ceftiofur treatment regimens were significantly better than the negative control, and the 8-d extended ceftiofur treatment regimen treatment group was significantly better than the standard 2-d treatment group. Pathogen groups had significantly different cure rates from one another. The cure rate for the 8-d extended ceftiofur treatment regimen was 70% for Corynebacterium bovis, 86% for coagulase-negative Staphylococcus species, 36% for Staph. aureus, 80% for Streptococcus dysgalactiae ssp. dysgalactiae, and 67% for Strep. uberis.  相似文献   

8.
Klebsiella pneumoniae is an opportunistic and environmental mastitis-causing pathogen, with potential for contagious transmission. Repetitive element sequence-based PCR was used to determine genetic diversity and explore potential transmission and reservoirs for mastitis caused by K. pneumoniae on 2 large Chinese dairy farms. A total of 1,354 samples was collected from the 2 dairy farms, including milk samples from cows with subclinical and clinical mastitis, bedding, feces, feed, teat skin, and milking liners. Environmental samples were collected from all barns and milking parlors and extramammary samples from randomly selected dairy cows on both farms. In total, 272 and 93 K. pneumoniae isolates were obtained from Farms A and B, respectively (with ~8K and 2K lactating cows, respectively). Isolation rates from clinical mastitis (CM), subclinical mastitis (SCM), and environmental or extramammary samples were 34, 23 and 37%, respectively for Farm A and 42, 3, and 34% for Farm B. The K. pneumoniae isolated from CM milk and extramammary or environmental sources had high genetic diversity (index of diversity >90%) on the 2 farms and from SCM on Farm A. However, on Farm B, 9 SCM isolates were classified as 2 genotypes, resulting in a relatively low index of diversity (Simpson's index of diversity = 0.39; 95% CI = 0.08–0.70). Genotypes of K. pneumoniae causing mastitis were commonly detected in feces, bedding, and milking liners (Farm A), or from teat skin, sawdust bedding, and feed (Farm B). Based on its high level of genetic diversity, we inferred K. pneumoniae was an opportunistic and environmental pathogen causing outbreaks of CM on these 2 large Chinese dairy farms. Nevertheless, that only a few genotypes caused SCM implied some strains had increased udder adaptability and a contagious nature or a common extramammary source. Finally, control of intramammary infections caused by K. pneumoniae on large Chinese dairy farms must consider farm-level predictors, as the 2 outbreaks had distinct potential environmental sources of infection.  相似文献   

9.
Concurrent data on antimicrobial use (AMU) and resistance are needed to contain antimicrobial resistance (AMR) in bacteria. The present study examined a herd-level association between AMU and AMR in Escherichia coli (n = 394) and Klebsiella species (n = 139) isolated from bovine intramammary infections and mastitis cases on 89 dairy farms in 4 regions of Canada [Alberta, Ontario, Québec, and Maritime Provinces (Prince Edward Island, Nova Scotia, and New Brunswick)]. Antimicrobial use data were collected using inventory of empty antimicrobial containers and antimicrobial drug use rate was calculated to quantify herd-level AMU. Minimum inhibitory concentrations (MIC) were determined using Sensititre National Antimicrobial Resistance Monitoring System (NARMS) gram-negative MIC plate (Trek Diagnostic Systems Inc., Cleveland, OH). Isolates were classified as susceptible, intermediate, or resistant. Intermediate and resistant category isolates were combined to form an AMR category, and multivariable logistic regression models were built to determine herd-level odds of AMR to tetracycline, ampicillin, cefoxitin, chloramphenicol, trimethoprim-sulfamethoxazole combination, sulfisoxazole, streptomycin and kanamycin in E. coli isolates. In the case of Klebsiella species isolates, logistic regression models were built for tetracycline and sulfisoxazole; however, no associations between AMU and AMR in Klebsiella species were observed. Ampicillin-intermediate or -resistant E. coli isolates were associated with herds that used intramammarily administered cloxacillin, penicillin-novobiocin combination, and cephapirin used for dry cow therapy [odds ratios (OR) = 26, 32, and 189, respectively], and intramammary ceftiofur administered for lactating cow therapy and systemically administered penicillin (OR = 162 and 2.7, respectively). Use of systemically administered penicillin on a dairy farm was associated with tetracycline and streptomycin-intermediate or -resistant E. coli isolates (OR = 5.6 and 2.8, respectively). Use of cephapirin and cloxacillin administered intramammarily for dry cow therapy was associated with increasing odds of having at least 1 kanamycin-intermediate or -resistant E. coli isolate at a farm (OR = 8.7 and 9.3, respectively). Use of systemically administered tetracycline and ceftiofur was associated with cefoxitin-intermediate or -resistant E. coli (OR = 0.13 and 0.16, respectively); however, the odds of a dairy herd having at least 1 cefoxitin-intermediate or -resistant E. coli isolate due to systemically administered ceftiofur increased with increasing average herd parity (OR = 3.1). Association between herd-level AMU and AMR in bovine mastitis coliforms was observed for certain antimicrobials. Differences in AMR between different barn types and geographical regions were not observed.  相似文献   

10.
A longitudinal study was carried out to detect intramammary infections caused by Klebsiella pneumoniae and to identify potential sources of this bacterial species in the environment of the cows. The study was performed in 6 well-managed Belgian dairy herds from May 2008 to May 2009. Monthly (n = 13), unused and used sawdust bedding samples as well as individual quarter milk and feces samples were collected from 10 randomly selected cohort cows in each herd. Cases of clinical mastitis of all lactating cows in the 6 herds were also sampled (n = 64). From the 3,518 collected samples, 153 K. pneumoniae isolates were obtained, of which 2 originated from milk (clinical mastitis cases). In feces (n = 728), used bedding (n = 73), and unused bedding (n = 73), respectively, 125 (17.2%), 20 (27.4%), and 6 (8.2%) isolates were found. The isolates were fingerprinted by means of pulsed field gel electrophoresis. In total, 109 different pulsotypes were differentiated, indicating a high degree of genetic diversity within the isolates. All isolates from unused bedding belonged to pulsotypes other than those from the other sources, suggesting that sources other than unused sawdust may introduce K. pneumoniae into the herd. Only 2 pulsotypes contained isolates originating from different sources. Pulsotype 10 was found in milk and used bedding and pulsotype 21 was found in feces and used bedding. The 2 milk isolates originated from 2 cows in the same herd but they belonged to a different pulsotype. The results indicate that K. pneumoniae can be prevalent in the environment without causing significant mastitis problems. Most cows were shedding K. pneumoniae in feces, substantiating findings under very different conditions (i.e., American dairy herds). Contamination of used bedding in the cubicles with K. pneumoniae from feces was confirmed, whereas unused bedding was not an important source of K. pneumoniae for the environment of the cows.  相似文献   

11.
Mastitis is an important disease for the dairy industry worldwide, causing economic losses and reducing milk quality and production. Staphylococcus aureus is a worldwide agent of this intramammary infection, which also causes foodborne diseases. The objective of this study was to determine the frequency of methicillin-susceptible Staphylococcus aureus (MSSA) isolates in milk of mastitis cows in Brazil and to analyze the genetic lineages and the content of antimicrobial resistance genes and virulence factors among these isolates. Fifty-six MSSA isolates were recovered from 1,484 milk samples (positive for the California mastitis test) of 518 cows from 11 different farms in Brazil (representing 51% of total Staph. aureus obtained), and they were further characterized. Methicillin-susceptible Staphylococcus aureus were isolated from 3.7% of California mastitis test-positive tested milk samples and from 6.2% of tested mastitic cows. Methicillin-susceptible Staphylococcus aureus isolates were characterized by spa typing, agr typing, and multilocus sequence typing, and resistance and virulence traits were investigated by PCR. Seven spa types were identified among MSSA (% of isolates): t127 (44.6), t605 (37.5), t002, t1784, t2066 (1.8), and 2 new ones: t10856 (10.7) and t10852 (1.8). Five distinct sequence types (ST) were detected (% of isolates): ST1 (46.4), ST126 (37.5), ST133 (10.7), ST5 (3.6), and a novel ST registered as ST2493 (1.8). Resistances were detected for streptomycin, chloramphenicol, and tetracycline. One strain contained the chloramphenicol resistance gene (fexA; included within transposon Tn558) and 3 strains contained the tetracycline resistance gene [tet(K)]. Methicillin-susceptible Staphylococcus aureus strains were susceptible to most of the antibiotics studied and lacked the virulence genes of Panton-Valentine leukocidin (lukF/S-PV), toxic shock syndrome toxin 1 (tst), exfoliative toxin A (eta), and exfoliative toxin B (etb), as well as the genes of the immune evasion cluster. Methicillin-susceptible Staphylococcus aureus isolates were detected in a relatively low proportion of cows with mastitis (6.2%) and recovered isolates presented high diversity of genetic lineages, with CC1 and CC126 the predominant clonal complexes, and CC133 also being detected. Larger epidemiological studies with molecular characterization of isolates are required to deepen the knowledge on the circulating genetic lineages among the cow population with mastitis.  相似文献   

12.
Group G streptococci in animals usually belong to the species Streptococcus canis and are most commonly found in dogs and cats. Occasionally, Strep. canis is detected in milk from dairy cows. An outbreak of Strep. canis mastitis in a dairy herd is described. Based on results from bacterial culture and ribotyping, a cat with chronic sinusitis was the most likely source of the outbreak. Subsequent cow-to-cow transmission of Strep. canis was facilitated by poor udder health management, including use of a common udder cloth and failure to use postmilking teat disinfection. Infected cows had macroscopically normal udders and milk, but significantly higher somatic cell counts than Strep. canis-negative herd mates. The outbreak was controlled through antibiotic treatment of lactating cows, early dry-off with dry cow therapy, culling of infected animals, and implementation of standard mastitis prevention measures. Cure was significantly more likely in dry-treated cows (87.5%) and cows treated during lactation (67%) than in untreated cows (9%). Whereas mastitis due to group G streptococci or Strep. canis in dairy cows is usually limited to sporadic cases of environmental (canine or feline) origin, this case study shows that crossing of the host species barrier by Strep. canis may result in an outbreak of mastitis if management conditions are conducive to contagious transmission. In such a situation, measures that are successful in control of Strep. agalactiae can also be used to control Strep. canis mastitis.  相似文献   

13.
Mycobacterium bovis is the primary agent of tuberculosis (TB) in cattle. The failure of Ireland and some other countries to reach TB-free status indicates a need to investigate complementary control strategies. One such approach would be genetic selection for increased resistance to TB. Previous research has shown that considerable genetic variation exists for susceptibility to the measures of M. bovis infection, confirmed M. bovis infection, and M. bovis-purified protein derivative (PPD) responsiveness. The objective of this study was to estimate the genetic and phenotypic correlations between economically important traits and these measures of M. bovis infection. A total of 20,148 and 17,178 cows with confirmed M. bovis infection and M. bovis-PPD responsiveness records, respectively, were available for inclusion in the analysis. First- to third-parity milk, fat, and protein yields, somatic cell count, calving interval, and survival, as well as first-parity body condition score records, were available on cows that calved between 1985 and 2007. Bivariate linear-linear and threshold-linear sire mixed models were used to estimate (co)variance components. The genetic correlations between economically important traits and the measures of M. bovis infection estimated from the linear-linear and threshold-linear sire models were similar. The genetic correlations between susceptibility to confirmed M. bovis infection and economically important traits investigated in this study were all close to zero. Mycobacterium bovis-PPD responsiveness was positively genetically correlated with fat production (0.39) and body condition score (0.36), and negatively correlated with somatic cell score (−0.34) and survival (−0.62). Hence, selection for increased survival may indirectly reduce susceptibility to M. bovis infection, whereas selection for reduced somatic cell count and increased fat production and body condition score may increase susceptibility to M. bovis infection.  相似文献   

14.
Nocardia spp. are an uncommon cause of mastitis, and outbreaks have typically been reported in dairy farms with poor hygienic and management conditions. The outbreak described herein involved a dairy farm with 43 lactating cows that, after a long period with low bulk milk somatic cell counts (<180,000 cells/mL), experienced an increasing incidence of clinical mastitis with bulk milk somatic cell counts greater than 300,000 cells/mL. Fifteen mastitic quarters milk samples from 9 dairy cows were found to be infected by a member of the genus Nocardia, as identified on the basis of selected phenotypic and chemotaxonomic characteristics. The isolates were confirmed as Nocardia neocaledoniensis by 16S rDNA gene sequencing. Average quarter milk somatic cell count for infected udders was 863,057 cells/mL, significantly greater than the average value in noninfected quarters (189,710 cells/mL).  相似文献   

15.
Salmonella is an animal and human pathogen of worldwide concern. Surveillance programs indicate that the incidence of Salmonella serovars fluctuates over time. While bacteriophages are likely to play a role in driving microbial diversity, our understanding of the ecology and diversity of Salmonella phages is limited. Here we report the isolation of Salmonella phages from manure samples from 13 dairy farms with a history of Salmonella presence. Salmonella phages were isolated from 10 of the 13 farms; overall 108 phage isolates were obtained on serovar Newport, Typhimurium, Dublin, Kentucky, Anatum, Mbandaka, and Cerro hosts. Host range characterization found that 51% of phage isolates had a narrow host range, while 49% showed a broad host range. The phage isolates represented 65 lysis profiles; genome size profiling of 94 phage isolates allowed for classification of phage isolates into 11 groups with subsequent restriction fragment length polymorphism analysis showing considerable variation within a given group. Our data not only show an abundance of diverse Salmonella phage isolates in dairy farms, but also show that phage isolates that lyse the most common serovars causing salmonellosis in cattle are frequently obtained, suggesting that phages may play an important role in the ecology of Salmonella on dairy farms.  相似文献   

16.
The objectives of this study were to determine the occurrence and diversity of Staphylococcus spp. in milk from healthy cows and cows with subclinical mastitis in Brazil and to examine the profile of enterotoxin genes and some enterotoxins produced by Staphylococcus spp. A total of 280 individual mammary quarter milk samples from 70 healthy cows and 292 samples from 73 cows with subclinical mastitis were collected from 11 farms in the state of São Paulo, Brazil. Staphylococcus spp. were recovered from 63 (22.5%) samples from healthy cows and from 80 samples (27.4%) from cows with mastitis. The presence of Staphylococcus aureus was significantly different between these 2 groups and was more prevalent in the cows with mastitis. The presence of Staphylococcus saprophyticus was also significantly different between these 2 groups, but this organism was more prevalent in healthy cows. No statistically significant differences were observed in the numbers of other staphylococci in milk samples from the 2 groups. The sea gene was the most prevalent enterotoxin gene in both groups. Eight of 15 (53.3%) Staph. aureus carried this gene and all produced the SEA toxin. In the coagulase-negative staphylococci (CNS) group, 61 of 128 (47.5%) had the same gene and just 1 (1.6%) Staphylococcus epidermidis strain produced the enterotoxin in vitro. Because CNS were isolated from both groups of cows and most CNS contained enterotoxin genes but did not produce toxins, the role of CNS in mastitis should be carefully defined.  相似文献   

17.
Phytase, an enzyme that catalyzes the hydrolysis of phytate, was purified from Klebsiella pneumoniae 9-3B. The isolate was preferentially selected in a medium which contains phytate as a sole carbon and phosphate source. Phytic acid was utilized for growth and consequently stimulated phytase production. Phytase production was detected throughout growth and the highest phytase production was observed at the onset of stationary phase. The purification scheme including ion exchange chromatography and gel filtration resulted in a 240 and 2077 fold purification of the enzyme with 2% and 15% recovery of the total activity for liberation of inorganic phosphate and inositol, respectively. The purified phytase was a monomeric protein with an estimated molecular weight of 45kDa based on size exclusion chromatography and SDS-PAGE analyses. The phytase has an optimum pH of 4.0 and optimum temperature of 50°C. The phytase activity was slightly stimulated by Ca(2+) and EDTA and inhibited by Zn(2+) and Fe(2+). The phytase exhibited broad substrate specificity and the K(m) value for phytate was 0.04mM. The enzyme completely hydrolyzed myo-inositol hexakisphosphate (phytate) to myo-inositol and inorganic phosphate. The properties of the enzyme prove that it is a good candidate for the hydrolysis of phytate for industrial applications.  相似文献   

18.
The objective of this study was to evaluate a conventional scheme for identifying Streptococcus uberis strains isolated from bovine mastitis. Seventy-five gram-positive, catalase-negative cocci were collected from cows with mastitis from 19 dairy herds located in the east-central region of Argentina. Five American Type Culture Collection strains and bovine isolates were identified by the API 20 Strep system and by restriction fragment length polymorphism analysis of 16S rDNA. A conventional scheme based on 11 biochemical tests was selected for identification of Strep. uberis strains: the Christie-Atkins-Munch-Petersen reaction; hydrolysis of Arg, esculin, and sodium hippurate; growth in inulin, mannitol, raffinose, salicin, and sorbitol; and growth at 45°C and in 6.5% NaCl. Reference strains and 25 bovine isolates were classified accurately to the species level by the conventional scheme in a blind assay. Each reference strain and each bovine isolate were identified as belonging to the same species following these 3 methods. The remaining 50 isolates identified as Strep. uberis by the API 20 Strep system and 16S rDNA RFLP were assayed by the conventional scheme. This scheme correctly identified 47 (94%) of 50 isolates as Strep. uberis by comparing their biochemical profile with that of the reference strain. Three (6%) of the 50 isolates were classified as Strep. uberis by the API 20 Strep system and by 16S rDNA RFLP and were identified as Enterococcus faecalis by the conventional scheme. Thirty percent of the Strep. uberis strains showed biochemical profiles identical to the Strep. uberis American Type Culture Collection 27958 strain. Seventy percent of the Strep. uberis strains demonstrated variability compared with the reference strain, resulting in 19 different biochemical profiles. The conventional scheme proposed in this study resulted in a relatively low number of misidentifications and could biochemically identify not only typical, but also atypical Strep. uberis strains. This conventional scheme can be considered an adequate method for identifying Strep. uberis strains isolated from bovine mastitis because of its affordable cost in developing countries, and it may contribute to determining the frequency of isolation of Strep. uberis strains in Argentinean dairy herds.  相似文献   

19.
Streptococcus uberis is an important cause of mastitis in dairy cows throughout the world, particularly during the dry period, the period around calving, and during early lactation. Strategies for controlling Strep. uberis mastitis are poorly defined and are currently inadequate. Objectives of the present study were to evaluate efficacy of ceftiofur, a new broad-spectrum cephalosporin antibiotic, for treatment of experimentally induced Strep. uberis intramammary infections (IMI) in lactating dairy cows during early lactation and to determine whether extended therapy regimens enhanced efficacy of ceftiofur. Efficacy of extended ceftiofur intramammary therapy regimens was investigated in 37 mammary quarters of 23 dairy cows that developed clinical mastitis following experimental infection with Strep. uberis during early lactation. Cows that developed clinical mastitis during the challenge period were allocated randomly to 3 groups representing 3 different ceftiofur treatment regimens: 2-d (n = 7 mammary quarters), 5-d (n = 16 mammary quarters), and 8-d (n = 14 mammary quarters) treatment regimens. For all groups, 125 mg of ceftiofur hydrochloride was administered via intramammary infusion. A bacteriological cure was defined as an experimentally infected quarter that was treated and was bacteriologically negative for the presence of Strep. uberis at 7, 14, 21, and 28 d posttreatment. Percentage of Strep. uberis IMI eliminated was 43, 88, and 100% for the 2-, 5-, and 8-d ceftiofur treatment regimens, respectively. Both the 5- and 8-d ceftiofur extended therapy treatment regimens had significantly higher bacterial cure rates than the standard 2-d ceftiofur treatment regimen. The bacterial cure rate of the 8-d ceftiofur extended therapy group was marginally better (P = 0.052) than the 5-d ceftiofur extended therapy group. Results of this study indicate that ceftiofur therapy was effective for eliminating Strep. uberis experimental IMI, and 5- and 8-d extended ceftiofur therapy regimens were more effective than the standard 2-d treatment.  相似文献   

20.
An experiment was conducted in vitro to determine whether the addition of saponin-containing Yucca schidigera or Quillaja saponaria reduces methane production without impairing ruminal fermentation or fiber digestion. A slightly lower dose of saponin was then fed to lactating dairy cows to evaluate effects on ruminal fermentation, methane production, total-tract nutrient digestibility, and milk production and composition. A 24-h batch culture in vitro incubation was conducted in a completely randomized design with a control (no additive, CON) and 3 doses of either saponin source [15, 30, and 45 g/kg of substrate dry matter (DM)] using buffered ruminal fluid from 3 dairy cows. The in vivo study was conducted as a crossover design with 2 groups of cows, 3 treatments, and three 28-d periods. Six ruminally cannulated cows were used in group 1 and 6 intact cows in group 2 (627 ± 55 kg of body weight and 155 ± 28 d in milk). The treatments were 1) early lactation total mixed ration, no additive (control; CON); 2) CON diet supplemented with whole-plant Y. schidigera powder at 10 g/kg of DM (YS); and 3) CON diet supplemented with whole-plant Q. saponaria powder at 10 g/kg of DM (QS). Methane production was measured in environmental chambers and with the sulfur hexafluoride (SF6) tracer technique. In vitro, increasing levels of both saponin sources decreased methane concentration in the headspace and increased the proportion of propionate in the buffered rumen fluid. Concentration of ammonia-N, acetate proportion, and the acetate:propionate ratio in the buffered rumen fluid as well as 24-h digestible neutral detergent fiber were reduced compared with the CON treatment. Medium and high saponin levels decreased DM digestibility compared with the CON treatment. A lower feeding rate of both saponin sources (10 g/kg of DM) was used in vivo in an attempt to avoid potentially negative effects of higher saponin levels on feed digestibility. Feeding saponin did not affect milk production, total-tract nutrient digestibility, rumen fermentation, or methane production. However, DM intake was greater for cows fed YS and QS than for CON cows, with a tendency for greater DM intake for cows fed YS compared with those fed QS. Consequently, efficiency of milk production (kg of milk/kg of DM intake) was lower for cows fed saponin compared with controls. The results show that although saponin from Y. schidigera and Q. saponaria lowered methane production in vitro, the reduction was largely due to reduced ruminal fermentation and feed digestion. Feeding a lower dose of saponin to lactating dairy cows avoided potentially negative effects on ruminal fermentation and feed digestion, but methane production was not reduced. Lower efficiency of milk production of cows fed saponin, and potential reductions in feed digestion at high supplementation rates may make saponin supplements an unattractive option for lowering methane production in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号