首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The efficacy of conjugated linoleic acid (CLA) supplements containing trans-10, cis-12 for reducing milk fat synthesis has been well documented in dairy cows, but studies with other ruminant species are less convincing, and there have been no investigations of this in sheep. Therefore, the current study was designed to determine whether trans-10, cis-12 CLA would inhibit milk fat synthesis in sheep. Twenty multiparous ewes in early lactation were paired and randomly allocated to 2 treatments: grass hay plus concentrate either unsupplemented (control) or supplemented with lipid-encapsulated CLA to provide 2.4 g/d of trans-10, cis-12 CLA. The CLA dose was based on published responses of dairy cows extrapolated to ewes on a metabolic body weight basis. The experimental design was a 2-period crossover with 10-d treatment periods separated by a 10-d interval. Compared with the control, CLA supplementation reduced milk fat content from 6.4 to 4.9% and reduced fat yield from 95 to 80 g/d. The CLA treatment also increased milk yield from 1,471 to 1,611 g/d and increased protein yield from 68 to 73 g/d. Milk protein content and DMI were unaffected by treatment. The reduction in milk fat yield was due to decreases in both de novo fatty acid synthesis and uptake of preformed fatty acids. Milk fat content of trans-10, cis-12 CLA was < 0.01 and 0.12 g/100 g of fatty acids for the control and CLA treatments, respectively. The transfer efficiency of trans-10, cis-12 CLA from the dietary supplement into milk fat was 3.8%. Results of the present study demonstrate that a CLA supplement containing trans-10, cis-12 CLA reduces milk fat synthesis in lactating sheep in a manner similar to dairy cows when fed at an equivalent dose (metabolic body weight basis). Furthermore, the nutrients spared by the reduction in milk fat coincided with an increase in milk and milk protein yield.  相似文献   

2.
Dietary supplements of conjugated linoleic acid (CLA) containing trans-10, cis-12 CLA reduce milk fat synthesis in lactating goats. This study investigated effects of milk fat depression induced by dietary CLA supplements on the properties of semi-hard goat cheese. Thirty Alpine does were randomly assigned to 1 of 3 groups and fed diets with lipid-encapsulated CLA that provided trans-10, cis-12 CLA at 0 (control), 3 (CLA-1), and 6 g/d (CLA-2). The experiment was a 3 × 3 Latin square design. Periods were 2 wk in length, each separated by 2-wk periods without CLA supplements. Bulk milk was collected on d 3 and 13 of each of 3 periods for cheese manufacture. The largest decrease (23.2%) in milk fat content, induced by the high dosage (6 g/d per doe) of trans-10, cis-12 CLA supplementation at d 13 of treatment, resulted in decreases of cheese yield and moisture of 10.2 and 10.0%, respectively. Although CLA supplementation increased the hardness, springiness, and chewiness, and decreased the cohesiveness and adhesiveness of cheeses, no obvious defects were detected and no significant differences were found in sensory scores among cheeses. In conclusion, milk fat depression induced by a dietary CLA supplement containing trans-10, cis-12 CLA resulted in changes of fat-to-protein ratio in cheese milk and consequently affected properties of semi-hard goat cheese.  相似文献   

3.
The objective of this study was to assess the effect of dietary supplementation of cows on pasture with sunflower oil for conjugated linoleic acid (cis-9, trans-11 CLA) enrichment of milk, for the production of CLA-enriched cheese. A group of 40 autumn-calving dairy cows were assigned to either a control group (indoor feeding on grass silage ad libitum and 6 kg/d of a typical indoor concentrate) or an experimental group (on pasture, being fed 6 kg of a supplement containing 100 g/kg of sunflower oil per d). These diets were fed for 16 d, during which time milk was collected for pilot-scale hard cheese manufacture. The pasture-based diet with sunflower oil resulted in a significant effect on the milk fatty acid CLA content. The concentration of cis-9, trans-11 CLA in the milk produced from cows on this diet increased to 2.22 g/100 g of fatty acid methyl esters (FAME) after 14 d, compared with 0.46 g/100 g of FAME in milk produced on the control indoor diet. The content of cis-9, trans-11 CLA in the cheese manufactured from the indoor control milk was 0.78 g/100 g of FAME and that from the pasture-based sunflower oil milk was 1.93 g/100 g of FAME. The cheese was assessed during the ripening period and CLA concentrations were stable throughout the 6 mo of ripening. Other cheese variables (microbiology, composition, flavor, free AA) were monitored during the ripening period, and the cheese with the elevated CLA concentrations compared favorably with the control cheese. Thus, a pasture-based diet supplemented with an oil source rich in linoleic acid resulted in an enhanced CLA content of bovine milk fat, compared with an indoor grass silage-based diet.  相似文献   

4.
Trans-10,cis-12 conjugated linoleic acid (CLA) inhibits milk fat synthesis in dairy ewes, but the effects under varying dietary metabolizable protein (MP) levels when energy-limited diets are fed have not been examined. The objectives of the study were to evaluate the response of lactating dairy ewes to CLA supplementation when fed diets limited in metabolizable energy (ME) and with either a low or high MP content. Twelve multiparous ewes in early lactation were randomly allocated to 1 of 4 dietary treatments: a high MP (110% of daily MP requirement) or low MP (93% of daily MP requirement) diet unsupplemented or supplemented with a lipid-encapsulated CLA to provide 2.4 g/d of trans-10,cis-12 CLA, in each of 4 periods of 25 d each in a 4×4 Latin square design. All diets were restricted to supply each ewe with 4.6 Mcal of ME/d (equivalent to 75% of ME requirement). Supplementation with CLA decreased milk fat percentage and yield by 33% and 24%, respectively, and increased milk, milk protein, and lactose yields by 16, 13, and 17%, respectively. Feeding the high MP diet increased the yields of milk, fat, protein, and lactose by 18, 15, 19, and 16%, respectively. Milk fat content of trans-10,cis-12 CLA (g/100g) was 0.09 and <0.01 for the CLA-supplemented and unsupplemented ewes, respectively. Ewes supplemented with CLA had a reduced yield (mmol/d) of fatty acids of C16, although the effect was greatest for C16. Plasma urea concentrations were lowest in ewes supplemented with CLA compared with those unsupplemented (6.5 vs. 7.4 mmol/L, respectively) and receiving low compared with high MP diets (5.6 vs. 8.3 mmol/L, respectively). In conclusion, dairy ewes fed energy-limited diets and supplemented with CLA repartitioned nutrients to increase yields of milk, protein, and lactose, with the response to CLA supplementation and additional MP intake being additive.  相似文献   

5.
Supplementing a high dose of dietary conjugated linoleic acid (CLA) inhibits milk fat synthesis in dairy cows immediately postpartum. During negative net energy balance (EBAL), it appears that moderate CLA-induced milk fat depression causes a positive response in milk yield; however, as milk fat depression becomes more severe, the milk yield response diminishes. Multiparous Holstein cows (n = 31) were randomly assigned to 1 of 3 treatments beginning 9 ± 6 d before expected calving and ceased at 40 d in milk (DIM): 1) 578 g/d of a rumen-inert (RI) palm fatty acid distillate (control), 2) 600 g/d of RI-CLA for the entire trial period (CLA-1), and 3) 600 g/d of RI-CLA until 10 DIM followed by 200 g/d for the remainder of the trial (CLA-2). Each dose provided equal amounts of fatty acids by replacing and balancing each treatment with a RI palm fatty acid distillate. Doses provided a total of 522 g of fatty acids/d and 0, 174, or 58 (depending upon DIM) g of CLA (mixed isomers)/d. To improve palatability, doses were mixed with 600 g/d of dried molasses; one-half of the supplement was fed at 0800 h, and the remainder at 1900 h. Individual milk yield, dry matter intake, and body weight were recorded daily and milk composition determined every other day. There was no overall CLA effect on either the content or yield of milk protein or lactose. Both CLA treatments decreased overall milk fat content (26.0 and 18.3%) and yield (22.5 and 17.3%) with CLA-induced milk fat depression becoming significant by d 8. The CLA-induced milk fat depression increased in magnitude with progressing DIM until reaching a plateau on d 18 for CLA-1 (43%) and on d 14 for CLA-2 (33%), although neither milk fat trans-10, cis-12 CLA content (1.8 mg/g) nor its transfer efficiency (6.3%) changed over time. Treatments had no effect on overall dry matter intake or milk yield, but there was a treatment × time interaction for milk production, as cows fed either CLA treatment had increased milk yield after the second week of lactation. Cows fed either CLA treatment had a significant improvement in overall EBAL (−5.1 vs.-1.8 Mcal/d), a decrease in nonesterified fatty acid levels (12%), and an increase in glucose levels (11%). A dietary supplement containing trans-10, cis-12 CLA markedly improves EBAL and bioenergetic variables and increases milk yield in the total mixed ration-fed transitioning dairy cow.  相似文献   

6.
This study was conducted to examine the effects of dietary supplementation with vegetable oils on performance of high-yielding lactating cows and conjugated linoleic acid (CLA) content in milk fat. Twelve lactating Holstein cows in early lactation (30 to 45 d postpartum) were used in a triple 4 × 4 Latin square design. In each period, the cows in each group were fed the same basal diet and received one of the following treatments: 1) control (without oil), 2) 500 g of cottonseed oil, 3) 500 g of soybean oil, and 4) 500 g of corn oil. Each experimental period lasted for 3 wk, with the first 2 wk used for adaptation to the diet. Supplementation with vegetable oils tended to increase milk yield, with the highest milk yield in the cottonseed oil group (35.0 kg/d), compared with the control (34.4 kg/d). Milk fat percentage was decreased, but there were few effects on percentage and yield of milk protein as well as milk fat yield. The cows fed added soybean oil produced milk with the highest content of trans-11 C18:1 (23.8 mg/g of fat), which was twice that of the control (12.6 mg/g of fat). Content of cis-9, trans-11 CLA in milk fat increased from 3.5 mg/g in the control to 6.0, 7.1, and 10.3 mg/g for the cows fed oils from cottonseed, corn, and soybean, respectively. A significant linear relationship existed between trans-11 C18:1 and cis-9, trans-11 CLA. Supplementation with oils doubled the content of total fatty acids in blood plasma, with little difference between different vegetable oil sources. Octadecenoic acid content was significantly higher in blood plasma of animals fed added oils from cottonseed and soybean than those fed with corn oil and control. The plasma trans-11 C18:1 content was significantly higher in the oil-added animals than in control. Supplementation of vegetable oils tended to improve milk production of lactating cows, and the CLA content in milk fat was significantly increased. Soybean oil seemed to be the optimal source to increase CLA production.  相似文献   

7.
The objective of this study was to determine the long-term effect on milk conjugated linoleic acid (cis-9, trans-11 CLA) of adding fish oil (FO) and sunflower oil (SFO) to the diets of partially grazing dairy cows. Fourteen Holstein cows were divided into 2 groups (7 cows/treatment) and fed either a control or oil-supplemented diet for 8 wk while partially grazing pasture. Cows in group 1 were fed a grain mix diet (8.0 kg/d, DM basis) containing 400 g of saturated animal fat (control). Cows in the second group were fed the same grain mix diet except the saturated animal fat was replaced with 100 g of FO and 300 g of SFO. Cows were milked twice a day and milk samples were collected weekly throughout the trial. Both groups grazed together on alfalfa-based pasture ad libitum and were fed their treatment diets after the morning and afternoon milking. Milk production (30.0 and 31.2 kg/d), milk fat percentages (3.64 and 3.50), milk fat yield (1.08 and 1.09 kg/d), milk protein percentages (2.97 and 2.88), and milk protein yield (0.99 and 0.91 kg/d) for diets 1 and 2, respectively, were not affected by the treatment diets. The concentrations of cis-9, trans-11 CLA (1.64 vs. 0.84 g/100 g of fatty acids) and vaccenic acid (5.11 vs. 2.20 g/100 g of fatty acids) in milk fat were higher for cows fed the oil-supplemented diet over the 8 wk of oil supplementation. The concentration of cis-9, trans-11 CLA in milk fat reached a maximum (1.0 and 1.64 g/100 g of fatty acids for diets 1 and 2, respectively) in wk 1 for both diets and remained relatively constant thereafter. The concentration of vaccenic acid in milk fat followed the same temporal pattern as cis-9, trans-11 CLA. In conclusion, supplementing the diet of partially grazing cows with FO and SFO increased the milk cis-9, trans-11 CLA content, and that increase remained relatively constant after 1 wk of oil supplementation.  相似文献   

8.
Conjugated linoleic acid (CLA) reduces milk fat synthesis in grazing dairy cows and may improve calculated net energy balance (EBAL). Study objectives were to determine whether CLA-induced milk fat depression could be utilized during times of feed restriction to improve bioenergetic and milk production parameters. Twelve multiparous rumen-fistulated Holstein cows (204 ± 7 d in milk) were offered ad libitum (AL) or restricted (R) pasture and abomasally infused twice daily with 0 (control) or 50 g/d of CLA (CLA; mixed isomers) in a 2-period crossover design. Treatment periods lasted 10 d and were separated by a 10-d washout period. Milk and plasma samples were averaged from d 9 and 10, and EBAL was calculated from d 6 to 10 of the infusion period. Pasture restriction reduced the yield of milk (3.9 kg/d) and milk components. The CLA treatment reduced milk fat yield by 44 and 46% in AL and R, respectively. There was no effect of CLA on milk yield or milk lactose content or yield in either feeding regimen; however, CLA increased the milk protein content and yield by 7 and 6% and by 5 and 8%, in AL and R, respectively. The CLA-induced changes to milk fat and protein doubled the protein:fat ratio in both AL and R. Calculated EBAL improved following the CLA infusion (−0.44 vs. 2.68 and 0.38 vs. 3.29 Mcal/d for AL and R, respectively); however, CLA did not alter plasma bioenergetic markers. Data indicate that during short periods of nutrient limitation, supplemental CLA may be an alternative management tool to enhance protein synthesis and improve the milk protein:fat ratio and calculated EBAL in cows grazing pasture. Further studies are required to determine whether CLA is effective at improving bioenergetic and production parameters during more severe or longer term nutrient restriction.  相似文献   

9.
The majority of dairy sheep in the world are fed pasture and supplemental grain during lactation; however, no trials have reported the effects of supplementation of dairy ewes grazing improved pastures in North America. In trial 1, 56 three-year-old grazing dairy ewes in early [21 ± 10 d in milk (DIM)] or late (136 ± 9 DIM) lactation were fed 0 or 0.82 kg of dry matter/d per ewe of supplement (16.5% crude protein mixture of corn and a soybean meal-based high-protein pellet) in a 2 × 2 factorial arrangement of treatments. There were no significant interactions between stage of lactation and supplementation treatments. Average test-day milk production was higher in early-lactation ewes than in late-lactation ewes (1.74 vs. 1.21 kg/d, respectively). Although test-day milk protein percentage was higher in late-lactation ewes than in early-lactation ewes (5.02 vs. 4.86%, respectively), there was no difference in milk fat percentage between stages of lactation. Supplemented ewes had higher milk production (1.59 vs. 1.36 kg/d, respectively), lower milk fat percentage (5.75 vs. 6.00%, respectively), and lower milk protein percentage (4.84 vs. 5.04%, respectively) than unsupplemented ewes. Milk urea N levels were similar between the 2 stages of lactation and between the 2 supplementation treatments and were above recommended levels for dairy sheep, indicating an excess intake or inefficient utilization of protein for both supplementation treatments. In trial 2, 96 two-, three-, and four-year-old grazing dairy ewes in midlactation (112 ± 21 DIM) were randomly assigned to 4 treatments of 0, 0.41, 0.82, or 1.24 kg of dry matter/d per ewe of whole corn. Average test-day milk production increased linearly and milk fat percentage decreased quadratically with increasing amounts of corn supplementation. Milk protein yield increased linearly, and milk urea N levels decreased quadratically with increasing amounts of corn supplementation, suggesting an improvement in the utilization of pasture protein with increasing dietary energy intake.  相似文献   

10.
The effect of conjugated linoleic acid (CLA) supplements containing trans-10, cis-12 for reducing milk fat synthesis has been well described in dairy cows and sheep. Studies on lactating goats, however, remain inconclusive. Therefore, the current study investigated the efficacy of a lipid-encapsulated trans-10, cis-12 CLA supplement (LE-CLA) on milk production and milk fatty acid profile in dairy goats. Thirty multiparous Alpine lactating goats in late lactation were used in a 3 × 3 Latin square design (14-d treatment periods separated by 14-d intervals). Does were fed a total mixed ration of Bermuda grass hay, dehydrated alfalfa pellets, and concentrate. Does were randomly allocated to 3 treatments: A) unsupplemented (control), B) supplemented with 30 g/d of LE-CLA (low dose; CLA-1), and C) supplemented with 60 g/d of LE-CLA (high dose; CLA-2). Milk yield, dry matter intake, and milk protein content and yield were unaffected by treatment. Compared with the control, milk fat yield was reduced 8% by the CLA-1 treatment and 21% by the CLA-2 treatment, with milk fat content reduced 5 and 18% by the CLA-1 and CLA-2 treatments, respectively. The reduction in milk fat yield was due to decreases in both de novo fatty acid synthesis and uptake of preformed fatty acids. Milk fat content of trans-10, cis-12 CLA was 0.03, 0.09, and 0.19 g/100 g of fatty acids for the control, CLA-1, and CLA-2 treatments, respectively. The transfer efficiency of trans-10, cis-12 CLA from the 2 levels of CLA supplement into milk fat was not different between treatments and averaged 1.85%. In conclusion, trans-10, cis-12 CLA reduced milk fat synthesis in lactating dairy goats in a manner similar to that observed for lactating dairy cows and dairy sheep. Dose-response comparisons, however, suggest that the degree of reduction in milk fat synthesis is less in dairy goats compared with dairy cows and dairy sheep.  相似文献   

11.
The objective of this trial was to study the interaction between the supplementation of lipid-encapsulated conjugated linoleic acid (CLA; 4.5 g of cis-9,trans-11 C18:2 and 4.5 g of trans-10,cis-12 C18:2) and feeding level to test if milk performance or milk fatty acid (FA) profile are affected by the interaction between CLA and feeding level. Twenty-four dairy goats were used in an 8-wk trial with a 3-wk adaptation to the experimental ration that contained corn silage, beet pulp, barley, and a commercial concentrate. During the third week, goats were assigned into blocks of 2 goats according to their dry matter intake (DMI), raw milk yield, and fat yield. Each block was randomly allocated to control (45 g of Ca salt of palm oil/d) or CLA treatment. Within each block, one goat was fed to cover 100% (FL100) of the calculated energy requirements and the other was fed 85% of the DMI of the first goat (FL85). Individual milk production and composition were recorded weekly, and milk FA composition was analyzed in wk 3, 5, and 7. Conjugated linoleic acid supplementation reduced milk fat content and fat yield by 17 and 19%, respectively, independent of the feeding level. It reduced both the secretion of milk FA synthesized de novo, and those taken up from the blood. No interaction between CLA and feeding level was observed on milk secretion of any group of FA. The CLA supplementation had no effect on DMI, milk yield, protein, and lactose yields but it improved calculated net energy for lactation balance. Goats fed the FL100 × CLA diet tended to have the highest DMI and protein yield. The interaction between CLA and feeding level was not significant for any other variables. Compared with the goats fed FL100, those fed FL85 had lower DMI, lower net energy for lactation balance, and lower digestible protein in the intestine balance. The body weight; milk yield; milk fat, protein, and lactose yields; and fat, protein, lactose, and urea contents in milk were not affected by feeding level. In conclusion, reduction in energy spared via fat yield reduction after CLA supplementation was not partitioned toward milk lactose or protein in goats at a low feeding level, possibly because of a simultaneous shortage of energy and amino acids. In goats on the high feeding level, energy spared tended to be partitioned toward milk protein yield, and at the same time to the prevention of excessive lipid mobilization.  相似文献   

12.
In feeding practice, conjugated linoleic acid (CLA) supplements are used to decrease milk fat excretion in early-lactation dairy cows to save energy to counteract the physiological negative energy balance. The present study was conducted to examine the effects of CLA on energy metabolism, changes in liver weight, and the weight of different adipose depots during early lactation. Primiparous lactating German Holstein cows (n = 25) were divided into 5 groups and each group contained 5 animals. The experiment started 21 d prepartum and continued until 105 d in milk (DIM). Cows were slaughtered at 1, 42, and 105 DIM. The experiment was divided into a prepartum period (21 d prepartum until calving), period 1 (1 until 42 DIM), and period 2 (>42 until 105 DIM). In the prepartum period, all animals were housed together and fed the same diet with no CLA supplementation. At 1 DIM, an initial group, with no CLA supplementation, was slaughtered. The 20 remaining cows were assigned to 2 diets. One group received 100 g/d of a control fat supplement (CON; n = 10) and the other group 100 g/d of a CLA supplement (CLA; n = 10) from 1 DIM until slaughter. Five cows of each feeding group were slaughtered after 42 DIM and the remaining animals after 105 DIM. The CLA supplement contained approximately 10% each of trans-10, cis-12 CLA and cis-9, trans-11 CLA. During the slaughter process the empty body weight was recorded and the omental, mesenteric, retroperitoneal, and s.c. adipose depots, as well as the liver, were dissected and weighed. The CLA treatment decreased milk fat content in period 1 (14.1%). In period 2, milk fat content (25.4%) and yield (17.1%) were lower in the CLA group. No effect of CLA on milk yield was observed. The net energy intake, milk energy output, and the calculated energy balance remained unchanged by CLA supplementation. No effect of CLA on the weights of liver, omental, mesenteric, or s.c. adipose depots was observed when related to empty body weight. Liver weight increased with DIM, whereas the retroperitoneal adipose depot weight decreased at the same time. Compared with the initial group, the retroperitoneal adipose depot weight for control animals slaughtered after 42 DIM was decreased (47.7%); however, for the CLA group slaughtered after 42 DIM, a trend to a lower retroperitoneal adipose depot weight (34.0%) was observed. This suggests a CLA-induced deceleration of mobilization of the retroperitoneal adipose depot during the first 42 DIM.  相似文献   

13.
Abomasal infusion of butterfat increases milk fat in lactating dairy cows   总被引:1,自引:0,他引:1  
The objective of this study was to compare the effects of abomasal infusion of butterfat containing all fatty acids (FA) present in milk, including the short- and medium-chain FA, with infusion of only the long-chain FA (LCFA) present in milk, on the FA composition and milk fat yield in lactating dairy cows. Eight rumen-fistulated Holstein cows, in early lactation (49 ± 20 days in milk) were used in a replicated 4 × 4 Latin square design. Treatments were abomasal infusion of the following: 1) no infusion (control), 2) 400 g/d of butterfat (butterfat), 3) 245 g/d of LCFA (blend of 59% cocoa butter, 36% olive oil, and 5% palm oil) providing 50% of the 16:0 and equivalent amounts of C18 FA as found in 400 g of butterfat, and 4) 100 g/d of conjugated linoleic acid (CLA, negative control), providing 10 g of trans-10, cis-12 CLA. Fat supplements were infused in equal portions 3 times daily at 0800, 1400, and 1800 h during the last 2 wk of each 3-wk experimental period. Daily dry matter intake and milk production were unaffected by the infusion treatments. Butterfat infusion increased milk fat percentage by 14% to 4.26% and milk fat yield by 21% to 1,421 g/d compared with controls (3.74% and 1,178 g/d). Milk fat percentage and fat yield were decreased by 43% by CLA. Milk protein percentage was higher (3.70%) in CLA-infused cows than in control (3.30%), butterfat (3.28%), or LCFA (3.27%) treatments. Although LCFA had no effect on fat synthesis, abomasal infusion of butterfat increased milk fat percentage and yield, suggesting that the availability of short- and medium-chain FA may be a limiting factor for milk fat synthesis.  相似文献   

14.
Twenty cows were used in a randomized block design experiment for 6 wk to determine the influence of feeding partial ruminally inert Ca salts of palm and fish oil (Ca-PFO), alone or in combination with extruded full-fat soybeans or soybean oil, on milk fatty acid (FA) methyl esters composition and consumer acceptability of milk and Cheddar cheese. Cows were fed either a diet containing 44% forage and 56% concentrate (control) or a diet supplemented with 2.7% Ca-PFO (FO), 5% extruded full-fat soybeans + 2.7% Ca-PFO (FOESM), or 0.75% soybean oil + 2.7% Ca-PFO (FOSO). Total dietary FA content in the control, FO, FOESM, and FOSO diets were 4.61, 6.28, 6.77, and 6.62 g/100 g, respectively. There was no difference in nutrient intake, milk yield, or milk composition among treatments. Conjugated linoleic acid (CLA) C18:2cis-9, trans-11 isomer, C18:1trans-11 (VA), and total n-3 FA in milk from cows on the control, FO, FOESM, and FOSO treatments were 0.56, 1.20, 1.36, and 1.74; 3.29, 4.66, 6.34, and 7.81; 0.62, 0.69, 0.69, and 0.67 g/100 g of FA, respectively. Concentrations of CLA, VA, and total n-3 FA in cheese were similar to milk. A trained sensory panel detected no difference in flavors of milk and cheese, except for acid flavor below a slightly perceptible level in cheese from all treatments. Results suggest that feeding Ca-PFO alone or in combination with extruded full-fat soybeans or soybean oil enhanced the CLA, VA, total unsaturated and n-3 FA in milk and cheese without negatively affecting cow performance and consumer acceptability characteristics of milk and cheese.  相似文献   

15.
Long photoperiods during established lactation increase milk production in dairy cattle and dairy sheep, but recent research in cattle and dairy goats suggests an additional influence of prepartum day length on milk yield in the subsequent lactation. The proposed mechanism of function is the level and role of circulating prolactin in mammary development. The objectives of this study were to evaluate the effect of prepartum photoperiod on milk production, milk composition, and prolactin concentration of 22 multiparous dairy ewes exposed to short day prepartum photoperiod (SDPP; 8 h of light:16 h of dark) or long day prepartum photoperiod (LDPP; 16 h of light:8 h of dark) for at least 6 wk prepartum. During the first 8 wk of lactation, SDPP ewes tended to produce more milk than LDPP ewes (2.43 vs. 2.29 kg/d, respectively), and the milk of SDPP ewes had a greater fat percentage than that of LDPP ewes (6.04 vs. 5.51%, respectively). Due to daily milk yield and greater fat content, SDPP ewes produced more 6.5% fat-corrected milk (+0.30 ± 0.08 kg/d) and 6.5% fat- and 5.8% protein-corrected milk (+0.28 ± 0.08 kg/d) than LDPP ewes. For the lactation period of 180 d, SDPP ewes produced more test day milk than LDPP ewes (1.76 vs. 1.60 ± 0.05 kg/d, respectively), but there were no differences in milk fat or protein percentages. Ewes in both treatments experienced a prolactin surge at lambing, but SDPP ewes had lower circulating prolactin concentration than LDPP ewes from 4 to 0.5 wk before lambing (14.7 vs. 51.3 ± 4.2 mg/dL, respectively). These data suggest that decreased prepartum photoperiod may be important for increasing milk production in dairy ewes and may provide a management strategy for dairy sheep producers to increase milk yield.  相似文献   

16.
Diets inducing milk fat depression (MFD) are known to alter ruminal lipid metabolism, leading to the formation of specific isomers [such as trans-10,cis-12 conjugated linoleic acid (CLA)] that inhibit milk fat synthesis in lactating dairy cows. However, ruminal outflow of these isomers does not fully account for the decreases in milk fat synthesis observed during diet-induced MFD. The high-concentrate diets inducing MFD also induce a greater production of propionate, suggesting a possible inhibition of milk fat by propionate associated with trans-10,cis-12-CLA during MFD. The present experiment aimed to study the combined effects of propionate and trans-10,cis-12-CLA (both inhibitors of milk fat synthesis) on milk fat secretion and the effects of the combination of 2 nutrients with opposite effects (acetate and propionate). Six Holstein cows were used in a 6 × 6 Latin square design with 21-d periods (14 d of nutrient infusion). The treatments were control; ruminal infusion of 1,500 g/d of acetate (A); ruminal infusion of 800 g/d of propionate (P); duodenal infusion of 1.60 g/d of trans-10,cis-12-CLA (CLA); ruminal infusion of 750 g/d of acetate + 400 g/d of propionate (A+P); and duodenal infusion of 1.60 g/d of trans-10,cis-12-CLA + ruminal infusion of 800 g/d of propionate (CLA+P). The amounts of nutrients infused were chosen to induce a similar variation in milk fat content. Treatments A and P decreased dry matter intake. Compared with the control, P and CLA treatments decreased milk fat content and yield by 9% and 15% on average. Treatment A increased milk fat content by 6.5% but did not modify milk fat yield (because of a decrease in milk yield). The effects of A and P, and CLA and P on milk fat and fatty acid percentages and yield were additive (A+P and CLA+P treatments). With a same dose of trans-10,cis-12-CLA, the additional supply of propionate induced a decrease in milk fat 40% higher than that induced by trans-10,cis-12-CLA alone. The milk fatty acid profile obtained with CLA+P was similar to those observed with high-concentrate diets inducing MFD. In conclusion, under our experimental conditions, the effects of the 3 nutrients were additive on mammary lipogenesis, regardless of their separate effects. We also show that propionate could contribute to the milk fat reductions unaccounted for by trans-10,cis-12-CLA during MFD induced by high-concentrate diets.  相似文献   

17.
Based on the potential benefits of cis-9, trans-11 conjugated linoleic acid (CLA) for human health, there is a need to develop effective strategies for enhancing milk fat CLA concentrations. Levels of cis-9, trans-11 CLA in milk can be increased by supplements of fish oil (FO) and sunflower oil (SO), but there is considerable variation in the response. Part of this variance may reflect time-dependent ruminal adaptations to high levels of lipid in the diet, which lead to alterations in the formation of specific biohydrogenation intermediates. To test this hypothesis, 16 late lactation Holstein-British Friesian cows were used in a repeated measures randomized block design to examine milk fatty acid composition responses to FO and SO in the diet over a 28-d period. Cows were allocated at random to corn silage-based rations (8 per treatment) containing 0 (control) or 45 g of oil supplement/kg of dry matter consisting (1:2; wt/wt) of FO and SO (FSO), and milk composition was determined on alternate days from d 1. Compared with the control, the FSO diet decreased mean dry matter intake (21.1 vs. 17.9 kg/d), milk fat (47.7 vs. 32.6 g/kg), and protein content (36.1 vs. 33.3 g/kg), but had no effect on milk yield (27.1 vs. 26.4 kg/d). Reductions in milk fat content relative to the FSO diet were associated with increases in milk trans-10 18:1, trans-10, cis-12 CLA, and trans-9, cis-11 CLA concentrations (r2 = 0.74, 0.57, and 0.80, respectively). Compared with the control, the FSO diet reduced milk 4:0 to 18:0 and cis 18:1 content and increased trans 18:1, trans 18:2, cis-9, trans-11 CLA, 20:5 n-3, and 22:6 n-3 concentrations. The FSO diet caused a rapid elevation in milk cis-9, trans-11 CLA content, reaching a maximum of 5.37 g/100 g of fatty acids on d 5, but these increases were transient, declining to 2.35 g/100 g of fatty acids by d 15. They remained relatively constant thereafter. Even though concentrations of trans-11 18:1 followed the same pattern of temporal changes as cis-9, trans-11 CLA, the total trans 18:1 content of FSO milk was unchanged because of the concomitant increases in the concentration of other isomers (Δ4-10 and Δ12-15), predominantely trans-10 18:1. In conclusion, supplementing diets with FSO enhances milk fat cis-9, trans-11 CLA content, but the high level of enrichment declines because of changes in ruminal biohydrogenation that result in trans-10 replacing trans-11 as the major 18:1 biohydrogenation intermediate formed in the rumen.  相似文献   

18.
The evolution of fatty acid (FA) and terpenoid profiles was studied in milk (n = 20) and “Bitto” (n = 3), a protected designation of origin cheese produced in a restricted Italian alpine area. Milk came from 25 Italian Brown cows successively grazing pastures at 1400, 2100 and 2200 m during transhumance in June–September 2006. The fat matter was analyzed for FAs and terpenes by means of gas chromatography and purge & trap/gas chromatography–mass spectrometry, respectively. FA composition of milk fat varied significantly (p < 0.0001) in relation to contents of conjugated linoleic acid (CLA), stearic, linoleic and trans-vaccenic acids. Similar monoterpene profiles characterized milk fat from cows grazing the different pastures and the highest amount of terpenes was measured in milk coming from cows grazing at 1400 m. High levels of δ3-carene in milk fat were likely related to the important presence of Ligusticum mutellina in the pasture. Only negligible amounts of sesquiterpenes were detected in milk fat whereas they were the most abundant class in fodder. Both FA and terpene profiles of ripened (70 days) cheeses resembled those of the original milks. Overall, results confirm the influence of the botanical composition of mountain pastures both in enhancing the ruminal synthesis of CLA and in modifying the FA and terpenoid profiles of milk and “Bitto” cheese. Nevertheless, neither the FA nor the terpenoid profiles revealed here can be considered as “unique” to “Bitto” cheese and, for this reason, they can hardly be assumed to be biomarkers for defining a specific relationship among grazing area, milk and “Bitto” cheese. They better represent the chemical fingerprint of the cow feeding, adopted in mountain areas.  相似文献   

19.
The objective of this study was to investigate the effect of 2 breeds, Holstein and Jersey, and their F1 hybrid (Jersey × Holstein) on milk fatty acid (FA) concentrations under grazing conditions, especially conjugated linoleic acid (CLA) and n-3 polyunsaturated fatty acids because of their importance to human health. Eighty-one cows (27 per breed grouping) were allocated a predominantly perennial ryegrass pasture. Samples were collected over 2 periods (June and July). Breed affected dry matter intake and milk production and composition. Holstein cows had the highest dry matter intake (18.4 ± 0.40 kg of DM/d) and milk production (21.1 ± 0.53 kg of DM/d). Holstein and Jersey × Holstein cows had similar 4% fat corrected milk, fat yield, and protein yield; with the exception of fat yield, these were all higher than for Jersey cows. Milk fat concentration was highest for Jersey cows and lowest for Holstein cows, with the hybrid cows intermediate. Total FA and linolenic acid intake (1.09 ± 0.023 and 0.58 ± 0.012 kg/d, respectively) were highest for Holstein cows. In terms of milk FA, Holstein cows had higher contents of C14:1, cis-9 C18:1 and linoleic acid. In turn, Jersey and Jersey × Holstein cows had higher content of C16:0. Milk concentrations of neither the cis-9,trans-11 isomer of CLA nor its precursor, vaccenic acid, were affected by breed. Nevertheless, large variation between individual animals within breed grouping was observed for CLA and estimated Δ9-desaturase activity. There was some evidence for a negative heterotic effect on milk concentration of CLA, with the F1 hybrid cows having lower concentrations compared with the mid parent average. Plasma FA profile did not accurately reflect differences in milk FA composition. In conclusion, there was little evidence for either breed or beneficial heterotic effects on milk FA content with human health-promoting potential, though significant within-breed, interanimal variation was observed.  相似文献   

20.
Feeding high-concentrate diets has the potential to cause milk fat depression, but several studies have suggested that dietary sugar can increase milk fat yield. Two experiments were conducted to evaluate the ability of dietary molasses to prevent milk fat depression in the presence of a 65% concentrate diet. In trial 1, molasses replaced corn grain at 0, 2.5, or 5% of diet dry matter in diets fed to 12 second-lactation Holstein cows (134 ± 37 d in milk) in a 3 × 3 Latin square design. Trial 1 demonstrated that replacing up to 5% of dietary dry matter from corn with molasses had positive effects on de novo fatty acid synthesis, increasing the yield of short- and medium-chain fatty acids during diet-induced milk fat depression. Increasing inclusion rate of molasses increased milk fat concentration, but decreased milk yield and milk protein yield. Trial 2 used 7 ruminally cannulated, multiparous, late-lactation Holstein cows (220 ± 18 d in milk) to evaluate effects of dietary molasses on ruminal parameters and milk composition, and also to assess whether increased metabolizable protein supply would alter these responses. Cows were randomly assigned to a dietary treatment sequence in a crossover split plot design with 0 and 5% molasses diets. Dietary treatments were fed for 28 d, with 16 d for diet adaptation, and the final 12 d for 2 abomasal infusion periods in a crossover arrangement. Abomasal infusions of water or AA (5 g of l-Met/d + 15 g of l-Lys-HCl/d + 5 g of l-His-HCl-H2O/d) were administered 3 times daily for 5 d, with 2 d between infusion periods. Administration of AA had no effect on concentration or yield of any milk components. Addition of molasses increased milk fat concentration (2.71 vs. 2.94 ± 0.21%), but had no effect on yields of milk fat or protein. Dietary molasses decreased total volatile fatty acid concentration (141 vs. 133 ± 4.6 mM), decreased the molar proportion of propionate, and increased the molar proportion of butyrate in ruminal fluid. Molasses also increased ruminal pH (5.73 vs. 5.87 ± 0.06), decreased the yield of trans-10 C18:1, and increased the yield of trans-11 C18:1 in milk fat. These data provide evidence that molasses may promote mammary de novo fatty acid synthesis in cows fed high-energy rations by moderating ruminal pH and altering ruminal fatty acid biohydrogenation pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号