首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This experiment compared Holstein-Friesian (HF) cows of New Zealand (NZ) origin representative of genetics present in the 1970s (NZ70; n = 45) and 1990s (NZ90; n = 60), and a group of HF cows of North American origin with 1990s genetics (NA90; n = 60), which were managed in grazing systems with a range of feeding allowances (4.5 to 7.0 t/cow per yr) over 3 yr. The NZ70 cows had the lowest Breeding Worth genetic index and the lowest breeding values for yields of fat, protein, and milk volume; the NZ90 and NA90 cows were selected to have similar breeding values for milk traits and were representative of cows of high genetic merit in the 1990s. The NZ90 cows had a higher milk protein concentration (3.71%) than either the NA90 (3.43%) or the NZ70 cows (3.41%), and a higher milk fat concentration (4.86%) than the NA90 cows (4.26%) with a level similar to the NZ70 cows (4.65%). The NZ90 cows produced significantly greater yields of fat, protein, and lactose than the NA90 and NZ70 cows. The NZ70 cows had the lowest mean annual body weight (473 kg) but the highest body condition score (BCS; 5.06). Days in milk were the same for the 2 NZ strains (286 d in milk), both of which were greater than the NA90 cows (252 d in milk). There was no genotype × environment interaction for combined milk fat and protein yield (milksolids), with NZ90 producing 52 kg/cow more than the NA90 at all feeding levels. The NZ70 strain had the highest seasonal average BCS (5.06), followed by the NZ90 (4.51) and the NA90 (4.13) strains on a 1 to 10 scale. Body condition score increased with higher feeding levels in the 2 NZ strains, but not in the NA strain. The first-parity cows commenced luteal activity 11 d later than older cows (parities 2 and 3), and the NA90 cows commenced luteal activity 4 and 10 d earlier than the NZ70 and NZ90 cows. Earlier estrus activity did not result in a higher in-calf rate. The NZ70 and NZ90 cows had similar in-calf rates (pregnancy diagnosed to 6 wk; 69%), which were higher than those achieved by NA90 cows (54%). Results showed that the NA90 strain used in this experiment was not suitable for traditional NZ grazing systems. Grazing systems need to be modified if the NA90 strain is to be successfully farmed in NZ. The data reported here show that the NA90 cows require large amounts of feed, but this will not prevent them from having a lower BCS than the NZ strains. Combined with poor reproductive performance, this means that NA90 cows are less productive than NZ HF in pasture-based seasonal calving systems with low levels of supplementation.  相似文献   

2.
The somatotropic axis [including growth hormone (GH), GH receptor, and insulin-like growth factor (IGF)-I] is uncoupled in high-producing cows in early lactation so that the liver fails to respond to GH and produces less IGF-I. This uncoupling was implicated in the process of nutrient partitioning, enabling high milk production. Different genetic selection goals may affect functional components of the somatotropic axis. Thus, the somatotropic axis was examined in diverse genetic strains of dairy cows [North American Holstein 1990 (NA90), New Zealand Holstein-Friesian 1990 (NZ90), and New Zealand Holstein-Friesian 1970 (NZ70)] that were managed similarly within a pasture-based system but were offered feed allowances commensurate with their genetic ability to produce milk. The NA90 cows produced more milk (26.2 ± 0.3, 24.1 ± 0.3, and 20.1 ± 0.4 kg/d, for NA90, NZ90, and NZ70, respectively), but had lower milk fat percentages (4.28 ± 0.03, 4.69 ± 0.03, and 4.58 ± 0.04 kg/d for NA90, NZ90, and NZ70, respectively) compared with both NZ strains. Milk protein percentages (3.38 ± 0.02, 3.52 ± 0.02, and 3.29 ± 0.03 kg/d for NA90, NZ90, and NZ70, respectively) were greater for NZ90 cows. During early lactation (wk 2 to 6), the total net energy produced in milk was greater in NA90 compared with NZ90 or NZ70 cows, but total net energy in milk after wk 6 was equivalent for NA90 and NZ90 cows. The greater milk production in early lactation in NA90 cows was associated with lower body condition scores (BCS; 1 to 10 scale; 4.0 ± 0.1) elevated blood GH concentrations (1.6 ± 0.1 ng/mL), and low blood IGF-I concentrations (14.8 ± 1.1 ng/mL), indicating an uncoupled somatotropic axis. In comparison, the NZ70 cows retained a coupled somatotropic axis during early lactation, maintaining greater BCS (4.6 ± 0.1), lower blood GH (0.7 ± 0.1 ng/mL), and greater blood IGF-I (21.9 ± 1.2 ng/mL). The degree of uncoupling in NZ90 cows was intermediate between the other 2 strains. Additional feed allowance failed to change blood IGF-I concentrations in NA90 cows but increased IGF-I concentrations in NZ90 cows (20.9 ± 1.4 and 13.2 ± 1.4 ng/mL for the high and low feed allowance, respectively). Furthermore, additional feed allowance in NZ90 cows lessened BCS loss in early lactation, but did not affect BCS loss in NA90 cows. Functional components of the somatotropic axis differed for the respective strains and were consistent with strain differences in milk production, BCS, and feed allowance.  相似文献   

3.
The effect of feeding to achieve differential growth rates in Holstein-Friesian (HF; n = 259) and Jersey (n = 430) heifers on time to puberty and first lactation milk production was investigated in a 3 × 2 factorial design. Holstein-Friesian and Jersey calves were reared to achieve a BW of 100 and 80 kg, respectively, at 100 d. At target weight, all calves were randomly allocated to one of 3 feeding treatments to achieve different growth rates. Holstein-Friesian and Jersey calves were fed fresh pasture to achieve average daily growth rates of 0.77, 0.53, or 0.37 kg of BW/d (HF) and 0.61, 0.48, or 0.30 kg of BW/d (Jersey), respectively. Period 1 (prepubertal) was imposed until HF and Jersey treatment groups averaged 200 and 165 kg of BW, respectively. Following period 1, HF and Jersey calves from each treatment group were randomly allocated to one of 2 feeding treatments to achieve average daily growth rates of 0.69 or 0.49 kg of BW/d (HF) and 0.58 and 0.43 kg of BW/d (Jersey), respectively. Period 2 (postpubertal) was imposed until 22 mo, when heifers were returned to their farms of origin. Body weight, body condition score, height, heart girth circumference (HGC), milk production, and fertility-related data were collected until the end of the third lactation. Time to reach puberty was negatively associated with level of feeding, and heifers attained puberty at the same BW (251 ± 25.4 and 180 ± 24.0 kg for HF and Jersey heifers, respectively). Heifers on high feed allowances during periods 1 and 2 were heavier, taller, and had greater HGC than their slower grown counterparts until 39 mo of age when height and HGC measurements stopped. Body weight differences remained until 51 mo, when measurements ceased. High feed allowance during period 1 (prepubertal) did not affect milk production during the first 2 lactations, but did reduce milk production in lactation 3. It is possible that the expected negative effect of accelerated pre-pubertal growth was masked by greater calving BW, as BW-corrected milk yield declined in both breeds with increasing prepubertal feed allowance. Growth rate during period 2 was positively correlated with first lactation milk production. Milk yield increased 7% in first lactation heifers on the high feed allowance, which resulted in higher growth rate during period 2. Milk production during subsequent lactations was not affected. Results suggest that accelerated prepubertal growth may reduce mammary development in grazing dairy cows, but this does not affect milk production in early lactations because of superior size. Body weight at calving and postpubertal growth rate management are important in first lactation milk production, but do not affect milk production in subsequent lactations.  相似文献   

4.
The aim of this study was to test the feasibility of extended lactations in pastoral systems by using divergent dairy cow genotypes [New Zealand (NZ) or North American (NA) Holstein-Friesian (HF)] and levels of nutrition (0, 3, or 6 kg/d of concentrate dry matter). Mean calving date was July 28, 2003, and all cows were dried off by May 6, 2005. Of the 56 cows studied, 52 (93%) were milking at 500 d in milk (DIM) and 10 (18%) were milking at 650 DIM. Dietary treatments did not affect DIM (605 ± 8.3; mean ± SEM). Genotype by diet interactions were found for total yield of milk, protein, and milk solids (fat + protein), expressed per cow and as a percentage of body weight. Differences between genotypes were greatest at the highest level of supplementation. Compared with NZ HF, NA HF produced 35% more milk, 24% more milk fat, 25% more milk protein, and at drying off had 1.9 units less body condition score (1 to 10 scale). Annualized milk solids production, defined as production achieved during the 24-mo calving interval divided by 2 yr, was 79% of that produced in a normal 12-mo calving interval by NZ HF, compared with 94% for NA HF. Compared with NZ HF, NA HF had a similar 21-d submission rate (85%) to artificial insemination, a lower 42-d pregnancy rate (56 vs. 79%), and a higher final nonpregnancy rate (30 vs. 3%) when mated at 451 d after calving. These results show that productive lactations of up to 650 d are possible on a range of pasture-based diets, with the highest milk yields produced by NA HF supplemented with concentrates. Based on the genetics represented, milking cows for 2 yr consecutively, with calving and mating occurring every second year, may exploit the superior lactation persistency of high-yielding cows while improving reproductive performance.  相似文献   

5.
Data from 113 lactations across 76 cows between the years 2002 to 2004 were used to determine the effect of strain of Holstein-Friesian (HF) dairy cow and concentrate supplementation on milk production, body weight (BW), and body condition score (BCS; 1 to 5 scale) lactation profiles. New Zealand (NZ) and North American (NA) HF cows were randomly allocated to 1 of 3 levels of concentrate supplementation [0, 3, or 6 kg of dry matter (DM)/cow per d] on a basal pasture diet. The Wilmink exponential model was fitted within lactation (YDIM = a + b e(−0.05 × DIM) + c × DIM). The median variation explained by the function for milk yield was 86%, between 62 and 69% for milk composition, and 80 and 70% for BW and BCS, respectively. North American cows and cows supplemented with concentrates had greater peak and 270-d milk yield. Concentrate supplementation tended to accelerate the rate of incline to peak milk yield, but persistency of lactation was not affected by either strain of HF or concentrate supplementation. No significant strain by diet interaction was found for parameters reported. New Zealand cows reached nadir BCS 14 d earlier and lost less BW (22 kg) postcalving than NA cows. Concentrate supplementation reduced the postpartum interval to nadir BW and BCS, and incrementally increased nadir BCS. New Zealand cows gained significantly more BCS (i.e., 0.9 × 10−3 units/d more) postnadir than NA cows, and the rate of BCS replenishment increased linearly with concentrate supplementation from 0.5 × 10−3 at 0 kg of DM/d to 0.8 × 10−3 and 1.6 × 10−3 units/d at 3 and 6 kg of DM/d concentrates, respectively. Although there was no significant strain by diet interaction for parameters reported, there was a tendency for a strain by diet interaction in 270-d BCS, suggesting that the effect of concentrate supplementation on BCS gain was, at least partly, strain dependent.  相似文献   

6.
Poor reproductive performance limits cow longevity in seasonal, pasture-based dairy systems. Few differences in ovarian dynamics have been reported in different strains of Holstein-Friesian cows, implying that the uterine environment may be a key component determining reproductive success. To test the hypothesis that the uterine environment differs among genetic strains of the Holstein-Friesian cow, endometrial fatty acids (FA) were analyzed from New Zealand (NZ), and North American (NA) Holstein-Friesian cows. The effect of reproductive status was also investigated, with cows from both Holstein-Friesian strains slaughtered on either d 17 of the estrous cycle (termed cyclic) or d 17 of pregnancy (after embryo transfer; termed pregnant). Endometrial tissues were collected from 22 cows (NZ pregnant, n = 6; NZ cyclic, n = 4; NA pregnant, n = 6; NA cyclic, n = 6), and FA composition was analyzed. Daily plasma progesterone concentrations, milk production, milk FA composition, body weight, and body condition score were determined. Milk yield (4% fat-corrected milk) was similar for the NZ (28.5 kg/d) and NA (29.3 kg/d; SE 2.07 kg/d) cows, but NZ cows had a greater mean milk fat percentage. Mean plasma progesterone concentrations were significantly greater in NZ cows. Plasma progesterone concentrations were similar in the pregnant and cyclic groups. Mean length of the trophoblast recovered from the pregnant cows (NZ: 20.8 ± 2.84 cm; NA: 27.9 ± 10.23 cm) was not affected by genetic strain. Endometrial tissues from NZ cows contained greater concentrations of C17:0, C20:3n-3, and total polyunsaturated FA. The endometria from pregnant cows contained greater concentrations of C17:0, C20:2, and C20:3n-6, and less C20:1, C20:2, C20:5n-3. The observed changes in endometrial FA between Holstein-Friesian cows of different genetic origins or reproductive states may reflect differences in endometrial function and may affect reproductive function.  相似文献   

7.
The objective of this experiment was to evaluate growth and first-lactation milk production in dairy heifers fed a high-forage (HF) or high-concentrate (HC) ration for similar levels of average daily gain (ADG) before puberty. Responses in weight and structural gains were determined on 41 Holstein heifers fed diets containing the same ingredients but formulated in different proportions to give 2 treatment rations of 75% forage or 75% concentrate. The feeding period lasted 245 d, and individual animal dry matter intake was controlled to maintain constant ADG between diets. Puberty was assessed, and first-lactation milk production was evaluated through 150 d. Average dry matter intakes required to achieve desired levels of gain were 5.96 HF and 5.32 HC kg/d (SE ± 0.12), and the associated feed efficiency (kg of ADG/kg of dry matter intake) was 0.142 HF and 0.156 HC (SE ± 0.003) over the experimental growth period. Throughout the feeding period, ADG was not affected by treatment (0.828 HF vs. 0.827 HC; SE ± 0.010 kg/d). Gains in structural measurements were not affected by treatment with the exception of paunch girth, which increased faster in HC-fed heifers. Body weight at puberty (293 HF vs. 287 HC; SE ± 7 kg) and experimental ADG prior to puberty (0.837 HF vs. 0.837 HC; SE ± 0.009 kg/d) were not different between rations. Milk and component production were numerically greater for heifers fed HC prior to puberty, although only fat-corrected milk and fat production were significant. From the results of this experiment we conclude that, compared with heifers fed HF for equal ADG, feeding dairy heifers HC before puberty did not affect most structural growth characteristics or puberty attainment and allowed equal or improved 150-d milk and component production. Controlled feeding of HC during the rearing period may allow for improved growth efficiency for dairy heifers while maintaining future productivity.  相似文献   

8.
The objective of this study was to determine whether the physiological response to an intravenous glucose challenge would be affected by genetic strain or concentrate supplementation in grazing Holstein-Friesian cows in early lactation. North American (NA; n = 30) or New Zealand (NZ; n = 30) cows were randomly allocated to 1 of 3 feeding treatments. All cows were offered a generous pasture allowance, and 4 of the 6 groups received either 3 or 6 kg of dry matter (DM)/cow per day of concentrates. During wk 5 of lactation, all cows underwent an intravenous glucose challenge. Cows of NA origin produced more milk than NZ cows, but there was no significant strain effect on milk fat or protein yield. Milk yield and the yield of individual components increased with increasing level of concentrate eaten, but there were no significant strain × diet interactions. During wk 1 to 6, mean body weight and body condition score decreased in all treatments. Average body weight was greater in NA cows, but body condition score was greater for NZ cows. There was no strain or diet effect on the length of the postpartum anovulatory interval, with cows ovulating before 40 d postpartum on average. Glucose fractional turnover rate was greater in NZ cows compared with those of NA origin and in all cows receiving 6 kg of DM concentrates, indicating a less severe insulin resistance in those treatments. Consistent with this, the time taken to dispose of half the peak glucose concentration was less when 6 kg of DM concentrate was fed, and tended to be less in NZ than in NA cows. There was no effect of genetic strain on glucose area under the curve (AUC) at 60 or 120 min, but AUC at both time points was less in cows receiving 6 kg of DM concentrates per day. Neither genetic strain nor nutrition affected basal or peak insulin concentrations, insulin increment, or insulin AUC, and there were no strain × diet interactions for any of the glucose challenge response variables measured. In conclusion, differences in milk production between NA and NZ cows in early lactation can, at least in part, be explained by the greater degree of insulin resistance in the NA cows, and this insulin resistance can be overcome by supplementing grazing cows with 6 kg of DM concentrates.  相似文献   

9.
The objective of the present study was to determine effects of strain of Holstein-Friesian and feed system on body weight (BW) and body condition score (BCS; scale of 1 to 5) lactation profiles in seasonal-calving, grass-based milk production systems. The 3 strains of Holstein-Friesian compared differed in milk production potential and were high-production North American (HP), high-durability North American (HD), and New Zealand (NZ). The 3 feed systems compared were a high grass allowance feed system typical of spring-calving herds in Ireland (MP); an increased stocking rate system (HS); and an increased concentrate supplementation system (HC), each maintained within a separate farmlet. The data comprised 20,611 weekly BW and 7,920 BCS records assessed every 3 wk across 5 yr on 584 lactations. An exponential function was used to model BW and BCS lactation profiles across feed systems. Across feed systems, the NZ strain was significantly lighter (545 kg) but had greater average BCS (3.10 units) compared with the HP (579.3 kg and 2.76 units, respectively) and HD strains (583.2 kg and 2.87 units, respectively). Across feeding systems, the HD and HP strains exhibited a greater loss of BCS in early lactation (0.27 and 0.29 units, respectively) compared with the NZ strain (0.21 units). The HP strain failed to gain BCS over the entire lactation. Concentrate input did not affect the rate of BCS or BW loss in early lactation or BCS at 60 DIM. This study extends previous research outlining the greater suitability of the NZ strain to the low-cost grass-based system of milk production predominantly operated in Ireland.  相似文献   

10.
Supplementing pasture-fed dairy cows with concentrates in early lactation was hypothesized to result in an earlier postpartum recoupling of the somatotropic axis in New Zealand (NZ)-type Holstein-Friesian dairy cows than in North American (NA)-type cows. To test this hypothesis, NA (n = 30) and NZ (n = 30) cows were allocated to 1 of 3 supplementation strategies (0, 3, or 6 kg of dry matter concentrate/d) for the first 12 wk of lactation in a completely randomized design and a 2 × 3 factorial arrangement. Production traits and characteristics of the somatotropic axis were studied at phenotypic, hormonal, and gene expression levels. Milk production and plasma metabolite concentrations were measured weekly, and liver was biopsied in wk 1, 4, 8, and 12 postcalving. North American cows produced more milk and displayed a larger degree of somatotropic axis uncoupling than did NZ cows. This was evident in strain differences in body condition score, blood growth hormone, and insulin-like growth factor-1 concentrations, and hepatic expression of growth hormone receptor-1a. No strain × diet interactions were observed for any characteristic of the somatotropic axis at either the blood metabolite or gene expression level; however, blood insulin concentrations during wk 7 to 11 postpartum increased with concentrate supplementation in NZ but not NA cows. These results demonstrate that feeding supplements does not result in an earlier recoupling of the somatotropic axis; however, the greater blood insulin concentrations with concentrate feeding in NZ cows from wk 7 may result in an earlier recoupling in this genetic strain, after the period investigated in this study. Further research is required to understand differences in insulin control between these genetic strains.  相似文献   

11.
Exposure to a long-day photoperiod (LDPP) increases mammary and lean growth in heifers relative to a short day (SDPP). Whether these effects influence milk yield, however, is unknown. To test the hypothesis that pre-pubertal long-day exposure would increase milk production, we assigned prepubertal heifers to LDPP (16 h of light:8 h of dark; n = 16) or SDPP (8 h of light:16 h of dark; n = 16) until the onset of puberty. At puberty, heifers were commingled and housed under natural photoperiodic conditions and standard nutritional management for dairy heifers. Heifers were bred according to body weight (BW = 385 kg) and withers height (WH = 132 cm). At parturition, BW, WH, and hip height were evaluated. Analysis of Dairy Herd Improvement Association records was used to evaluate milk yield, milk components, and somatic cell scores. Relative to SDPP (n = 12), heifers on LDPP (n = 10) had greater WH (by 2.4 cm) and BW at calving (by 55 kg). Compared with heifers housed under SDPP, LDPP heifers tended to produce more milk (750 kg of 305-d projected fat-corrected milk) during the first lactation. Relative to SDPP, prepubertal heifers exposed to LDPP during the prepubertal growth phase were taller and heavier at parturition, and tended to produce more milk during their first lactation.  相似文献   

12.
The first objective of this study was to compare the productive and reproductive performance of Holstein-Friesian (CH HF), Fleckvieh (CH FV), and Brown Swiss (CH BS) cows of Swiss origin with New Zealand Holstein-Friesian (NZ HF) cows in pasture-based compact-calving systems; NZ HF cows were chosen as the reference population for such grazing systems. The second objective was to analyze the relationships within and between breeds regarding reproductive performance, milk yield, and body condition score (BCS) dynamics. On 15 commercial Swiss farms, NZ HF cows were paired with Swiss cows over 3 yr. Overall, the study involved 259 complete lactations from 134 cows: 131 from 58 NZ HF, 40 from 24 CH HF, 43 from 27 CH FV, and 45 from 25 CH BS cows. All production parameters were affected by cow breed. Milk and energy-corrected milk yield over 270 d of lactation differed by 1,000 kg between the 2 extreme groups; CH HF having the highest yield and CH BS the lowest. The NZ HF cows had the greatest milk fat and protein concentrations over the lactation and exhibited the highest lactation persistency. Body weight differed by 90 kg between extreme groups; NZ HF and CH BS being the lightest and CH HF and CH FV the heaviest. As a result, the 2 HF strains achieved the highest milk production efficiency (270-d energy-corrected milk/body weight0.75). Although less efficient at milk production, CH FV had a high 21-d submission rate (86%) and a high conception rate within 2 inseminations (89%), achieving high pregnancy rates within the first 3 and 6 wk of the breeding period (65 and 81%, respectively). Conversely, poorer reproductive performance was recorded for CH HF cows, with NZ HF and CH BS being intermediate. Both BCS at nadir and at 100 d postpartum had a positive effect on the 6-wk pregnancy rate, even when breed was included in the model. The BCS at 100 d of lactation also positively affected first service conception rate. In conclusion, despite their high milk production efficiency, even in low-input systems, CH HF were not suited to pasture-based seasonal-calving production systems due to poor reproductive performance. On the contrary, CH FV fulfilled the compact-calving reproduction objectives and deserve further consideration in seasonal calving systems, despite their lower milk production potential.  相似文献   

13.
Previous research has demonstrated that extended photoperiod accelerates pubescence in dairy heifers thereby limiting time for mammary development, which could be detrimental to future milk yield. We hypothesized that the potential negative effects of rapid growth and puberty through long-day photoperiod (LDPP) exposure could be overcome with a greater supply of metabolizable protein in dairy heifers fed rumen-undegradable protein (RUP). In an initial slaughter study, we compared deuterium oxide (D2O) and direct chemical analysis to assess body composition at 5 and 7 mo of age in heifers (n = 20) exposed to LDPP or short-day photoperiod (SDPP). Before slaughter, D2O dilution was used to estimate body composition and results were compared with actual values determined by direct chemical analysis of body tissue. In 5-mo-old heifers, the correlations between estimates of body protein, water, and mineral contents as determined by D2O dilution and direct chemical analysis of body tissue were 0.86, 0.85, and 0.76, respectively; however, fat content values were not correlated (r = −0.068). In 7-mo-old heifers, we were unable to accurately estimate body composition using the D2O dilution method. A second study was conducted to determine if LDPP, which has previously been shown to hasten puberty, could be combined with RUP to promote lean growth without limiting body stature in prepubertal heifers. Thirty-two weaned heifers (86 ± 2 d old; 106.2 ± 17.3 kg of body weight) were assigned to LDPP or SDPP and RUP or control diet in a 2 × 2 factorial arrangement until the onset of puberty. Relative to SDPP, LDPP increased prolactin secretion and promoted lean growth. Exposure to LDPP also enhanced body weight, withers height, and heart girth. Furthermore, RUP supplementation increased withers height and heart girth. There was a significant interaction between LDPP and RUP for hip height. Moreover, LDPP hastened the onset of puberty. In summary, D2O was a feasible method to estimate lean composition in heifers at younger ages; however, it failed to accurately estimate body composition in heifers around puberty. Long-day photoperiod hastened puberty and accelerated lean growth without limiting skeletal growth in dairy heifers.  相似文献   

14.
Nitrogen (N) efficiency is one of the key drivers of environmentally and economically sustainable agricultural production systems. An N balance model was developed, evaluated, and validated to assess N use efficiency and N surplus and to predict N losses from contrasting grass-based dairy production systems in Ireland. Data from a 5-yr study were used to evaluate and validate the model. Grass-based and high-concentrate production systems combined with 3 divergent strains of Holstein-Friesian (HF) dairy cows—high-production North American (HP), high-durability North American (HD), and New Zealand (NZ)—were evaluated. As concentrate input increased, N surplus per hectare increased and N use efficiency per hectare decreased (23 and 10%, respectively). When the N required to rear replacement animals to maintain the production system was considered, the N surplus of the HP genetic strain was greater (156 kg of N/cow) than that of the HD (140 kg of N/cow) or the NZ (128 kg of N/cow). The model estimated N leaching of 8.1 mg of NO3-N/L, similar to that measured by others at the same site. The model creates awareness of methods and indicators available to assess the most suitable and environmentally sustainable grass based dairy production systems.  相似文献   

15.
The objective of this study was to determine if increasing the energy and protein intake of heifer calves would affect growth rates, age at puberty, age at calving, and first lactation milk yield. A second objective was to perform an economic analysis of this feeding program using feed costs, number of nonproductive days, and milk yield data. Holstein heifer calves born at the Michigan State Dairy Cattle Teaching and Research Center were randomly assigned to 1 of 2 dietary treatments (n = 40/treatment) that continued from 2 d of age until weaning at 42 d of age. The conventional diet consisted of a standard milk replacer [21.5% crude protein (CP), 21.5% fat] fed at 1.2% of body weight (BW) on a dry matter basis and starter grain (19.9% CP) to attain 0.45 kg of daily gain. The intensive diet consisted of a high-protein milk replacer (30.6% CP, 16.1% fat) fed at 2.1% of BW on a dry matter basis and starter grain (24.3% CP) to achieve 0.68 kg of daily gain. Calves were gradually weaned from milk replacer by decreasing the amount offered for 5 and 12 d before weaning for the conventional and intensive diets, respectively. All calves were completely weaned at 42 d of age and kept in hutches to monitor individual starter consumption in the early postweaning period. Starting from 8 wk of age, heifers on both treatments were fed and managed similarly for the duration of the study. Body weight and skeletal measurements were taken weekly until 8 wk of age, and once every 4 wk thereafter until calving. Calves consuming the intensive diet were heavier, taller, and wider at weaning. The difference in withers height and hip width was carried over into the early post-weaning period, but a BW difference was no longer evident by 12 wk of age. Calves fed the intensive diet were younger and lighter at the onset of puberty. Heifers fed the high-energy and protein diet were 15 d younger at conception and 14 d younger at calving than heifers fed the conventional diet. Body weight after calving, daily gain during gestation, withers height at calving, body condition score at calving, calving difficulty score, and calf BW were not different. Energy-corrected, age-uncorrected 305-d milk yield was not different, averaging 9,778 kg and 10,069 kg for heifers fed the conventional and intensive diets, respectively. However, removing genetic variation in milk using parent average values as a covariate resulted in a tendency for greater milk from heifers fed the intensive diet. Preweaning costs were higher for heifers fed the intensive diet. However, total costs measured through first lactation were not different. Intensified feeding of calves can be used to decrease age at first calving without negatively affecting milk yield or economics.  相似文献   

16.
The effect of a grain-based concentrate supplement on fatty acid (FA) intake and concentration of milk FA in early lactation was investigated in grazing dairy cows that differed in their country of origin and in their estimated breeding value for milk yield. It was hypothesized that Holstein-Friesian cows of North American (NA) origin would produce milk lower in milk fat than those of New Zealand (NZ) origin, and that the difference would be associated with lower de novo synthesis of FA. In comparison, increasing the intake of concentrates should have the same effect on the FA composition of the milk from both strains. Fifty-four cows were randomly assigned in a factorial arrangement to treatments including 3 amounts of concentrate daily [0, 3, and 6 kg of dry matter (DM)/cow] and the 2 strains. The barley/steam-flaked corn concentrate contained 3.5% DM FA, with C18:2, C16:0, and C18:1 contributing 48, 18, and 16% of the total FA. The pasture consumed by the cows contained 4.6% DM FA with C18:3, C16:0, and C18:1 contributing 51, 10, and 10% of the FA, respectively. Pasture DM intake decreased linearly with supplementation, but total DM intake was not different between concentrate or strain treatments, averaging 16.2 kg of DM/cow, with cows consuming 720 g of total FA/d. Cows of the NA strain had lesser concentrations of milk fat compared with NZ cows (3.58 vs. 3.95%). Milk fat from the NA cows had lesser concentrations of C6:0, C8:0, C10:0, C12:0, C14:0, and C16:0, and greater concentrations of cis-9 C18:1, C18:2, and cis-9, trans-11 C18:2, than NZ cows. These changes indicated that in milk from NA cows had a lesser concentration of de novo synthesized FA and a greater concentration of FA of dietary origin. Milk fat concentration was not affected by concentrate supplementation. Increasing concentrate intake resulted in linear increases in the concentrations of C10:0, C12:0, C14:0, and C18:2 FA in milk fat, and a linear decrease in the concentration of C4:0 FA. The combination of NA cows fed pasture alone resulted in a FA composition of milk that was potentially most beneficial from a human health perspective; however, this would need to be balanced against other aspects of the productivity of these animals.  相似文献   

17.
Twenty-four newborn Holstein heifer calves were fed 1 of 4 milk replacers (MR): control (20% CP, 21% fat; MR fed at 441 g/d); high protein/low fat (HPLF; 28% CP, 20% fat; MR fed at 951 g/d); high protein/high fat (HPHF; 27% CP, 28% fat; MR fed at 951 g/d); and HPHF MR fed at a higher rate (HPHF+; 27% CP, 28% fat; MR fed at 1,431 g/d). Dry calf starter (20% CP, 1.43% fat) composed of ground corn (44.4%), 48% CP soybean meal (44.4%), cottonseed hulls (11.2%), and molasses (1.0%) was offered free choice. Heifers were obtained from a commercial dairy, blocked by groups of 8 in the order acquired, and randomly assigned to treatments within group. Upon arrival at the research farm, heifers were fed the control for 2 feedings. Treatments were imposed when heifers were 4 ± 1 d of age. Heifers were on study for 61 ± 1 d. Body weight and body size measures were taken weekly. Four-day total collection of feed refusals, feces, and urine was initiated at 57 ± 1 d of age. Heifers were slaughtered at the end of the collection period to evaluate body composition. Preplanned contrasts were used to compare control to all, HPLF to HPHF, and HPHF to HPHF+. Heifers fed the control diet consumed more starter than those fed other treatment diets, but their total dry matter intake and apparent dry matter digestibility were lowest. Fecal output was highest in heifers fed the control diet, whereas urine output and urine N excretion were lowest. Nitrogen intake and urine N excretion were greater for heifers fed HPHF+ compared with HPHF but were not affected by MR fat content (HPLF vs. HPHF). Retention (g/d) of N and P was greater in heifers fed all nutrient-dense diets compared with those fed the control diet, but was not improved by increasing fat in the milk replacer (HPLF vs. HPHF) or by increasing the amount fed. Addition of fat to the milk replacer (HPLF vs. HPHF) increased empty body weight fat content without improving average daily gain or frame measures. Increasing the volume fed (HPHF vs. HPHF+) increased growth rate and empty body weight, but HPHF+ heifers were neither taller nor longer and their carcasses contained more fat. Clear improvements in growth and nutrient retention were observed with more nutrient-dense diets, but most of the improvements were seen with the increased protein intake relative to the control MR; adding fat to the high protein MR did not further improve lean tissue gain.  相似文献   

18.
The hormonal and metabolic signals that communicate the level of body energy reserves to the reproductive-mammary axis remain undefined in dairy cattle; consequently, our hypothesis was that leptin may fulfill this role. Our objectives were to determine the effects of diets differing in energy and protein density on dry matter intake (DMI), growth traits [body weight (BW), body condition score (BCS), back-fat (BF) thickness], and temporal changes in plasma concentrations of leptin, insulin, growth hormone (GH), insulin-like growth factor-1 (IGF-1), glucose, and nonesterified fatty acids (NEFA) in dairy heifers during the pre- and postpubertal periods. In period 1, heifers were randomly allotted (n = 10/diet) at 103 kg of BW to diets for a predicted average daily gain of 1.10 (high, H), 0.80 (medium, M), or 0.50 kg/d (low, L). Five heifers in each of the H and L groups were further studied during period 2, either at 12 mo of age (HA, LA) or at 330 kg of BW (HW, LW). The data provide evidence that 1) DMI (18%), BW (17%), and BF (5%) together explained 40% of the variation in plasma leptin concentrations (r2 = 0.396); 2) unlike the acute postprandial increase in plasma insulin as a result of increased nutrient density (H 1.42 ± 0.09, M 1.02 ± 0.09, L 0.68 ± 0.11 ng/mL), plasma leptin concentrations did not respond acutely with a distinct postprandial profile; 3) although plasma leptin concentrations increased with age, leptin at puberty did not differ among treatment groups (H 5.63 ± 2.48, M 4.28 ± 0.55, L 4.12 ± 0.72 ng/mL) and there was no evidence of an abrupt transition in prepubertal plasma leptin concentrations; 4) plasma leptin concentrations may not be a critical trigger for puberty in rapidly growing heifers, but are apparently essential for puberty in heifers with normal or restricted growth rates; and 5) plasma concentrations of insulin (H 0.59 ± 0.07, M 0.43 ± 0.09, L 0.30 ± 0.09 ng/mL), IGF-1 (H 151.08 ± 16.47, L 82.51 ± 17.47 ng/mL), and glucose (H 81.35 ± 3.39, M 73.59 ± 2.34, L 68.25 ± 3.39 mg/dL) reflected nutrient density, whereas GH (H 1.82 ± 0.23, L 5.87 ± 0.45 ng/mL) and NEFA (H 209.54 ± 50.83, L 234.93 ± 48.97 μM) were inversely related to the plane of nutrition. Collectively, these data suggest that plasma concentrations of leptin may play a role in long-term regulation of energy reserves and puberty in growing Holstein heifers.  相似文献   

19.
The experimental objective was to determine the effects of feeding prepubertal dairy heifers a high-energy diet for 3, 6, or 12 wk on mammary growth and composition. Holstein heifers (age = 11 wk; body weight = 107 ± 1 kg) were assigned to 1 of 4 treatments (n = 16/ treatment). The treatment period lasted 12 wk and treatments were H0 (low-energy diet fed for 12 wk, with no weeks on the high-energy diet); H3 (low-energy diet fed for 9 wk, followed by the high-energy diet for 3 wk); H6 (low-energy diet fed for 6 wk, followed by the high-energy diet for 6 wk); and H12 (high-energy diet for all 12 wk). The low- and high-energy diets were formulated to achieve 0.6 and 1.2 kg of average daily gain, respectively. Heifers were slaughtered at 23 wk of age and mammary tissue was collected. A longer duration of feeding the high-energy diet increased total mass of the mammary gland, extraparenchymal fat, and intraparenchymal fat, but did not alter the mass of fat-free parenchymal tissue. When adjusted for carcass weight to reflect differences in physical maturity, the mass of fat-free parenchymal tissue decreased in a linear fashion with a longer duration on the high-energy diet. Total masses of mammary parenchymal DNA and RNA were not different. However, after adjustment for carcass weight, the masses of DNA and RNA decreased as heifers were fed the high-energy diet for a longer duration. The percentages of epithelium, stroma, and lumen, the number of epithelial structures, and the developmental scores of mammary parenchymal tissue were not different among treatments. However, the percentage of proliferating epithelial cells in the terminal ductal units, as indicated by Ki-67 labeling, decreased as heifers were fed the high-energy diet for a longer duration. We concluded that feeding prepubertal heifers a high-energy diet for a longer duration resulted in a linear decrease in both the percentage of mammary epithelial cells that were proliferating and in the mass of fat-free mammary parenchyma per unit of carcass. High-energy feeding hastens puberty and, in this study, decreased mammary epithelial cell proliferation in areas of active ductal expansion. These data are consistent with the idea that feeding heifers a high-energy diet will reduce mammary parenchymal mass at puberty.  相似文献   

20.
Fifty-nine commercial dairy farms were sampled 7 times over 15 to 21 mo to determine the role of animal movement, including off-farm rearing of heifers, in the interherd transmission of multidrug-resistant (MDR) Salmonella spp. Farm management data were collected by on-site inspections and questionnaires on herd management practices before and after the study. Forty-four percent (26/59) of herds did not acquire any new MDR Salmonella strains. The number of newly introduced MDR Salmonella strains acquired by the remaining 56% (33/59) of herds ranged from 1 to 8. Logistic regression models indicated that off-farm heifer raising, including contract heifer raising where heifers commingle with cattle from other farms [commingled heifers, odds ratio (OR) = 8.9, 95% confidence interval (CI): 2.4, 32.80], and herd size per 100-animal increment (herd size, OR = 1.04, 95% CI, 1.01, 1.05) were significantly associated with the introduction of new MDR Salmonella strains. The negative binomial regression similarly revealed that commingled heifers [relative risk (RR) = 2.3, 95% CI: 1.1, 4.7], herd size per 100 animals (RR = 1.02, 95% CI, 1.01, 1.03), and a history of clinical salmonellosis diagnosed before the study (RR = 2.5, 95% CI, 1.3, 5.0) were significantly associated with the number of new MDR Salmonella strains that were introduced. Factors not associated with the introduction of new MDR Salmonella strains were housing of heifers and cows in the same close-up pen, a common hospital-maternity pen, and the number of purchased cattle. This study highlights the role of animal movement in the interherd transmission of MDR Salmonella spp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号