首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nine multiparous (250 ± 6 d in milk) and 3 primiparous (204 ± 6 d in milk) Holstein cows were utilized in a 3 × 3 Latin square design to evaluate the lactation performance of cows fed a diet containing dried distillers grains plus solubles (DDGS) with either corn silage or alfalfa hay as forage. Cows were fed total mixed diets containing corn silage (CS), 50% corn silage and 50% alfalfa hay (CSAH), or alfalfa hay (AH) as the forage source. All diets had a 50:50 forage-to-concentrate ratio, contained 15% DDGS, and were formulated to be equal in metabolizable protein. Dry matter intake increased when cows were fed CSAH (24.9 kg/d) compared with CS (21.9 kg/d) and AH (20.9 kg/d). Yields of milk (26.5, 28.4, 29.0 kg/d for CS, CSAH, and AH, respectively) increased linearly as proportions of alfalfa fed increased but 4% fat-corrected milk and energy-corrected milk were not affected by treatment. Feed efficiency (1.28, 1.23, and 1.45 kg of energy-corrected milk/kg of intake) improved when AH was fed compared with CS or CSAH. Milk fat concentration (3.67, 3.55, and 3.49%) decreased linearly when alfalfa replaced corn silage, but was observed only in primiparous cows, not multiparous cows. Milk protein concentration (3.32, 3.29, and 3.29%) was not affected by diet although yield (0.90, 0.96, and 0.98 kg/d) tended to increase linearly when alfalfa was added to the diet. This may have been due to an increase in essential amino acid (AA) availability and uptake by the mammary gland or to greater crude protein intake in cows fed AH. In addition, replacing corn silage with alfalfa increased the uptake of Lys by the mammary gland. Methionine was the first-limiting AA based on the transfer efficiency of AA in arterial plasma to milk protein. However, Lys was the first-limiting AA in CS and CSAH and Met was first limiting in AH for mammary gland extraction efficiency of AA from plasma. In conclusion, replacing corn silage with alfalfa hay in diets containing 15% DDGS increased milk yield and tended to increase milk protein yield linearly in cows during late lactation. Feeding alfalfa hay as the sole forage source improved feed efficiency compared with diets containing corn silage.  相似文献   

2.
Chromium (Cr) feeding in early lactation increased milk production in some studies, but responses to dietary Cr during peak lactation have not been evaluated. Furthermore, interactions of essential amino acids (AA) and Cr have not been explored. Our objective was to evaluate responses to CrPr (KemTRACE chromium propionate 0.04%, Kemin Industries Inc., Des Moines, IA) and rumen-protected Lys (LysiPEARL, Kemin Industries Inc.) and Met (MetiPEARL, Kemin Industries Inc.) and their interaction in peak-lactation cows. Forty-eight individually fed Holstein cows (21 primiparous, 27 multiparous, 38 ± 15 d in milk) were stratified by calving date in 12 blocks and randomly assigned to 1 of 4 treatments within block. Treatments were control, CrPr (8 mg/d of Cr), RPLM (10 g/d of Lys and 5 g/d of Met, intestinally available), or CrPr plus RPLM. Treatments were premixed with ground corn and top-dressed at 200 g/d for 35 d. Diets consisted of corn silage, alfalfa hay, and concentrates, providing approximately 17% crude protein, 31% neutral detergent fiber, and 40% nonfiber carbohydrates. Dry matter intake (DMI) significantly increased with the inclusion of CrPr (22.2 vs. 20.8 ± 0.67 kg/d), and energy-corrected milk (ECM) yield tended to increase. In addition, CrPr increased milk protein yield and tended to increase DMI in primiparous cows but not in multiparous cows. A CrPr × week interaction was detected for milk lactose content, which was increased by CrPr during wk 1 only (4.99 vs. 4.88 ± 0.036%). As a proportion of plasma AA, lysine increased and methionine tended to increase in response to RPLM, but the inclusion of RPLM decreased N efficiency (milk protein N:N intake). Digestible energy intake, gross energy digestibility, and energy balance were not affected by treatments. We observed no treatment effects on feed efficiency or changes in body weight or body condition score. In summary, feeding CrPr increased DMI and tended to increase ECM in cows fed for 5 wk near peak lactation, with primiparous cows showing greater responses in DMI and milk protein yield than multiparous cows.  相似文献   

3.
A blend of essential plant oils was evaluated for its effects on silage fermentation and animal performance. In the first experiment, the blend of essential oils was mixed with freshly chopped whole-plant corn to achieve a concentration of 0, 40, or 80 mg of active product per kilogram of fresh forage weight. Whole-plant corn was also mixed with a buffered propionic acid-based product at 0.2% of fresh forage weight. The blend of essential oils did not affect the populations of yeasts, molds, lactic acid bacteria, or enterobacteria; the fermentation end products; or the aerobic stability of the corn silage. Addition of the buffered propionic acid additive moderately reduced the production of acids during fermentation and resulted in a small reduction in the numbers of yeasts after ensiling, but did not affect aerobic stability. In a second experiment, 30 Holstein cows (4 primiparous and 26 multiparous) averaging 118 ± 70 d in milk and producing 38 ± 16 kg of milk/d were fed a total mixed ration, once daily, that consisted of (on a DM basis) 25% corn silage, 15% alfalfa silage, 10% alfalfa hay, and 50% concentrate. One-half of the cows were fed a blend of essential oils that was mixed directly into their total mixed ration to provide 1.2 g/cow per d for 9 wk. Cows fed the essential oils ate 1.9 kg more dry matter/d and produced 2.7 kg more 3.5% fat-corrected milk/d than did cows fed the control diet. The percentages of milk fat and protein, the somatic cell count numbers, and the concentrations of milk urea nitrogen were unaffected by treatment. Feed efficiency, change in body weight, and change in body condition scoring were also similar between treatments. After 12 h of incubation, the addition of a moderate dose and a high dose of essential oils to in vitro ruminal fermentations had no effect on the concentration of total VFA compared with the control treatment. However, they decreased the molar proportions of acetic, butyric, and valeric acids and increased the proportion of propionic acid. The blend of essential oils evaluated in this study altered in vitro ruminal fermentation and improved animal performance when fed directly to cows, but it did not affect the fermentation or aerobic stability of corn silage.  相似文献   

4.
Eight multiparous Holstein cows, 4 of them fitted with rumen cannulas, were used to test the effects of substitution of steam-flaked corn (SFC) for equal amounts of finely ground corn (FGC) in diets on feed intake and digestion, blood metabolites, and lactation performance in early lactation dairy cows. Cows were fed 4 diets in a replicated 4 × 4 Latin square design. The fistulated cows formed 1 replicate. Each experimental period lasted for 3 wk. The 4 diets contained 0, 10, 20, or 40% SFC and 40, 30, 20, or 0% FGC (dry matter basis), respectively. The milk protein content and yield, milk solid nonfat content and yield, plasma glucose concentration, and dry matter intake increased as the proportion of SFC increased in diets. Apparent total tract digestibilities of dry matter, organic matter, neutral detergent fiber, acid detergent fiber, and average ruminal fluid NH3-N concentration decreased with increasing levels of SFC. The ruminal fluid pH was not affected by the substitution of SFC for FGC. The 20% SFC substitution improved digestion of crude protein, yield of fat-corrected milk, milk lactose content, fat, and fat yield. The 40% SFC substitution increased urea concentration in both plasma and milk. It was concluded that 20% of SFC substitution for FGC appeared to be an appropriate level in diet for early lactation dairy cows.  相似文献   

5.
The effects of increasing levels of solvent-extracted palm kernel meal (SPKM) and corn distillers dried grains (CDG) in corn silage-based diets on feed intake and milk production were examined in 2 experiments. In Experiment 1, 20 Holstein cows averaging 100 d in milk (DIM) (SD = 61.5) at the start of the experiment were utilized in an 11-wk randomized complete block design with 4 treatments in 5 blocks to study effects of increasing levels of SPKM in the diet. During a 3-wk preliminary period, cows were fed a standard diet. At the end of the preliminary period, cows were blocked by 4% fat-corrected milk yield, parity number (primiparous and multiparous), and DIM, and were assigned randomly to 1 of 4 experimental diets. The total mixed ration (TMR) consisted of (dry matter basis) 40% corn silage, 5% coarsely chopped wheat straw, and 55% concentrate. The increasing dietary levels of SPKM were achieved by replacing protein sources and citrus pulp with SPKM and urea (0, 5, 10, and 15% SPKM and 0.06, 0.22, 0.38, and 0.55% urea for SPKM0, SPKM5, SPKM10, and SPKM15, respectively). In Experiment 2, 18 Holstein cows averaging 93 DIM (SD = 49.1) at the start of the experiment were utilized in an 11-wk randomized complete block design with 3 treatments in 6 blocks to study effects of increasing levels of CDG in the diet. The preliminary period lasted for 2 wk. Assignment of cows to treatments was the same as in Experiment 1. The TMR consisted of (dry matter basis) 40% corn silage, 5% coarsely chopped wheat straw, and 55% concentrate. The increasing dietary levels of CDG were achieved by replacing soybean meal and citrus pulp with CDG and urea (0, 7, and 14% CDG and 0, 0.22, and 0.49% urea for CDG0, CDG7, and CDG14, respectively). There were no significant treatment effects on dry matter intake, milk yield, or milk composition in Experiment 1. Inclusion of SPKM tended to increase protein and lactose contents of milk. The SPKM0 diet promoted body weight loss. There were no treatment effects in Experiment 2, except for milk protein content, which was decreased by CDG. Plasma Lys concentration tended to be affected by SPKM and CDG inclusions. Plasma concentrations of 3-methylhistidine and Leu seemed to be related to body protein degradation/synthesis. The feeding of SPKM up to 15% in the diet decreased feed costs without detrimental effects on productive responses and tended to increase milk protein content. The inclusion of CDG in diets based on corn silage and corn byproducts might decrease milk protein content due to an unbalanced supply of AA, particularly Lys.  相似文献   

6.
Fifteen Holstein cows (6 multiparous and 9 primiparous) in early lactation were used in a replicated 3 × 3 Latin square design with 5-wk periods to evaluate the use of condensed corn distillers solubles (CCDS) in the total mixed ration. Diets were control (0%), low (5%), or high (10% of dry matter) CCDS. All diets contained alfalfa hay, corn silage, rolled corn, and a concentrate supplement formulated to yield isonitrogenous diets. Condensed corn distillers solubles replaced a portion of the rolled corn and soybean meal in the control diet. Data were collected from wk 3 to 5 of each 5-wk period. Dry matter intakes (23.4, 24.4, and 22.5 kg/d for control, low, and high CCDS, respectively) were similar for CCDS and control and tended to be greater for low than for high CCDS. Milk yields (34.1, 35.5, and 35.8 kg/d) were greater for added CCDS vs. control, with no additional benefit found by feeding a high over a low amount of CCDS. Milk fat percentage decreased slightly, whereas protein and lactose production increased when cows were fed CCDS. Medium-chain fatty acids in milk fat were decreased and long-chain fatty acids increased by feeding CCDS, and similar changes were found comparing high with low level of CCDS. Unsaturated fatty acids in milk fat tended to be higher for diets containing CCDS compared with control and were higher for high compared with low inclusion. Ruminal ammonia and serum urea nitrogen concentrations were lower when cows were fed CCDS. This study indicated that it is advantageous to feed CCDS at 5% of dry matter; however, some beneficial changes in milk fatty acid composition were achieved by doubling that amount.  相似文献   

7.
Corn grain and corn silage are major feed components in lactating dairy cow rations. Bacillus thuringiensis (B.t.) is a naturally occurring soil bacterium that produces a protein that is toxic to lepidopteran insects that may damage plant tissues and reduce corn quality and yields. During each of the four 28-d periods, cows were offered 1 of 4 rations in which the corn grain and silage originated from different corn hybrids: a nontransgenic corn control (from hybrid DKC63-78; Monsanto Co., St. Louis, MO), a B.t. test substance corn (MON 89034 in hybrid DKC63-78; Monsanto Co.), and 2 commercial nontransgenic reference (Ref) hybrids: DKC61-42 (Ref 1) and DKC62-30 (Ref 2; Monsanto Co.). Sixteen multiparous Holstein cows averaging 110 ± 21 d in milk and weighing 684 ± 62.3 kg were blocked by days in milk and milk yield and randomly assigned to one of four 4 × 4 Latin squares. Diets were formulated to contain 36.4% corn silage and 16.3% corn grain. Dry matter intake was greater for cows consuming B.t. corn (26.6 ± 0.59 kg/d) compared with the control, Ref 1, and Ref 2 corn diets (25.4, 25.0, and 25.6 ± 0.59 kg/d, respectively). Milk yield, fat yield, and percentage of fat (36.8 ± 0.98 kg/d, 1.22 ± 0.05 kg/d, and 3.3 ± 0.10%), milk protein yield and percentage of protein (1.11 ± 0.03 kg/d and 3.01 ± 0.05%), milk urea nitrogen concentration (14.01 ± 0.49 mg/dL), and 3.5% fat-corrected milk yield (35.7 ± 1.07 kg/d) were not different across treatments. The results from this study show that lactating dairy cows that consume B.t. corn (MON 89034) do not differ from lactating dairy cows that consume nontransgenic corn in milk yield, 3.5% fat-corrected milk per unit of dry matter intake, or milk components.  相似文献   

8.
The objective was to evaluate the nutrient intake and digestibility and milk production response of lactating dairy cows fed diets based on corn silage produced from 3 different types of corn hybrids. Experimental diets contained 36.4% of the dietary dry matter (DM) from corn silage produced from normal (Agratech 1021, AgraTech Seeds Inc., Atlanta, GA), brown midrib (BMR; Mycogen F2F797, Mycogen Seeds, Indianapolis, IN), or waxy (Master's Choice 590, Master's Choice Hybrids, Ullin, IL) hybrids. Thirty-six multiparous and primiparous Holstein cows (66 ± 22 d in milk, 41 ± 8 kg/d of milk) were used in an 11-wk completely randomized design trial during the fall of 2009. All cows were fed a diet containing normal corn silage during the first 2wk of the trial before being assigned to 1 of 3 treatments for the following 9 wk. Data collected during the first 2 wk were used as a covariate in the statistical analysis. No difference was observed in dry matter intake (DMI) among treatments, which averaged 22.6 kg/d. Milk yield was higher for cows fed BMR (37.6 kg/d) compared with waxy (35.2 kg/d) but was similar to that of cows fed control (36.2 kg/d). Milk fat percentage tended to be lower for cows fed control (3.28%) compared with those fed BMR (3.60%) or waxy (3.55%) corn silage. Milk protein percentage tended to be lower for cows fed control (2.79%) compared with waxy (2.89%) but similar to that of those fed BMR (2.85%). No differences were observed in yield of milk components. Energy-corrected milk (ECM) yield and dairy efficiency (ECM:DMI) did not differ among treatments. Cows fed BMR tended to gain more body weight compared with those fed control and waxy. Results of this trial are consistent with previous reports in which cows fed diets based on corn silage produced from BMR hybrids have higher milk yield compared with those fed other hybrids. Corn silage produced from the waxy hybrid supported a similar yield of ECM because of higher milk components, but milk yield was not improved compared with the control.  相似文献   

9.
An experiment was conducted to evaluate the effect of type of corn endosperm on nutrient digestibility in lactating dairy cows. Near-isogenic variants of an Oh43 × W64A normal dent endosperm hybrid carrying floury-2 or opaque-2 alleles were grown in spatial isolation in field plots and harvested as dry shelled corn. Six ruminally cannulated, multiparous Holstein cows (67 ± 9 d in milk at trial initiation) were randomly assigned to a replicated 3 × 3 Latin square design with 14-d periods; the first 11 d of each period were for diet adaptation followed by 3 d of sampling and data collection. Treatment diets that contained dry rolled vitreous-, floury-, or opaque-endosperm corn [33% of dry matter (DM)], alfalfa silage (55% of DM) and protein-mineral-vitamin supplement (12% of DM) were fed as a total mixed ration. The percentage vitreous endosperm was zero for floury and opaque endosperm corns and 64 ± 7% for the vitreous corn. Prolamin protein content of floury and opaque endosperm corns was 30% of the content found in vitreous corn. Degree of starch access and in vitro ruminal starch digestibility measurements were 32 and 42% greater on average, respectively, for floury and opaque endosperm corns than for vitreous corn. Dry matter and starch disappearances after 8-h ruminal in situ incubations were, on average, 24 and 32 percentage units greater, respectively, for floury and opaque endosperm corns than for vitreous corn. Ruminal pH and acetate molar percentage were lower, propionate molar percentage was greater, and acetate:propionate ratio was lower for cows fed diets containing floury and opaque endosperm corns than for cows fed vitreous corn. In agreement with laboratory and in situ measurements, total-tract starch digestibility was 6.3 percentage units greater, on average, for cows fed diets containing floury and opaque endosperm corns than vitreous corn. Conversely, apparent total-tract neutral detergent fiber (NDF) digestibility was lower for cows fed diets containing floury and opaque endosperm corns compared with vitreous corn. The type of endosperm in corn fed to dairy cows can have a marked effect on digestion of starch and NDF. Feeding less vitreous corn increased starch digestion but decreased NDF digestion.  相似文献   

10.
Twenty-four multiparous Holstein cows (124 ± 39 d in milk; 682 ± 72 kg of body weight) were used in 6 simultaneous 4 × 4 Latin squares to evaluate full-fat corn germ as a fat source for lactating dairy cows. Experimental diets were a control (containing 28% ground corn, 23% alfalfa hay, 19% wet corn gluten feed, and 10% corn silage, dry matter basis), and 3 diets with either whole cottonseed (WCS), tallow (TAL), or full-fat corn germ (FFCG) added to provide 1.6% supplemental fat. Cows were fed twice daily for ad libitum intake. Dry matter intake, milk yield, and energy-corrected milk did not differ among diets. Efficiency of milk production (energy-corrected milk/dry matter intake) was greater for cows fed WCS than for cows fed the control, TAL, or FFCG. Milk fat percentage from cows fed FFCG was less than that of cows fed WCS or the control, but was similar to that of cows fed TAL. Milk protein percentage was less for cows fed FFCG than for those fed the control. Total saturated fatty acids were less in milk from cows fed fat sources, and cows fed WCS and TAL had greater saturated fatty acids in milk than did cows fed FFCG. Unsaturated fatty acids were greater in milk from cows fed FFCG than in milk from cows fed the control, WCS, or TAL. The cis-9, trans-11 conjugated linoleic acid content was greater in milk from cows fed WCS, TAL, and FFCG than from cows fed the control, and it was greater in milk from cows fed FFCG than in milk from cows fed WCS or TAL. These results indicate that FFCG can be used effectively as a fat source in diets for lactating dairy cattle.  相似文献   

11.
The objective was to evaluate the effects of feeding ground canola seed on the fatty acid profile, yield, and composition of milk from dairy cows. Twenty-four multiparous Holstein cows (548.3 ± 11.9 kg body weight and 28 ± 9 d in lactation) were randomly assigned to 1 of 2 treatments: Control (CON) or ground canola seed treatment (GCS) with 14% [of diet dry matter (DM)] of the total ration as ground canola seed containing 34% lipid. Diets contained 20% crude protein, but varied in net energy as a result of fat content differences of 2.5% and 6.4% (DM) for CON and GCS, respectively. Diets were composed of corn, corn silage, alfalfa (50:50 ground hay and haylage, DM basis), soybean and blood meal, and vitamins and minerals. Mechanically extruded canola meal was used in the CON diet to adjust for the protein from canola seed in the GCS diet. Cows were housed in tie-stalls and fed and milked twice daily for 10 wk. The inclusion of ground canola seed did not alter DM intake, weight gain, or body condition score of cows. Milk fat from GCS cows had greater proportions of long-chain fatty acids (≥18 carbons) and a lower ratio of n-6 to n-3 fatty acids. Feeding GCS reduced the proportion of short- and medium-chain fatty acids. Milk fat from cows fed GCS had a greater proportion of vaccenic acid and tended to have a higher proportion of cis-9,trans-11 conjugated linoleic acid. Actual and 3.5% fat-corrected milk yields were similar between treatments. The milk fat and protein percentages were lower for GCS cows, but total yield of these components was similar between treatments. Milk urea nitrogen was lower and serum urea nitrogen tended to be lower in cows fed canola seed. Serum glucose, insulin, and nonesterified fatty acids were not altered, but serum triglycerides were higher in GCS cows. Ammonia and total volatile fatty acids tended to be lower in ruminal fluid from GCS cows; rumen pH was unchanged. Feeding canola seed to lactating dairy cows resulted in milk fat with higher proportions of healthful fatty acids without affecting milk yield or composition of milk.  相似文献   

12.
Two experiments were conducted to evaluate responses of primiparous and multiparous Holstein cows to diets containing wet corn gluten feed (WCGF). In both experiments, WCGF replaced a mix of alfalfa hay, corn silage, and corn grain. In experiment 1, 32 primiparous Holstein cows (four pens with eight cows/pen) were used in two 2 x 2 Latin squares with 28-d periods. Cows were housed in free stalls and fed diets containing 0 or 20% WCGF dry matter (DM) basis. Cows fed WCGF consumed more DM and produced more energy-corrected milk (ECM) than controls. Production efficiency (ECM/DM intake) was not affected, but yield of milk components was improved by WCGF. In experiment 2, 24 multiparous Holstein cows were used in six 4 x 4 Latin squares with 28-d periods to determine the optimal dietary inclusion rate for WCGF. Cows were housed in a tie-stall barn and fed a total mixed ration twice daily. Treatments were 0, 20, 27.5, and 35% WCGF (DM basis). Cows fed WCGF produced more ECM than controls, but ECM did not differ among cows fed WCGF diets. Cows fed 20 and 27.5% WCGF consumed more DM as a percentage of body weight than those fed either 0 or 35% WCGF. Cows fed WCGF produced ECM more efficiently than controls. Percent milk fat was lower, but fat yield was not different when WCGF was added to diets. Milk protein and lactose yields were higher when WCGF was fed. Plasma glucose, alpha-amino N, and triglyceride concentrations were similar among diets in both experiments, but plasma urea N was higher for cows fed WCGF in experiment 2.  相似文献   

13.
Eight Holstein cows (4 primiparous and 4 multiparous) were used in a replicated 4 × 4 Latin square design to determine milk production response and N balance when diets had no NRC-predicted excess of rumen-undegradable protein (RUP) or rumen-degradable protein (RDP), 10% RUP excess, 10% RDP excess, or 10% excess of both RUP and RDP. Diets were fed as a total mixed ration with (dry matter basis) 25% alfalfa silage, 25% corn silage, 19 to 21% corn grain, and varying proportions of solvent soybean meal and expeller soybean meal as primary sources of supplemental RDP and RUP, respectively. Milk yield and dry matter intake (DMI) were recorded daily, and total collection of feces and urine was completed in the last 3 d of each 21-d period. Dietary crude protein averaged 17.5 and 18.5% for the recommended and excess RDP diets, respectively, and 17.3 and 18.4% for the recommended and excess RUP diets, respectively. When cows were fed excess RUP diets in the form of expeller soybean meal, DMI and milk production increased, but the opposite was true when the diets contained excess RDP in the form of solvent soybean meal. Milk composition was not affected by RDP, RUP, or by parity, and there were no parity × RDP interactions for any of the measurements. However, apparent digestibility of neutral detergent fiber, dry matter, and N increased in multiparous cows but not in primiparous cows because of excess RUP. The increase in the yield of milk N with excess RUP was not influenced by parity, but multiparous cows retained more of the additional N apparently absorbed, whereas primiparous cows excreted the additional apparently absorbed N in the urine. Overall, the difference in urinary N due to parity (70 g/d) was about 4 times greater than the impact of dietary treatments (17 g/d). Our results suggest that multiparous cows have either a much larger urea pool or a greater demand to restore body protein mobilized earlier in lactation compared with primiparous cows. Reduction in urinary N excretion in commercial dairy herds could be obtained by separately balancing rations for first and later lactations.  相似文献   

14.
Twenty-four lactating Holstein cows were used in a 6-wk randomized block design trial with a 2 × 2 factorial arrangement of treatments to determine the effects of feeding ground corn (GC) or steam-flaked corn (SFC) in diets based on either annual ryegrass silage (RS) or a 50:50 blend of annual ryegrass and corn silages (BLEND). Experimental diets contained 49.6% forage and were fed as a total mixed ration once daily for 4 wk after a 2-wk preliminary period. No interactions were observed among treatments. Cows fed BLEND consumed more dry matter (DM), organic matter (OM), neutral detergent fiber (NDF), and acid detergent fiber (ADF) than those fed RS, but total-tract digestibility of OM, NDF, and ADF was greater for RS than for BLEND. No differences in nutrient intake were observed among treatments during wk 4 when nutrient digestibility was measured, but digestibility of DM and OM was greater for SFC than for GC. Cows fed BLEND tended to produce more energy-corrected milk than those fed RS, resulting in improved efficiency (kg of milk per kg of DM intake). When diets were supplemented with SFC, cows consumed less DM and produced more milk that tended to have lower milk fat percentage. Yield of milk protein and efficiency was greatest with SFC compared with GC. Blood glucose and milk urea nitrogen concentrations were similar among treatments, but blood urea nitrogen was greater for cows fed GC compared with those fed SFC. Results of this trial indicate that feeding a blend of annual ryegrass and corn silage is more desirable than feeding diets based on RS as the sole forage. Supplementing diets with SFC improved performance and efficiency compared with GC across forage sources.  相似文献   

15.
The primary objective of this study was to determine lactation performance by dairy cows fed nutridense (ND), dual-purpose (DP), or brown midrib (BM) corn silage hybrids at the same concentration in the diets. A secondary objective was to determine lactation performance by dairy cows fed NutriDense corn silage at a higher concentration in the diet. One hundred twenty-eight Holstein and Holstein × Jersey cows (105 ± 38 d in milk) were stratified by breed and parity and randomly assigned to 16 pens of 8 cows each. Pens were then randomly assigned to 1 of 4 treatments. Three treatment total mixed rations (TMR; DP40, BM40, and ND40) contained 40% of dry matter (DM) from the respective corn silage hybrid and 20% of DM from alfalfa silage. The fourth treatment TMR had ND corn silage as the sole forage at 65% of DM (ND65). A 2-wk covariate adjustment period preceded the treatment period, with all pens receiving a TMR with equal proportions of DP40, BM40, and ND40. Following the covariate period, cows were fed their assigned treatment diets for 11 wk. nutridense corn silage had greater starch and lower neutral detergent fiber (NDF) content than DP or BM, resulting in ND40 having greater energy content (73.2% of total digestible nutrients, TDN) than DP40 or BM40 (71.9 and 71.4% TDN, respectively). Cows fed BM40 had greater milk yield than DP40, whereas ND40 tended to have greater milk yield and had greater protein and lactose yields compared with DP40. No differences in intake, component-corrected milk yields, or feed efficiency were detected between DP40, BM40, and ND40. Milk yield differences may be due to increased starch intake for ND40 and increased digestible NDF intake for BM40 compared with DP40. Intake and milk yield and composition were similar for ND40 compared with BM40, possibly due to counteracting effects of higher starch intake for ND40 and higher digestible NDF intake for BM40. Feeding ND65 reduced intake, and thus milk and component yields, compared with ND40 due to either increased ruminal starch digestibility or increased rumen fill for ND65. Nutridense corn silage was a viable alternative to both DP and BM at 40% of diet DM; however, lactation performance was reduced when nutridense corn silage was fed at 65% of DM.  相似文献   

16.
To evaluate effects of different dry period lengths on milk yield, milk composition, and energy balance of dairy cows, 122 multiparous and primiparous Holstein dairy cows were used in a completely randomized experimental design with 56-, 42-, and 35-d dry period lengths. Actual dry period lengths for respective treatments (TRT) were 56 ± 5.1 d, 42 ± 2.1 d, and 35 ± 2.7 d. Overall, cows in the 42- and 56-d TRT gained more body condition than those in 35-d TRT during the dry period; however, postpartum body condition score did not change substantially among the TRT. Although from 3 to 210 DIM, differences were not detected in the milk yield of multiparous cows between the 35- and 56-d TRT, primiparous cows in the 35-d TRT produced less milk than those in 56-d TRT. In primiparous cows, the milk production at wk 9, 10, and 11 of lactation was lower in the 35-d compared with the 56-d TRT. Primiparous cows in the 35-d compared with the 56-d TRT produced less milk protein. In the 35-d TRT, serum triglyceride concentration was greater in primiparous cows than in multiparous cows during the peripartum period. Among primiparous cows, those in the 56-d TRT had greater concentrations of nonesterified fatty acids than those in the 35-d TRT during the peripartum period. No significant differences were observed in concentrations of serum glucose, insulin, and insulin-like growth factor-I during early lactation among TRT. There was also no difference among TRT for incidence of metabolic disorders. Thus, this study indicates that shortening the dry period to 35 d may be beneficial in multiparous and overconditioned cows, but not in primiparous cows.  相似文献   

17.
Metritis, a common transition disease in dairy cows, reduces milk production during the duration of the disease. To our knowledge, no work has investigated the short-term effects of metritis on feed intake and the long-term consequences on milk yield and risk of culling. The objectives were to determine the effect of metritis on 305-d lactation curves, dry matter intake (DMI), reproduction, and the probability of being culled. Identifying differences in response to metritis between primiparous and multiparous cows was of interest. Milk records were collected twice daily from Holstein cows diagnosed with puerperal metritis (11 primiparous and 16 multiparous) or classified as healthy (14 primiparous and 43 multiparous) during the first 3 wk after calving. Metritic cows were treated at the discretion of the herd veterinarian. Lactation curves of healthy and metritic cows were compared using a mixed model with a Wilmink function. Differences in DMI, days open, and the number of services per conception were assessed using mixed models. The probabilities that cows with and without metritis were not bred, were bred but never confirmed pregnant, or were culled were compared using Fisher's exact tests. Primiparous and multiparous animals were assessed separately. Multiparous cows with metritis produced less milk (35.1 ± 1.5 vs. 39.2 ± 1.0 kg/d), ate less during the 3 wk after calving (12.2 ± 1.2 vs.14.0 ± 0.8 kg/d), and were more likely to be culled (50.0%) than healthy cows (20.9%). The decision to cull was likely influenced by the lower milk yield in early lactation as a result of metritis; the decision to cull was made early, as 7 of the 8 culled metritic cows were not bred. No differences were found in any measurement between primiparous cows with and without metritis. These results indicate that metritis in early lactation has long-term effects on multiparous cows but not primiparous cows.  相似文献   

18.
This study was conducted to investigate the nutrient digestibility and lactation performance when alfalfa was replaced with rice straw or corn stover in the diet of lactating cows. Forty-five multiparous Holstein dairy cows were blocked based on days in milk (164 ± 24.8 d; mean ± standard deviation) and milk yield (29.7 ± 4.7 kg; mean ± standard deviation) and were randomly assigned to 1 of 3 treatments. Diets were isonitrogenous, with a forage-to-concentrate ratio of 45:55 [dry matter (DM) basis] and contained identical concentrate mixtures and 15% corn silage, with different forage sources (on a DM basis): 23% alfalfa hay and 7% Chinese wild rye hay (AH), 30% corn stover (CS), and 30% rice straw (RS). The experiment was conducted over a 14-wk period, with the first 2 wk for adaptation. The DM intake of the cows was not affected by forage source. Yield of milk, milk fat, protein, lactose, and total solids was higher in cows fed diets of AH than diets of RS or CS, with no difference between RS and CS. Contents of milk protein and total solids were higher in AH than in RS, with no difference between CS and AH or RS. Feed efficiency (milk yield/DM intake) was highest for cows fed AH, followed by RS and CS. Cows fed AH excreted more urinary purine derivatives, indicating that the microbial crude protein yield may be higher for the AH diet than for RS and CS, which may be attributed to the higher content of fermentable carbohydrates in AH than in RS and CS. Total-tract apparent digestibilities of all the nutrients were higher in cows fed the AH diet than those fed CS and RS. The concentration of rumen volatile fatty acids was higher in the AH diet than in CS or RS diets, with no difference between CS and RS diets. When the cereal straw was used to replace alfalfa as a main forage source for lactating cows, the shortage of fermented energy may have reduced the rumen microbial protein synthesis, resulting in lower milk protein yield, and lower nutrient digestibility may have restricted milk production.  相似文献   

19.
Lactating Holstein cows (52 multiparous and 90 primiparous) were monitored over a period of 10 mo to observe effects of grouping primiparous cows (PPC) separately from multiparous cows (MPC) on performance, feeding behavior, feed intake, feed efficiency, and milk production of PPC. Cows were kept in 2 symmetrical pens each equipped with a robotic milking unit, 2 waterers, and 28 feeding spaces. Typically, 100 lactating cows were present at a time, thereby ensuring 1.78 cows per feeding place in each pen. One pen (PP) was composed exclusively of PPC whereas the other pen (PM) included 30% PPC and 70% MPC. Primiparous cows were evenly distributed to each pen by days in milk and daily milk production. As they calved, additional primiparous cows were assigned sequentially to each of the 2 treatment groups; multiparous cows calving during the study were allocated to the PM group. Both PP and PM groups were managed equally and were fed the same basal ration twice daily plus 3 kg/d of concentrate during milking. Individual eating behavior and feed consumption at each visit were monitored electronically. Milk production was recorded daily, and milk composition monthly. Observed arithmetic means and standard errors are presented but application to other management situations is limited because animals within pen were not independent. Total dry matter intake (18.7 vs. 18.1 ± 0.9 kg/d) and milk production (25.9 vs. 25.6 ± 0.8 kg/d) of PPC were similar in both the PM and PP groups, respectively. Primiparous cows in the PP group had numerically more visits to the robotic milking unit (3.26 vs. 2.68 ± 0.15) and to the feed troughs (4.91 vs. 4.02 ± 0.43), but apparently spent less time eating (2.72 vs. 3.22 ± 0.1 h/d) than did PPC in the PM group. Differences in feed efficiency were low but PPC in the PP group had numerically higher feed efficiency at times through 200 d in milk. Alternative grouping strategies illustrate potentially important differential responses among primiparous cows that warrant further study.  相似文献   

20.
We theorized that adding corn silage to a total mixed ration with alfalfa hay as the sole dietary forage would improve nutrient intake and chewing activity and thereby improve rumen fermentation and milk production. The objective of this research was to determine the effects of partial replacement of short alfalfa [physically effective (pe) neutral detergent fiber (NDF) >1.18 mm (peNDF>1.18) = 33.2%] with corn silage (CS, peNDF>1.18 = 51.9%) in yellow grease-supplemented total mixed rations on feed intake, chewing behavior, rumen fermentation, and lactation performance by dairy cows. Four multiparous (138 ± 3 d in milk) and 4 primiparous (115 ± 10 d in milk) Holstein cows were used in a 4 × 4 Latin square design experiment with four 21-d periods. Each period had 14 d of adaptation and 7 d of sampling, and parity was the square. Treatments were diets [dry matter (DM) basis] with 1) 40% alfalfa hay (ALF), 2) 24% alfalfa hay + 16% CS (CS40), 3) 20% alfalfa hay + 20% CS (CS50), and 4) 16% alfalfa hay + 24% CS (CS60). Diets had a forage-to-concentrate ratio of 40:60 on a DM basis. Cows had greater intake of DM and thus greater intakes of net energy for lactation, NDF, and peNDF when CS partially replaced alfalfa hay. Replacing alfalfa hay with CS increased daily eating and chewing times in all cows, and increased rumen pH at 4 h postfeeding in multiparous cows. Apparent total-tract digestibility coefficients for crude protein (CP) and NDF were not different among cows fed ALF, CS40, and CS50, but were lower for CS60 than for ALF. Energy-corrected milk yield was greater for CS40 and CS60 than for ALF. Milk protein yield was increased when CS replaced 40, 50, and 60% of alfalfa hay. Milk lactose was greater only for CS60, but milk lactose yield was greater for CS50 and CS60 than for ALF. Milk percentage and yield of fat did not differ among treatments. Therefore, CS partially replacing short alfalfa hay increased DM intake, consequently increased net energy for lactation and physically effective fiber intakes, and thus, improved milk and milk protein and lactose yields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号