首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A batch of full-fat (23% target fat) and 3 batches of low-fat (6% target fat) Iranian white cheese with different rennet concentrations (1-, 2-, and 3-fold the normal usage) were produced to study the effect of fat content reduction and promoted proteolysis on the textural and functional properties of the product. Cheese samples were analyzed with respect to their rheological parameters (uniaxial compression and small amplitude oscillatory shear), meltability, microstructure, and sensory characteristics. Reduction of fat content from 23 to 6% had adverse effects on the texture, functionality, cheese-making yield, and sensory characteristics of Iranian white cheese. Fat reduction increased the instrumental hardness parameters (storage modulus, stress at fracture, and Young's modulus of elasticity), decreased the cheese meltability and yield, and made the microstructure more compact. Doubling the rennet concentration reduced values of instrumental hardness parameters, increased the meltability, and improved the sensory impression of texture. Although increasing the rennet concentration to 2-fold the normal usage resembled somewhat the low-fat cheese to its full-fat counterpart, it appeared to cause more reduction in yield. Increasing the rennet concentration 3-fold the normal usage produced a product slightly more elastic than the low-fat cheese with normal concentration of rennet. Increasing the rennet concentration to 2-fold the normal usage was useful for improving the textural, functional, and sensory properties of low-fat Iranian white cheese.  相似文献   

2.
The effect of the concentration of starter inoculated to milk on the composition, free tyrosine-tryptophan content, microstructure, opacity, and fracture stress of Iranian White cheese (IWC) was studied during 50 d of ripening in brine. Three treatments of cheese were made using 1-fold (IWC1S), 2-fold (IWC2S), and 4-fold (IWC4S) concentrations of a direct-to-vat mesophilic mixed culture containing Lactococcus lactis ssp. cremoris and Lactococcus lactis ssp. lactis as starter. As ripening progressed, moisture and protein contents of the treatments continuously decreased, whereas their total ash, salt, and salt in moisture contents increased. Fat content and pH of cheeses remained stable during ripening. The pH of cheese milk at the time of renneting, which decreased by increasing the concentration of starter (6.57, 6.49, and 6.29 for IWC1S, IWC2S, and IWC4S, respectively), significantly affected most of the chemical characteristics and opacity of cheese. Lower pH values at renneting decreased moisture and ash contents, whereas cheese protein content increased. The concentration of free tyrosine-tryptophan in curd increased at first 29 d but decreased between d 29 and 49 of aging. The changes observed in cheese whiteness followed the changes in moisture content of the treatments. As the concentration of starter inoculated to milk increased, the value of fracture stress at a given ripening time significantly decreased, leading to a less resistant body against applied stress. A similar trend was also observed for fracture strain during cheese ripening. The micrographs taken by scanning electron microscopy provided a meaningful explanation for decrease in the value of fracture stress. As the cheese ripening progressed or the concentration of starter increased, the surface area occupied by the protein fraction in cheese microstructure decreased, leading the way to lower the force-bearing component in cheese texture.  相似文献   

3.
The effect of milk coagulation temperature on the composition, microstructure monitored using scanning electron micrographs, opacity measured by a Hunter lab system, and rheological behavior measured by uniaxial compression and small amplitude oscillatory shear were studied. Three treatments of Iranian White cheese were made by applying coagulation temperatures of 34, 37, and 41.5°C during the cheese-making procedure. A higher coagulation temperature resulted in increased fat and protein contents, and decreased the moisture content and ratio of moisture to protein. The highest temperature (41.5°C) had a significant effect on the opacity of Iranian White cheese. Milk coagulation at this temperature decreased the whiteness index (Hunter L value) and increased the yellowness index (Hunter b value) of the aged product compared with cheeses coagulated at lower temperatures. Microstructure of the cheese coagulated at 41.5°C was more compact and undisturbed, reflecting the higher values of stress at fracture and storage modulus measured for this treatment.  相似文献   

4.
This study investigated the effects of aging and fat content on the texture of Cheddar cheese, both mechanical and sensory aspects, over a 9-mo aging period. Cheeses of 6, 16, and 33% fat were tested at 0.5, 3, 6, and 9 mo of aging. Cheeses were evaluated by a trained sensory panel using an established texture lexicon as well as instrumental methods, which were used to probe cheese structure. Sensory analysis showed that low-fat cheeses were differentiated from full-fat cheeses by being more springy and firm and this difference widened as the cheeses aged. In addition, full-fat cheeses broke down more during chewing than the lower fat cheeses and the degree of breakdown increased with aging. Mechanical properties were divided by magnitude of deformation during the test and separated into 3 ranges: the linear viscoelastic region, the nonlinear region, and fracture point. These regions represent a stress/strain response from low to high magnitude, respectively. Strong relationships between sensory terms and rheological properties determined in the linear (maximum compliance) and nonlinear (critical stress and strain and a nonlinear shape factor) regions were revealed. Some correlations were seen with fracture values, but these were not as high as terms related to the nonlinear region of the cheeses. The correlations pointed to strain-weakening behavior being the critical mechanical property. This was associated with higher fat content cheeses breaking down more as strain increased up to fracture. Increased strain weakening associated with an increase in fat content was attributed to fat producing weak points in the protein network, which became initiation sites for fracture within the structure. This suggests that fat replacers need to serve this functional role.  相似文献   

5.
Date syrup as a nutritional additive and safe alternative to added sugar is one of the best choices for milk flavoring. In this study, a flavored milk beverage was formulated using date syrup for flavoring the product and gum tragacanth to obtain an acceptable mouth feel. Steady shear and dynamic oscillatory rheological properties of the samples contained 3 concentrations (0, 0.1, 0.2, and 0.3%, wt/wt) of 2 types of gum tragacanth (Astragalus gossypinus and Astragalus rahensis) which at 3°C, were studied. Particle size distribution and colorimetric assays were determined by laser diffractometry and using reflection spectrometer, respectively. Sensory analysis was performed with 25 semitrained panelists, using a 5-point hedonic scale. The results showed that viscoelastic properties, flow behavior parameters, particle size, and color parameters (L*, a*, and b*, where L* represents lightness, a* represents the redness/greenness quality of the color, and b* represents the yellowness and blueness quality of the colors) were significantly affected by the concentration of the gum tragacanth and the severity of this effect was influenced by the type of gum. The use of appropriate type and concentration of gum tragacanth in date milk formulation can improve the texture and mouth feel by affecting on particle size and the flow behavior of this product.  相似文献   

6.
Reduced- and low-fat cheeses are desired based on composition but often fall short on overall quality. One of the major problems with fat reduction in cheese is the development of a firm texture that does not break down during mastication, unlike that observed in full-fat cheeses. The objective of this investigation was to determine how the amount of fat affects the structure of Cheddar cheese from initial formation (2 wk) through 24 wk of aging. Cheeses were made with target fat contents of 3 to 33% (wt/wt) and moisture to protein ratios of 1.5:1. This allowed for comparisons based on relative amounts of fat and protein gel phases. Cheese microstructure was determined by confocal scanning laser microscopy combined with quantitative image analysis. Rheological analysis was used to determine changes in mechanical properties. Increasing fat content caused an increase in size of fat globules and a higher percentage of nonspherical globules. However, no changes in fat globules were observed with aging. Cheese rigidity (storage modulus) increased with fat content at 10°C, but differences attributable to fat were not apparent at 25°C. This was attributable to the storage modulus of fat approaching that of the protein gel; therefore, the amount of fat or gel phase did not have an effect on the cheese storage modulus. The rigidity of cheese decreased with storage and, because changes in the fat phase were not detected, it appeared to be attributable to changes in the gel network. It appeared that the diminished textural quality in low-fat Cheddar cheese is attributed to changes in the breakdown pattern during chewing, as altered by fat disrupting the cheese network.  相似文献   

7.
This research was performed to evaluate the rheological properties of myofibrillar protein gels (MPs) with basil seed gum (BSG) alone or in combination with gelatin (0.25%, 0.5%), and to determine the physicochemical properties of low‐fat sausages (LFSs) manufactured with BSG alone (0.5%) or combined with gelatin (0.25%). Viscosity and cooking yields (%) of MPs with BSG alone or in combination with gelatin were higher than those of the control. However, gel strength of MPs with the combination of BSG and gelatin (0.25%) was higher than that with BSG alone. The combination of BSG and gelatin produced a more stable and denser structure than control or BSG alone. In the LFSs, the addition of BSG reduced the percentages of expressible moisture and cooking loss, and the combination of the BSG and gelatin improved gumminess and cohesiveness compared to BSG alone. The use of BSG as a water binding agent and gelatin to improve gel formation will be considered as fat replacer for the manufacture of low‐fat comminuted sausages.  相似文献   

8.
The effect of whey protein concentrate (WPC) and gum tragacanth (GT) as fat replacers on the chemical, physical, and microstructural properties of nonfat yogurt was investigated. The WPC (7.5, 15, and 20 g/L) and GT (0.25, 0.5, 0.75, and 1 g/L) were incorporated into the skim milk slowly at 40 to 45°C with agitation. The yogurt mixes were pasteurized at 90°C for 10 min, inoculated with 0.1% starter culture, and incubated at 42°C to pH 4.6, then refrigerated overnight at 5°C. A control nonfat yogurt and control full fat yogurt were prepared as described, but without addition of WPC and GT. Increasing amount of WPC led to the increase in total solids, total protein, acidity, and ash content, whereas GT did not affect chemical parameters. Increasing WPC caused a more compact structure consisting of robust casein particles and large aggregates. Firmness was increased and susceptibility to syneresis was decreased as WPC increased. No significant difference was observed for firmness and syneresis of yogurt fortified with GT up to 0.5 g/L compared with control nonfat yogurt. Increasing the amount of gum above 0.5 g/L produced softer gels with a greater tendency for syneresis than the ones prepared without it. Addition of GT led to the coarser and more open structure compared with control yogurt.  相似文献   

9.
10.
11.
Serum separation in Doogh, a favorite acidic dairy drink in the Middle East, is a major problem which happens due to low pH (≤4.00) and aggregation of caseins. Therefore, in the present study the influence of gum tragacanth (GT) and its soluble and insoluble fractions on prevention of serum separation as well as stabilization mechanisms were investigated using rheological, zeta potential and microscopic measurements. According to our findings, the soluble tragacanthin (T) and GT prevented serum separation at concentrations of 0.100 and 0.200%, respectively. Furthermore, the proper rheological model for control was Newtonian whereas for the others it was Power law. Based on viscoelastic experiments, Dooghs containing T and GT exhibited dominant viscose and elastic behaviors, respectively. In addition, the presence of T and GT changed the zeta potential values from positive to negative. It was elucidated that T adsorbs onto casein and induces stabilization via electrostatic and steric repulsions. Moreover, the insoluble bassorin (B) may assist stabilization by increasing the viscosity.  相似文献   

12.
Thirteen Ras cheese were made from 4% fat raw milk; 3% raw and heat treated; 2% raw and heat treated milks in order to study the effect of freeze-shocked or heat-shocked L. casei NIH 334 or L. helveticus CNRZ 53 on the quality of the resultant cheeses. The soluble nitrogen, soluble tyrosine, soluble tryptophan, total volatile fatty acids, titratable acidity and organoleptic evaluation scores increased as ripening period progressed, while moisture decreased. Neither strain nor the heated lactobacilli had significant effects on moisture content of cheeses, while increasing their acidity. Cheeses with freeze-shocked L. casei or L. helveticus had higher titratable acidity than cheeses in which heat-shocked cells were added. However, cheeses added L. helveticus had higher acidity than those with L. casei. Ripening indices (soluble nitrogen, soluble tyrosine, soluble tryptophan and total volatile fatty acids) and organoleptic evaluation scores had similar trends. Cheeses with attenuated lactobacilli had higher ripening indices and cheese scores than cheeses without lactobacilli. Addition of either freeze-shocked L. casei or L. helveticus yielded cheeses having higher ripening indices and organoleptic scores than cheeses made with heat-shocked lactobacilli. The best cheeses were made from 3% fat milk heated to 70 °C, and containing freeze-shocked L. helveticus followed by cheeses made from 2% fat milk heated to 75 °C and containing freeze-shocked L. helveticus.  相似文献   

13.
目的研究脂肪替代物对部分脱脂Mozzarella干酪的流变学特性及微观结构的影响。方法通过测定不同脂肪替代物(菊粉、麦芽糖醇、WPC-80、大豆卵磷脂)制成的部分脱脂干酪的基本组分、流变学特性、粘弹性模量变化、微观结构,研究不同脂肪替代物对干酪的影响。结果菊粉、WPC-80、大豆卵磷脂均能提高部分脱脂干酪的水分含量,加入脂肪替代物的干酪的pH明显低于对照组部分脱脂干酪的pH。WPC-80 G菊粉G大豆卵磷脂G麦芽糖醇G对照G,说明加入脂肪替代物能显著改善部分脱脂干酪的黏弹流变学特性。结论麦芽糖醇作为脂肪替代物替代脂肪的效果较好,能提高蛋白分子间疏水作用,加入麦芽糖醇的部分脱脂干酪的黏弹性与对照组最为接近。  相似文献   

14.
目的筛选出生产低脂干酪所需添加较为适宜的附属发酵剂。方法选择7株乳酸菌作为研究对象,测定其总肽酶活力、菌株生产能力、产酸能力、产粘能力、菌体自溶度、产胞外多糖数量、蛋白质水解能力等7种指标。结果 7株乳酸菌中嗜酸乳杆菌(Lactobacillus acidophilus,LA)总肽酶活力最高,为(256.46±11.88)μg/L,植物乳杆菌(Lactobacillus plantarum,LP)最低;菌株生长能力LA最好;菌株副干酪乳杆菌(Lactobacillus paracasei,LPC)在发酵10 h后的产酸能力最强且趋于稳定,pH在3.8左右;LP菌株产粘能力最优,为(168.10±14.72)mPa·s;瑞士乳杆菌(Lactobacillus helveticus,LH)菌株自溶度最好,达到35%;产胞外多糖数量最优菌株是LP,含量为(792.69±35.94)mg/L;LH的蛋白质水解能力最高,水解产生的游离氨基酸含量为(94.78±2.82)mg/L。结论 LH作为低脂干酪的附属发酵剂较好。  相似文献   

15.
Scientific studies indicate that the intake of dietary fat and saturated fats in the modern Western diet is excessive and contributes adversely to health, lifestyle, and longevity. In response, manufacturers of cheese and processed cheese products (PCP) are pursuing the development of products with reduced fat contents. The present study investigated the effect of altering the fat level (13.8, 18.2, 22.7, 27.9, and 32.5 g/100 g) in PCP on their chemical and physical properties. The PCP were formulated in triplicate to different fat levels using Cheddar cheese, skim milk cheese, anhydrous milk fat, emulsifying salt (ES), NaCl, and water. The formulations were designed to give fixed moisture (~53 g/100 g) and ES:protein ratio (0.105). The resultant PCP, and their water-soluble extracts (WSE), prepared from a macerated blend of PCP and water at a weight ratio of 1:2, were analyzed at 4 d. Reducing the fat content significantly increased the firmness of the unheated PCP and reduced the flowability and maximum loss tangent (fluidity) of the melted PCP. These changes coincided with increases in the levels of total protein, water-soluble protein, water-insoluble protein, and water-soluble Ca, and a decrease in the molar ratio of water-soluble Ca to soluble P. However, both water-soluble Ca and water-soluble protein decreased when expressed as percentages of total protein and total Ca, respectively, in the PCP. The high level of protein was a major factor contributing to the deterioration in physical properties as the fat content of PCP was reduced. Diluting the protein content or reducing the potential of the protein to aggregate, and thereby form structures that contribute to rigidity, may provide a means for improving quality of reduced-fat PCP by using natural cheese with lower intact casein content and lower calcium:casein ratio, for example, or by decreasing the ratio of sodium phosphate to sodium citrate-based ES.  相似文献   

16.
Cheddar cheese was manufactured from recombined milk containing fat globules coated with alpha(s1)-CN (casein), alpha(s2)-CN, beta-CN, kappa-CN, alpha-lactalbumin, or beta-lactoglobulin. The effect of the coating on fat globule structure, free oil formation, and cheese rheology was investigated to determine if globule coating affected the physical structure of cheese. Fat globule size and shape were determined in cheese using confocal laser scanning microscopy, and the rheological properties measured by uniaxial compression after maturation for 35 and 70 d. Fat globules were elongated and clustered in the control cheese coated with native membrane material and in cheese where the globules were coated with alpha(s2)-CN, but were more circular and distinct than all others. Cheese containing globules coated with alpha(s2)-CN fractured at a lower strain and with a lower stress than other experimental cheeses. Free oil decreased in cheese as the stress at fracture of the cheese protein matrix increased. Strain at fracture increased as pH increased from 4.7 to 5.3. There was no correlation between free oil and fat globule circularity. Cheddar cheese aroma was not evident in experimental cheeses.  相似文献   

17.
The functionality of Zedu gum as a fat mimetic in low‐fat brined cheese was studied. The physicochemical, textural, rheological, microstructural and sensory properties of cheese samples modified with 0.1% and 0.25% of Zedu gum were compared to those of control cheeses (low‐fat and full‐fat cheeses with no fat mimetic) during ripening. To obtain further information about the cheeses' structure and interactions between macromolecules (casein protein and Zedu gum), other parameters were analysed by differential scanning calorimetry and Fourier transform infrared (FTIR) spectroscopy. Incorporation of Zedu gum into low‐fat cheese caused an open microstructure and softer texture in comparison with the control low‐fat cheese. The thermal properties and FTIR spectra of the cheeses were influenced by both fat mimetic and ripening time. On days 1 and 60 of ripening time, the lower value of enthalpy of the low‐fat cheese with 0.25 g of Zedu gum/kg of milk (AS 0.25) in comparison with control low‐fat cheese could have been due to the electrostatic nature of the interactions between Zedu gum and casein protein. On both days, the FTIR spectrum of AS 0.25 showed a well separated absorption at 1746 cm?1 possibly due to the formation of ester groups as a result of the interaction of the carbonyl groups in Zedu gum with the hydroxyl groups of some amino acids in casein.  相似文献   

18.
Normally, reduced-fat Cheddar cheese is made by removal of fat from milk prior to cheese making. Typical aged flavor may not develop when 50% reduced-fat Cheddar cheese is produced by this approach. Moreover, the texture of the reduced-fat cheeses produced by the current method may often be hard and rubbery. Previous researchers have demonstrated that aged Cheddar cheese flavor intensity resides in the water-soluble fraction. Therefore, we investigated the feasibility of fat removal after the aging of Cheddar cheese. We hypothesized the typical aged cheese flavor would remain with the cheese following fat removal. A physical process for the removal of fat from full-fat aged Cheddar cheese was developed. The efficiency of fat removal at various temperatures, gravitational forces, and for various durations of applied forces was determined. Temperature had the greatest effect on the removal of fat. Gravitational force and the duration of applied force were less important at higher temperatures. A positive linear relationship between temperature and fat removal was observed from 20 to 33 degrees C. Conditions of 30 degrees C and 23,500 x g for 5 min removed 50% of the fat. The removed fat had some aroma but little or no taste. The fatty acid composition, triglyceride molecular weight distribution, and melting profile of the fat retained in the reduced-fat cheeses were all consistent with a slight increase in the proportion of saturated fat relative to the full-fat cheeses. The process of fat removal decreased the grams of saturated fat per serving of cheese from 6.30 to 3.11 g. The flavor intensity of the reduced-fat cheeses were at least as intense as the full-fat cheeses.  相似文献   

19.
BACKGROUND: This aim of this study was the production and rheological characterisation of xanthan gum by Xanthomonas campestris pv. mangiferaeindicae IBSBF 1230 using industrial media and experimental design techniques in a bench bioreactor. RESULTS: The optimised conditions for the production of xanthan starting with 900 mL of cheese whey were 1 g L?1 magnesium sulphate, 20 g L?1 potassium phosphate, 28 °C temperature and initial pH 7.2 at 390 rpm agitation and 1.5 vvm aeration, resulting in 36 g L?1 gum in 72 h. The highest viscosity obtained in the production optimisation study was 1831.34 mPa s at 25 °C with 30 g L?1 gum. The use of CaCl2 resulted in the highest solution viscosity under conditions of 25 °C, 1 g L?1 salt and 46.8 g L?1 gum, with a value of 1704.53 mPa s. CONCLUSION: In this study, cheese whey, a by‐product of the dairy industry, was used as substrate in the production of xanthan gum, a valuable product in food applications, with optimised high gum production in a bioreactor and a wide range of viscosity values. Copyright © 2009 Society of Chemical Industry  相似文献   

20.
将总浓度为1%的刺云实胶(TG)与黄原胶(XTG)按照不同的质量比复配,采用质构仪和流变仪对复配体系的凝胶特性和流变学特性进行测定,通过Carreau模型对流动曲线进行拟合分析,并利用电子扫描显微镜分析复配体系网络形成机理。结果表明:在质构分析中TG与XTG质量比为64时有最大的凝胶强度;在流变分析中TG与XTG质量比为64时呈现最大表观黏度并且在频率扫描和温度扫描中表现出最大的储能模量(G′)。因此,TG与XTG的最佳复配比例为质量比64。在pH为5~10时,最佳复配比例体系的黏度保持相对稳定;当添加盐离子(Na+、Ca2+)后,体系黏度降低,Ca2+降低的趋势更为显著。通过电子扫描显微镜(SEM)分析,表明在TG与XTG之间存在明显的协同增效作用,可形成良好的凝胶网络结构。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号