首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Jersey (JE) × Holstein (HO) crossbred cows (n = 76) were compared with pure HO cows (n = 73) for 305-d milk, fat, and protein production, somatic cell score (SCS), clinical mastitis, lifetime production, and body measurements during their first 3 lactations. Cows were in 2 research herds at the University of Minnesota and calved from September 2003 to June 2008. Best prediction was used to determine actual production for 305-d lactations as well as lifetime production (to 1,220 d in the herd after first calving) from test-day observations. During first lactation, JE × HO cows and pure HO cows were not significantly different for fat plus protein production; however, JE × HO cows had significantly lower fat plus protein production during second (−25 kg) and third (−51 kg) lactation than pure HO cows. Nevertheless, JE × HO cows were not significantly different from pure HO cows for lifetime production or lifetime SCS. The JE × HO cows were not significantly different from pure HO cows for SCS and clinical mastitis during first and second lactations; however, JE × HO cows tended to have higher SCS (3.79) than pure HO cows (3.40), but significantly lower (−23.4%) clinical mastitis during third lactation. The JE × HO cows had significantly less hip height, smaller heart girth, less thurl width, and less pin width than pure HO cows during the first 3 lactations. Furthermore, JE × HO cows had significantly less udder clearance from the ground and significantly greater distance between the front teats than pure HO cows during their first 3 lactations.  相似文献   

2.
Nine mathematical models were compared for their ability to predict daily milk yields (n = 294,986) in standard 305-d and extended lactations of dairy cows of Costa Rica. Lactations were classified by parity (first and later), lactation length (9 to 10, 11 to 12, 13 to 14, 15 to 16, and 16 to 17 mo), and calving to conception interval (1 to 2, 3 to 4, 5 to 6, 7 to 8, and 9 to 10 mo). Of the nine models, the diphasic model and lactation persistency model resulted in the best goodness of fit as measured by adjusted coefficient of determination, residual standard deviation, and Durbin-Watson coefficient. All other models showed less accuracy and positively correlated residuals. In extended lactations, models were also fitted using only test-day records before 305 d, which resulted in a different ranking. The diphasic model showed the best prediction of milk yield in standard and extended lactations. We concluded that the diphasic model provided accurate estimates of milk yield for standard and extended lactations. Interpretation of parameters deserves further attention because of the large variation observed. As expected, the calving to conception interval was found to have a negative effect on milk yield for cows with a standard lactation length. In extended lactations, these negative effects of pregnancy on milk yield were not observed.  相似文献   

3.
The objectives of this study were to compare the multiple trait prediction (MTP) model estimate of 305-d lactation yield with the 305-d daily milk yield data from on-farm automated meters and software and to examine the accuracy of electronic identification (ID). Twenty-four-hour milk and component yields are calculated by using milk weights and samples collected 8 to 10 times/yr by Dairy Herd Improvement (DHI) organizations. Daily milk weights were collected from cows on 20 Canadian farms that used parlor milking systems with electronic ID and that were enrolled in a regular DHI program. A total of 10,175 DHI test days from 1,103 cows with complete 305-d lactation yields were entered into the MTP model, and lactation yields were predicted. Test days were grouped into first, second, and third and greater lactations and within each lactation group, days in milk were categorized in 3 stages (5 to 60, 61 to 120, and 120 to 305 d in milk) for a total of 9 classes. Agreement analysis was used to compare the 305-d sum of daily milk to the MTP 305-d lactation yield predictions by using inputs from test days throughout the lactations. Results indicated that the MTP model overestimated lactation yields across all parity groups, ranging from 310 to 1,552 kg in parity 1, 640 to 2,000 kg in parity 2, and 567 to 1,476 kg in parity 3 and greater. A preliminary examination of electronic ID accuracy was conducted on 4 farms. Two electronic ID systems were examined for cow ID accuracy by verifying the ID number appearing in the parlor with the corresponding ear tag number. There were no ID errors on 3 of 4 farms tested and only a very small number of errors (3/80) on the fourth farm, indicating that the electronic ID systems used in milking parlors identify cows accurately.  相似文献   

4.
Cases of mastitis from 9,550 lactations of 6,242 cows were recorded on 5 farms in the Czech Republic from 1996 to 2008. The number of clinical mastitis (CM) cases per cow adjusted to a lactation length of 305 d was analyzed with 4 linear single-trait animal models and one 3-trait model, which also included lactation mean somatic cell score (SCS) and 305-d milk yield. Factors included in the model of choice were parity, combined effect of herd and a 2-yr calving period, calving season, permanent environmental effect of the cow, and additive genetic effect of the cow. From both the single-trait and multiple-trait models, estimated heritability of number of CM cases was 0.11 (±0.015 for the multiple-trait model). Permanent environmental effects accounted for approximately one-third of the phenotypic variance. Heritability estimates for lactation mean SCS and 305-d milk yield were 0.17 ± 0.019 and 0.25 ± 0.011, respectively, and genetic correlations of these traits with number of CM cases were 0.80 ± 0.059 and 0.34 ± 0.079, respectively. Genetic evaluation of the number of CM cases in Czech Holsteins could be carried out including data from all parities using a 3-trait animal model with SCS and milk yield as additional traits.  相似文献   

5.
Records representing data from 1,500 barren Holstein cows over an 8-yr period from a large commercial dairy farm in northern Mexico were analyzed to determine the effects of lactation number and season and year of initiation of lactation on milk production of cows induced hormonally into lactation and treated with recombinant bovine somatotropin (rbST) throughout lactation. Peak and 305-d milk yields were also assessed as predictors of total milk yield in cows induced into lactation. A significant quadratic relationship was found between 305-d milk yield and number of lactation [7,607 ± 145 and 9,548 ± 181 kg for first- and ≥6-lactation cows, respectively; mean ± standard error of the mean (SEM)] with the highest production occurring in the fifth lactation. Total milk yields of cows with ≤2 lactations were approximately 4,500 kg less than milk yields of adult cows (the overall average ± standard milk yield was 13,544 ± 5,491 kg per lactation and the average lactation length was 454 ± 154 d). Moreover, 305-d milk production was depressed in cows induced into lactation in spring (8,804 ± 153 kg; mean ± SEM) and summer (8,724 ± 163 kg) than in fall (9,079 ± 151 kg) and winter (9,085 ± 143 kg). Partial regression coefficients for 305-d milk yield and peak milk yield indicated an increment of 157 kg of milk per lactation per 1-kg increase in peak milk yield (r2 = 0.69). Neither peak milk yield (r2 = 0.18) nor 305-d milk yield (r2 = 0.29) was accurate for predicting total milk yield per lactation. Year, parity, and season effects had significant influence on milk yield of cows induced into lactation and treated with rbST throughout lactation, and peak milk yield can assist in the prediction of 305-d milk yield but not total milk yield. This study also showed that hormonal induction of lactation in barren high-yielding cows is a reliable, practical, and affordable technique in countries where rbST treatment and prolonged steroid administration of dairy cows are legally permitted.  相似文献   

6.
Cows with high lactation persistency tend to produce less milk than expected at the beginning of lactation and more than expected at the end. Best prediction of lactation persistency is calculated as a function of trait-specific standard lactation curves and linear regressions of test-day deviations on days in milk. Because regression coefficients are deviations from a tipping point selected to make yield and lactation persistency phenotypically uncorrelated it should be possible to use 305-d actual yield and lactation persistency to predict yield for lactations with later endpoints. The objectives of this study were to calculate (co)variance components and breeding values for best predictions of lactation persistency of milk (PM), fat (PF), protein (PP), and somatic cell score (PSCS) in breeds other than Holstein, and to demonstrate the calculation of prediction equations for 400-d actual milk yield. Data included lactations from Ayrshire, Brown Swiss, Guernsey (GU), Jersey (JE), and Milking Shorthorn (MS) cows calving since 1997. The number of sires evaluated ranged from 86 (MS) to 3,192 (JE), and mean sire estimated breeding value for PM ranged from 0.001 (Ayrshire) to 0.10 (Brown Swiss); mean estimated breeding value for PSCS ranged from −0.01 (MS) to −0.043 (JE). Heritabilities were generally highest for PM (0.09 to 0.15) and lowest for PSCS (0.03 to 0.06), with PF and PP having intermediate values (0.07 to 0.13). Repeatabilities varied considerably between breeds, ranging from 0.08 (PSCS in GU, JE, and MS) to 0.28 (PM in GU). Genetic correlations of PM, PF, and PP with PSCS were moderate and favorable (negative), indicating that increasing lactation persistency of yield traits is associated with decreases in lactation persistency of SCS, as expected. Genetic correlations among yield and lactation persistency were low to moderate and ranged from −0.55 (PP in GU) to 0.40 (PP in MS). Prediction equations for 400-d milk yield were calculated for each breed by regression of both 305-d yield and 305-d yield and lactation persistency on 400-d yield. Goodness-of-fit was very good for both models, but the addition of lactation persistency to the model significantly improved fit in all cases. Routine genetic evaluations for lactation persistency, as well as the development of prediction equations for several lactation end-points, may provide producers with tools to better manage their herds.  相似文献   

7.
《Journal of dairy science》1988,71(12):3425-3436
Prediction equations were determined to estimate daily milk yield from 306 to 395 d in milk for forecasting herd milk sales from Holstein cows in lactation >305 d. Data were test day milk weights for 65,322 primiparous and 119,220 pluriparous lactations of > 305 d from the Southern US. A forecast model was developed using same lactation 305 d milk yield (in classes of 500 kg increments) that gave similar predicted daily yields as models utilizing last sample milk weight information. This model has the advantage of early forecasting of later milk using projected 305-d yields.Reduced forecast models ignoring days pregnant, yield class, or both accounted for 95, 68, and 59%, and 91, 67, and 56% as much variation in daily milk as the full model for the primiparous and pluriparous cows. Percentage of 305-d milk yielded in mo 11, 12, and 13, depending on 305-d yield class, ranged from 7.1 to 7.0%, 6.2 to 6.0%, and 5.4 to 5.0%, and 5.4 to 5.0%, 4.3 to 3.9%, and 3.3 to 3.0% for first parity and pluriparous cows calving in winter and 125 d open. Cows not calving in winter or with more than 125 d open yielded more milk in extended lactation. These percentages are larger than generally assumed in studies of days open, thus indicating that cost of days open may have been overestimated.  相似文献   

8.
Multivariate factor analysis and principal component analysis were used to decompose the correlation matrix of test-day milk yields of 48,374 lactations of 21,721 Italian Simmental cows. Two common latent factors related to level of production in early lactation and lactation persistency, and 2 principal components associated with the whole lactation yield and persistency were obtained. Factor and principal component scores were treated as new quantitative phenotypes related to prominent features of lactation curve shape. Genetic parameters were estimated by univariate and bivariate animal models. Estimates of heritability were moderately low for both latent factors (0.13 for persistency and yield early in lactation). Heritabilities of the principal component related to total lactation yield and 305-d yield were similar (0.19 and 0.20, respectively). Finally, heritability was quite low for the principal component related to lactation persistency (0.07). Repeatabilities between lactations were about 0.27 for both latent factors, around 0.4 for the first principal component and 305-d yield, and 0.11 for the second principal component. Moderate genetic correlation among common factors (0.26) and their high genetic correlation with total lactation yield (>0.60) suggest that selection can be used to change the shape of lactation curve as well as improve yield. Scores of the second principal component can be used to genetically improve persistency while maintaining constant total lactation yield.  相似文献   

9.
Genetic parameters of milk, fat, and protein yields were estimated in the first 3 lactations for registered Tunisian Holsteins. Data included 140,187; 97,404; and 62,221 test-day production records collected on 22,538; 15,257; and 9,722 first-, second-, and third-parity cows, respectively. Records were of cows calving from 1992 to 2004 in 96 herds. (Co)variance components were estimated by Bayesian methods and a 3-trait-3-lactation random regression model. Gibbs sampling was used to obtain posterior distributions. The model included herd × test date, age × season of calving × stage of lactation [classes of 25 days in milk (DIM)], production sector × stage of lactation (classes of 5 DIM) as fixed effects, and random regression coefficients for additive genetic, permanent environmental, and herd-year of calving effects, which were defined as modified constant, linear, and quadratic Legendre coefficients. Heritability estimates for 305-d milk, fat and protein yields were moderate (0.12 to 0.18) and in the same range of parameters estimated in management systems with low to medium production levels. Heritabilities of test-day milk and protein yields for selected DIM were higher in the middle than at the beginning or the end of lactation. Inversely, heritabilities of fat yield were high at the peripheries of lactation. Genetic correlations among 305-d yield traits ranged from 0.50 to 0.86. The largest genetic correlation was observed between the first and second lactation, potentially due to the limited expression of genetic potential of superior cows in later lactations. Results suggested a lack of adaptation under the local management and climatic conditions. Results should be useful to implement a BLUP evaluation for the Tunisian cow population; however, results also indicated that further research focused on data quality might be needed.  相似文献   

10.
Genetic parameters for milk, fat, and protein yield and persistency in the first 3 lactations of Polish Black and White cattle were estimated. A multiple-lactation model was applied with random herd-test-day effect, fixed regressions for herd-year and age-season of calving, and random regressions for the additive genetic and permanent environmental effects. Three data sets with slightly different edits on minimal number of days in milk and the size of herd-year class were used. Each subset included more than 0.5 million test-day records and more than 58,000 cows. Estimates of covariance components and genetic parameters for each trait were obtained by Bayesian methods using the Gibbs sampler. Due to the large size and a good structure of the data, no differences in estimates were found when additional criteria for record selection were applied. More than 95% of the genetic variance for all traits and lactations was explained by the first 2 principal components, which were associated with the mean yield and lactation persistency. Heritabilities of 305-d milk yield in the first 3 lactations (0.18, 0.16, 0.17) were lower than those for fat (0.12, 0.11, 0.12) and protein (0.13, 0.14, 0.15). Estimates of daily heritabilities increased in general with days in milk for all traits and lactations, with no apparent abnormalities at the beginning or end of lactation. Genetic correlations between yields in different lactations ranged from 0.74 (fat yield in lactations 1 and 3) to 0.89 (milk yield in lactations 2 and 3). Persistency of lactation was defined as the linear regression coefficient of the lactation curve. Heritability of persistency increased with lactation number for all traits and genetic correlations between persistency in different lactations were smaller than those for 305d yield. Persistency was not genetically correlated with the total yield in lactation.  相似文献   

11.
The Canadian Test-Day Model includes test-day (TD) records from 5 to 305 d in milk (DIM). Because 60% of Canadian Holstein cows have at least one lactation longer than 305 d, a significant number of TD records beyond 305 DIM could be included in the genetic evaluation. The aim of this study was to investigate whether TD records beyond 305 DIM could be useful for estimation of 305-d estimated breeding value (EBV) for milk, fat, and protein yields and somatic cell score. Data were 48,638,184 TD milk, fat, and protein yields and somatic cell scores from the first 3 lactations of 2,826,456 Canadian Holstein cows. All production traits were preadjusted for the effect of pregnancy. Subsets of data were created for variance-component estimation by random sampling of 50 herds. Variance components were estimated using Gibbs sampling. Full data sets were used for estimation of breeding values. Three multiple-trait, multiple-lactation random regression models with TD records up to 305 DIM (M305), 335 DIM (M335), and 365 DIM (M365) were fitted. Two additional models (M305a and M305b) used TD records up to 305 DIM and variance components previously estimated by M335 and M365, respectively. The effects common to all models were fixed effects of herd × test-date and DIM class, fixed regression on DIM nested within region × age × season class, and random regressions for additive genetic and permanent environmental effects. Legendre polynomials of order 6 and 4 were fitted for fixed and random regressions, respectively. Rapid increase of additive genetic and permanent environmental variances at extremes of lactations was observed with all 3 models. The increase of additive genetic and permanent environmental variances was at earlier DIM with M305, resulting in greater variances at 305 DIM with M305 than with M335 and M365. Model M305 had the best ability to predict TD yields from 5 through 305 DIM and less error of prediction of 305-d EBV than M335 and M365. Model M335 had smaller change of 305-d EBV of bulls over the period of 7 yr than did M305 and M365. Model M305a had the least error of prediction and change of 305-d EBV from all models. Therefore, the use of TD records of Holstein cows from 5 through 305 DIM and variance components estimated using records up to 335 DIM is recommended for the Canadian Test-Day Model.  相似文献   

12.
Drying-off, calving, and start of lactation are critical transition events for a dairy cow. As a consequence, most animal health issues occur during these periods. By extending the voluntary waiting period for first insemination after calving, calving interval (CInt) can be extended, with possible positive effects for fertility and health. Some cows might be better suited for an extended CInt than others, due to differences in milk yield level, lactation persistency, or health status, which would justify a customized CInt based on individual cow characteristics. This study aims to investigate 13 farms with customized CInt, with respect to calving to first service interval (CFSI), accomplished CInt, services per conception (SC), conception rate at first artificial insemination (CR1AI), peak yield, lactation persistency, 305-d yield, and effective lactation yield. In total, 4,858 complete lactations of Holstein Friesian cows between 2014 and 2019 from the 13 farms were grouped by parity (1 or 2+) and CFSI (CFSI class; CFSI-1 < 84; 84 ≤ CFSI-2 < 140; 140 ≤ CFSI-3 < 196; 196 ≤ CFSI-4 < 252, CFSI-5 ≥ 252 d) or CInt (CInt class; CInt-1 < 364; 364 ≤ CInt-2 < 420; 420 ≤ CInt-3 < 476; 476 ≤ CInt-4 < 532, CInt-5 ≥ 532 d). Cow inseminations, available for 11 out of 13 farms (3,597 complete lactations), were grouped by parity (1 and 2+) and CFSI class or CInt class. The fertility and milk production characteristics were analyzed with generalized and general linear mixed models. The CFSI class was not associated with SC, but extended CInt class was associated with increased SC (CInt-1–5; 1.11–3.70 SC). More than 50% of cows in the CFSI class <84 d ended up in longer than expected CInt (>364 d), showing that these cows were not able to conceive for the desired CInt. More than 50% of cows in CInt classes 3 and higher (CInt ≥ 420 d) had an earlier first insemination before successful insemination (CFSI class 1; <196 d), showing that these extended CInt classes consisted of both cows with an extended waiting period for first insemination and cows that failed to conceive at earlier insemination(s). On most farms, lactation persistency was greatest in CInt class 1 (<364 d), probably related to the low peak yield in this class. When this shortest CInt class was excluded, persistency increased with extended CInt classes on most farms. Although at the majority of farms 305-d yield was greater in CInt ≥ 532 d, effective lactation yield at most farms was greatest in CInt from 364 to 531 d, especially for multiparous cows. Based on the results of this study, a CInt between 364 and 531 days seems most optimal for milk production, when high-yielding cows were selected.  相似文献   

13.
Effect of dry period length on milk yield over multiple lactations   总被引:1,自引:0,他引:1  
Shortening or omitting the dry period (DP) can improve the energy balance of dairy cows in early lactation through a decrease in milk yield after calving. Little is known about the effect of a short or no DP on milk yield over multiple lactations. Our objectives were (1) to assess the effect of DP length over multiple lactations on milk yield, and (2) to assess if the prediction of milk yield in response to DP length could be improved by including individual cow characteristics before calving. Lactation data (2007 to 2015) of 16 Dutch dairy farms that apply no or short DP were used to compute cumulative milk yield in the 60 d before calving (additional yield) and in the 305 d after calving (305-d yield), and the mean daily yield over the interval from 60 d before calving to 60 d before next calving (effective lactation yield). The DP categories were no (0 to 2 wk), short (3 to 5 wk), standard (6 to 8 wk), and long (9 to 12 wk). The effect of current DP and previous DP on yields was analyzed with mixed models (n = 1,420 lactations). The highest effective lactation yield of fat- and protein-corrected milk (FPCM) was observed for cows with a standard current DP (27.6 kg per day); a daily decrease was observed of 0.6 kg for a long DP, 1.0 kg for a short DP, and 2.0 kg for no DP. Previous DP did not significantly affect the effective lactation yield. Thus, cows can be managed with short or no DP over consecutive lactations without a change in quantity of milk losses. Cows that received no DP for consecutive lactations had a lower additional yield before calving (?172 kg of FPCM), but a higher 305-d yield (+560 kg of FPCM), compared with cows that received no DP for the first time. This could lessen the improvement of the energy balance in early lactation when no DP is applied a second time compared with the first time. For the second objective, a basic model was explored to predict effective lactation yield based on parity, DP length, and first-parity 305-d yield (n = 2,866 lactations). The basic model was subsequently extended with data about recent yield, days open, and somatic cell count. Extending the model reduced the error of individual predictions by only 6%. Therefore, the basic model seems sufficient to predict the effect of DP length on effective lactation yield. Other individual cow characteristics can still be relevant, however, to make a practical and tailored decision about DP length.  相似文献   

14.
An investigation of the shape of the lactation curve and the mastitis incidence was conducted to identify whether management interventions of the lactation curve constitute a potential for reducing incidence of mastitis at herd level. Lactation curves were estimated to describe the variation of daily milk yield during the 305-d lactation period in Norwegian Red cows. Associations between mastitis incidence at herd level and lactation curve characteristics such as production level at onset of lactation, magnitude and time of peak milk yield, and increase and decrease of milk yield rates were studied. Data from 250,303 lactations occurring during 2005 and 2006 from 14,766 herds were obtained from the Norwegian Dairy Herd Recording System. Besides veterinary treatments, the records included information on monthly test-day milk yields. The shapes of the lactation curves at herd level were parameterized using a modified Wilmink model in two separate mixed model analyses. In the first analysis a subset of lactations with no records of veterinary treatments was used. Lactation curves from herds with high (>0·31 cases/305-d lactation) and low (<0·07 cases/305-d lactation) herd mastitis incidence rate were parameterized and compared for three separate strata of parity. The result showed that high herd mastitis incidence rate was associated with a low intercept (P<0·05), a steep slope before peak milk yield (P<0·01) and a rapid decline after peak milk yield (P<0·01). In the second analysis a subset of high-yielding lactations with veterinary treatments of mastitis only and lactations with no records of veterinary treatment were compared. This was done to investigate whether the findings at herd level were also reflected at cow level. These results showed that lactation curves from lactations with mastitis cases were associated with a steep slope before peak milk yield (P<0·05) in second and later parities and a rapid decline after peak milk yield (P<0·01) in all three parity groups.  相似文献   

15.
Jersey × Holstein crossbreds (J×H; n = 76) were compared with pure Holsteins (n = 73) for 305-d milk, fat, and protein production; conception rate; days open; proportion of cows pregnant within fixed intervals postpartum; and body and udder measurements during first lactation. Cows were housed at 2 research locations of the University of Minnesota and calved from September 2003 to May 2005. The J×H were mated to Montbeliarde sires, and Holstein cows were mated to Holstein sires. Best Prediction was used to determine actual production (milk, fat, and protein) for 305-d lactations with adjustment for age at calving, and records less than 305 d were projected to 305 d. The J×H (274 kg) and pure Holsteins (277 kg) were not significantly different for fat production, but J×H had significantly less milk (7,147 vs. 7,705 kg) and protein (223 vs. 238 kg) production than pure Holsteins. The J×H had significantly fewer days open than pure Holsteins (127 vs. 150 d). Also, a significantly greater proportion of J×H were pregnant at 150 and 180 d postpartum than pure Holsteins (75 vs. 59% and 77 vs. 61%, respectively). The J×H had significantly less body weight (60 kg) at calving, but significantly greater body condition (2.80 vs. 2.71). Furthermore, J×H had significantly less udder clearance from the ground to the bottom of the udder than pure Holsteins (47.7 vs. 54.6 cm), and greater distance between front teats (15.8 vs. 14.0 cm) than pure Holsteins during first lactation.  相似文献   

16.
In the United States, lactation yields are calculated using best prediction (BP), a method in which test-day (TD) data are compared with breed- and parity-specific herd lactation curves that do not account for differences among regions of the country or seasons of calving. Complete data from 538,090 lactations of 348,123 Holstein cows with lactation lengths between 250 and 500 d, records made in a single herd, at least 5 reported TD, and twice-daily milking were extracted from the national dairy database and used to construct regional and seasonal lactation curves. Herds were assigned to 1 of 7 regions of the country, individual lactations were assigned to 3-mo seasons of calving, and lactation curves for milk, fat, and protein yields were estimated by parity group for regions, seasons, and seasons within regions. Multiplicative pre-adjustment factors (MF) also were computed. The resulting lactation curves and MF were tested on a validation data set of 891,806 lactations from 400,000 Holstein cows sampled at random from the national dairy database. Mature-equivalent milk, fat, and protein yields were calculated using the standard and adjusted curves and MF, and differences between 305-d mature-equivalent yields were tested for significance. Yields calculated using 50-d intervals from 50 to 250 d in milk (DIM) and using all TD to 500 DIM allowed comparisons of predictions for records in progress (RIP). Differences in mature-equivalent milk ranged from 0 to 51 kg and were slightly larger for first-parity than for later parity cows. Milk and components yields did not differ significantly in any case. Correlations of yields for 50-d intervals with those using all TD were similar across analyses. Yields for RIP were slightly more accurate when adjusted for regional and seasonal differences.  相似文献   

17.
《Journal of dairy science》2022,105(9):7525-7538
We fit the Wood's lactation model to an extensive database of test-day milk production records of US Holstein cows to obtain lactation-specific parameter estimates and investigated the effects of temporal, spatial, and management factors on lactation curve parameters and 305-d milk yield. Our approach included 2 steps as follows: (1) individual animal-parity parameter estimation with nonlinear least-squares optimization of the Wood's lactation curve parameters, and (2) mixed-effects model analysis of 8,595,413 sets of parameter estimates from individual lactation curves. Further, we conducted an analysis that included all parities and a separate analysis for first lactation heifers. Results showed that parity had the most significant effect on the scale (parameter a), the rate of decay (parameter c), and the 305-d milk yield. The month of calving had the largest effect on the rate of increase (parameter b) for models fit with data from all lactations. The calving month had the most significant effect on all lactation curve parameters for first lactation models. However, age at first calving, year, and milking frequency accounted for a higher proportion of the variance than month for first lactation 305-d milk yield. All parameter estimates and 305-d milk yield increased as parity increased; parameter a and 305-d milk yield rose, and parameters b and c decreased as year and milking frequency increased. Calving month estimates parameters a, b, c, and 305-d milk yield were the lowest values for September, May, June, and July, respectively. The results also indicated the random effects of herd and cow improved model fit. Lactation curve parameter estimates from the mixed-model analysis of individual lactation curve fits describe well US Holstein lactation curves according to temporal, spatial, and management factors.  相似文献   

18.
Pure Holsteins (n = 380) were compared to Normande/Holstein crossbreds (n = 245), Montbeliarde/Holstein crossbreds (n = 494), and Scandinavian Red/Holstein crossbreds (n = 328) for 305-d milk, fat, and protein production during first lactation. Scandinavian Red was a mixture of Swedish Red and Norwegian Red. Cows were housed at 7 commercial dairies in California and calved from June 2002 to January 2005. All Holstein sires and all Holstein maternal grandsires were required to have a code assigned by the National Association of Animal Breeders to assure they were sired by artificial insemination bulls. Daughters of Normande, Montbeliarde, and Scandinavian Red sires were artificial insemination bulls via imported semen. Best prediction was used to calculate actual production (milk, fat, and protein) for 305-d lactations. Adjustment was made for age at calving and milking frequency, and records less than 305 d were projected to 305 d. Herd-year-season (4-mo seasons) and the genetic level of each cow's Holstein maternal grandsire were included in the model for statistical analysis. Pure Holsteins had significantly higher milk (9,757 kg) and protein (305 kg) production than all crossbred groups, but pure Holsteins (346 kg) were not significantly different from Scandinavian Red/Holstein (340 kg) crossbreds for fat production. Fat plus protein production was used to gauge the overall productivity of pure Holsteins vs. crossbreds. The Scandinavian Red/Holstein (637 kg) crossbreds were not significantly different from the pure Holstein (651 kg) for fat plus protein production; however, the Normande/Holstein (596 kg) and the Montbeliarde/Holstein crossbreds (627 kg) had significantly lower fat plus protein production than pure Holsteins.  相似文献   

19.
The calving intervals of Holstein cows in many countries have been increasing in length over recent years. Many reports of lactation characteristics refer only to a standard 305-d lactation. This paper attempts to describe the characteristics of lactations of different lengths using a large database of nationally recorded data. Three different lactation lengths were studied: 305 d (the traditional annual calving interval), 370 d (the current UK national average), and 440 d (equivalent to an 18-mo calving interval). Test-day milk yield; fat, protein, and lactose composition; and somatic cell counts were analyzed. Characteristics of each of 29,838 lactations were calculated using a biological model of lactation and were analyzed to identify which factors affected them. Maximum secretion potential was the only trait not affected by lactation length. Day of peak yield, peak yield, persistency, and total milk yield all increased with lactation length, whereas relative cell death rate and the rate of milk increase in early lactation both decreased as lactation length increased. For most weeks of lactation, the 3 lactation-length groups differed from each other in most traits, following the order of their lengths; for example, milk yield was always higher for lactations of 440 d and lower for those of 305 d. The post-peak trends in all traits were found to continue in longer lactations. Thus, daily milk production and lactose percentage continued to decrease as lactations became longer, whereas fat percentage, protein percentage, and somatic cell count continued to increase. Pregnancy was found to affect all traits, leading to an accentuation of these trends in late lactation. However, the effect of pregnancy depended on the yield at about the fourth month of pregnancy. Lactations of 305, 370, and 440 d all had different characteristics and not solely due to increasing length.  相似文献   

20.
Lactation yield estimates standardized to common lactation lengths of 270-d or 305-d equivalents are commonly used in management decision support tools and dairy cow genetic evaluations. The use of such measurements to quantify the (genetic) merit of individual cows fails to penalize cows that do not reach the standardized lactation length, or indeed reward cows that lactate for more than the standardized lactation length. The objective of the present study was to quantify the genetic and nongenetic factors associated with lactation length in seasonal-calving, pasture-based dairy cows. A total of 616,350 lactation length records from 285,598 Irish cows were used. Linear mixed models were used to quantify the associations between lactation length and calving month, parity, age at calving, previous dry period length, calving difficulty score, heterosis, recombination loss, breed, and herd size, as well as to estimate the genetic and residual variance components of lactation length. The median lactation length in the edited data set was 288 d, with 27% of cows achieving lactations of at least 305 d. Relative to cows calving in January, the lactations of cow calving in February, March, or April was, on average, 4.2, 12.7, and 21.9 d shorter, respectively. The lactation length of a first parity cow was, on average, 7.8, 8.6, and 8.4 d shorter than that of second, third, and fourth parity cows, respectively. Norwegian Red and Montbéliarde cows had, on average, a 4.7- and 1.6-d shorter lactation than Holstein-Friesian cows, respectively. The heritability estimate, coefficient of genetic variation, and repeatability estimate of lactation length were 0.02, 1.2%, and 0.04, respectively. Based on the genetic standard deviation for lactation length estimated in the present study (3.3 d), cows ranked in the top 20% for genetic merit for lactation length would be expected to have lactations 9.2 d longer than cows in the bottom 20%, demonstrating exploitable genetic variability. Given the vast array of genetic and nongenetic factors associated with lactation length, an approach which combines improved management practices and selective breeding may be an efficient and effective strategy to lengthen lactations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号