首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Milk coagulation properties (MCP) are an important aspect in assessing cheese-making ability. Several studies showed that favorable conditions of milk reactivity with rennet, curd formation rate, and curd strength, as well as curd syneresis, have a positive effect on the entire cheese-making process and subsequently on the ripening of cheese. Moreover, MCP were found to be heritable, but little scientific literature is available about their genetic aspects. The aims of this study were to estimate heritability of MCP and genetic correlations among MCP and milk production and quality traits. A total of 1,071 Italian Holstein cows (progeny of 54 sires) reared in 34 herds in Northern Italy were sampled from January to July 2004. Individual milk samples were collected during the morning milking and analyzed for coagulation time (RCT), curd firmness (a30), pH, titratable acidity, fat, protein, and casein contents, and somatic cell count. About 10% of individual milk samples did not coagulate in 31 min, so they were removed from the analyses. Estimates of heritability for RCT and a30 were 0.25 ± 0.04 and 0.15 ± 0.03, respectively. Estimates of genetic correlations between MCP traits and milk production traits were negligible except for a30 with protein and casein contents (0.44 ± 0.10 and 0.53 ± 0.09, respectively). Estimates of genetic correlations between MCP traits and somatic cell score were strong and favorable, as well as those between MCP and pH and titratable acidity. Selecting for high casein content, milk acidity, and low somatic cell count might be an indirect way to improve MCP without reducing milk yield and quality traits.  相似文献   

2.
The aim of this study was to estimate heritabilities of rennet coagulation time (RCT) and curd firmness (a30) and their genetic correlations with test-day milk yield, composition (fat, protein, and casein content), somatic cell score, and acidity (pH and titratable acidity) using coagulating and noncoagulating (NC) milk information. Data were from 1,025 Holstein-Friesian (HF) and 1,234 Brown Swiss (BS) cows, which were progeny of 54 HF and 58 BS artificial insemination sires, respectively. Milk coagulation properties (MCP) of each cow were measured once using a computerized renneting meter and samples not exhibiting coagulation within 31 min after rennet addition were classified as NC milk. For NC samples, RCT was unobserved. Multivariate analyses, using Bayesian methodology, were performed to estimate the genetic relationships of RCT or a30 with the other traits and statistical inference was based on the marginal posterior distributions of parameters of concern. For analyses involving RCT, a right-censored Gaussian linear model was used and records of NC milk samples, being censored records, were included as unknown parameters in the model implementing a data augmentation procedure. Rennet coagulation time was more heritable [heritability (h2) = 0.240 and h2 = 0.210 for HF and BS, respectively] than a30 (h2 = 0.148 and h2 = 0.168 for HF and BS, respectively). Milk coagulation properties were more heritable than a single test-day milk yield (h2 = 0.103 and h2 = 0.097 for HF and BS, respectively) and less heritable than milk composition traits whose heritability ranged from 0.275 to 0.275, with the only exception of fat content of BS milk (h2 = 0.108). A negative genetic correlation, lower than −0.85, was estimated between RCT and a30 for both breeds. Genetic relationships of MCP with yield and composition were low or moderate and favorable. The genetic correlation of somatic cell score with RCT in BS cows was large and positive and even more positive were those of RCT with pH and titratable acidity in both breeds, ranging from 0.80 to 0.94. Including NC milk information in the data affected the estimated correlations and decreased the uncertainty associated with the estimation process. On the basis of the estimated heritabilities and genetic correlations, enhancement of MCP through selective breeding with no detrimental effects on yield and composition seems feasible in both breeds. Milk acidity may play a role as an indicator trait for indirect enhancement of MCP.  相似文献   

3.
Milk coagulation properties (MCP) have been widely investigated in the past using milk collected from different cattle breeds and herds. However, to our knowledge, no previous studies have assessed MCP in individual milk samples from several multi-breed herds characterized by either high or low milk productivity, thereby allowing the effects of herd and cow breed to be evaluated independently. Multi-breed herds (n = 41) were classified into 2 categories based on milk productivity (high vs. low), defined according to the average milk net energy yielded daily by lactating cows. Milk samples were taken from 1,508 cows of 6 different breeds: 3 specialized dairy (Holstein-Friesian, Brown Swiss, Jersey) and 3 dual-purpose (Simmental, Rendena, Alpine Grey) breeds, and analyzed in duplicate (3,016 tests) using 2 lactodynamographs to obtain 240 curd firming (CF) measurements over 60 min (1 every 15 s) for each duplicate. The 5 traditional single-point MCP (RCT, k20, a30, a45, and a60) were yielded directly by the instrument from the available CF measures. All 240 CF measures of each replicate were also used to estimate 4 individual equation parameters: RCT estimated according to curd firm change over time modeling (RCTeq), asymptotic potential curd firmness (CFP), curd firming instant rate constant (kCF), and syneresis instant rate constant (kSR) and 2 derived traits: maximum curd firmness achieved within 45 min (CFmax) and time at achievement of CFmax (tmax) by curvilinear regression using a nonlinear procedure. Results showed that the effect of herd-date on traditional and modeled MCP was modest, ranging from 6.1% of total variance for k20 to 10.7% for RCT, whereas individual animal variance was the highest, ranging from 32.0% for tmax to 82.5% for RCTeq. The repeatability of MCP was high (>80%) for all traits except those associated with the last part of the lactodynamographic curve (i.e., a60, kSR, kCF, and tmax: 57 to 71%). Reproducibility, taking into account the effect of instrument, was equal to or slightly lower than repeatability. Milk samples collected in farms characterized by high productivity exhibited delayed coagulation (RCTeq: 18.6 vs. 16.3 min) but greater potential curd firmness (CFP: 76.8 vs. 71.9 mm) compared with milk samples collected from low-productivity herds. Parity and days in milk influenced almost all MCP. Large differences in all MCP traits were observed among breeds, both between specialized and dual-purpose breeds and within these 2 groups of breeds, even after adjusting for milk quality and yield. Milk quality and MCP of samples from Jersey cows, and coagulation time of samples from Rendena cows were better than in milk from Holstein-Friesian cows, and intermediate results were found with the other breeds of Alpine origin. The results of this study, taking into account the intrinsic limitation of this technique, show that the effects of breed on traditional and modeled MCP are much greater than the effects of herd productivity class, parity, and DIM. Moreover, the variance in individual animals is much greater than the variance in individual herds within herd productivity class. It seems that improvement in MCP depends more on genetics (e.g., breed, selection) than on environmental and management factors.  相似文献   

4.
Milk coagulation properties (MCP) are conventionally measured using computerized renneting meters, mechanical or optical devices that record curd firmness over time (CFt). The traditional MCP are rennet coagulation time (RCT, min), curd firmness (a30, mm), and curd-firming time (k20, min). The milk of different ruminant species varies in terms of CFt pattern. Milk from Holstein-Friesian and some Scandinavian cattle breeds yields higher proportions of noncoagulating samples, samples with longer RCT and lower a30, and samples for which k20 is not estimable, than does milk from Brown Swiss, Simmental, and other local Alpine breeds. The amount, proportion, and genetic variants (especially κ-casein) of milk protein fractions strongly influence MCP and explain variable proportions of the observed differences among breeds and among individuals of the same breed. In addition, other major genes have been shown to affect MCP. Individual repeatability of MCP is high, whereas any herd effect is low; thus, the improvement of MCP should be based principally on selection. Exploitable additive genetic variation in MCP exists and has been assessed using different breeds in various countries. Several models have been formulated that either handle noncoagulating samples or not. The heritability of MCP is similar to that of other milk quality traits and is higher than the heritability of milk yield. Rennet coagulation time and a30 are highly correlated, both phenotypically and genetically. This means that the use of a30 data does not add valuable information to that obtainable from RCT; both traits are genetically correlated mainly with milk acidity. Moreover, a30 is correlated with casein content. The major limitations of traditional MCP can be overcome by prolonging the observation period and by using a novel CFt modeling, which uses all available information provided by computerized renneting meters and allows the estimation of RCT, the potential asymptotic curd firmness, the curd-firming rate, and the syneresis rate. Direct measurements of RCT obtained from both mechanical and optical devices show similar heritabilities and exhibit high phenotypic and genetic correlations. Moreover, mid-infrared reflectance spectroscopy can predict MCP. The heritabilities of predicted MCP are higher than those of measured MCP, and the 2 sets of values are strongly correlated. Therefore, mid-infrared reflectance spectroscopy is a reliable and cheap method whereby MCP can be improved at the population level; this is because such spectra are already routinely acquired from the milk of cows enrolled in milk recording schemes.  相似文献   

5.
The aim of the study was to quantify the effects of composite β- and κ-casein (CN) genotypes on genetic variation of milk coagulation properties (MCP); milk yield; fat, protein, and CN contents; somatic cell score; pH; and titratable acidity (TA) in 1,042 Italian Holstein-Friesian cows. Milk coagulation properties were defined as rennet coagulation time (RCT) and curd firmness (a30). Variance components were estimated using 2 animal models: model 1 included herd, days in milk, and parity as fixed effects and animal and residual as random effects, and model 2 was model 1 with the addition of composite β- and κ-CN genotype as a fixed effect. Genetic correlations between RCT and a30 and between these traits and milk production traits were obtained with bivariate analyses, based on the same models. The inclusion of casein genotypes led to a decrease of 47, 68, 18, and 23% in the genetic variance for RCT, a30, pH, and TA, respectively, and less than 6% for other traits. Heritability of RCT and a30 decreased from 0.248 to 0.143 and from 0.123 to 0.043, respectively. A moderate reduction was found for pH and TA, whereas negligible changes were detected for other milk traits. Estimates of genetic correlations were comparable between the 2 models. Results show that composite β- and κ-CN genotypes are important for RCT and a30 but cannot replace the recording of MCP themselves.  相似文献   

6.
The aim of this study was to investigate sources of variation of milk coagulation properties (MCP) of buffalo cows. Individual milk samples were collected from 200 animals in 5 herds located in northern Italy from January to March 2010. Rennet coagulation time (RCT, min) and curd firmness after 30 min from rennet addition (a30, mm) were measured using the Formagraph instrument (Foss Electric, Hillerød, Denmark). In addition to MCP, information on milk yield, fat, protein, and casein contents, pH, and somatic cell count (SCC) was available. Sources of variation of RCT and a30 were investigated using a linear model that included fixed effects of herd, days in milk (DIM), parity, fat content, casein content (only for a30), and pH. The coefficient of determination was 51% for RCT and 48% for a30. The most important sources of variation of MCP were the herd and pH effects, followed by DIM and fat content for RCT, and casein content for a30. The relevance of acidity in explaining the variation of both RCT and a30, and of casein content in explaining that of a30, confirmed previous studies on dairy cows. Although future research is needed to investigate the effect of these sources of variation on cheese yield, findings from the present study suggest that casein content and acidity may be used as indicator traits to improve technological properties of buffalo milk.  相似文献   

7.
Goat milk and cheese production is continuously increasing and milk composition and coagulation properties (MCP) are useful tools to predict cheesemaking aptitude. The present study was planned to investigate the extension of lactodynamographic analysis up to 60 min in goat milk, to measure the farm and individual factors, and to investigate differences among 6 goat breeds. Daily milk yield (dMY) was recorded and milk samples collected from 1,272 goats reared in 35 farms. Goats were of 6 different breeds: Saanen and Camosciata delle Alpi for the Alpine type, and Murciano-Granadina, Maltese, Sarda, and Sarda Primitiva for the Mediterranean type. Milk composition (fat, protein, lactose, pH; somatic cell score; logarithmic bacterial count) and MCP [rennet coagulation time (RCT, min), curd-firming time (k20, min), curd firmness at 30, 45, and 60 min after rennet addition (a30, a45, and a60, mm)] were recorded, and daily fat and protein yield (dFPY g/d) was calculated as the sum of fat and protein concentration multiplied by the dMY. Data were analyzed using different statistical models to measure the effects of farm, parity, stage of lactation and breed; lastly, the direct and the indirect effect of breed were quantified by comparing the variance of breed from models with or without the inclusion of linear regression of fat, protein, lactose, pH, bacterial, somatic cell counts, and dMY. Orthogonal contrasts were performed to compare least squares means. Almost all traits exhibited high variability, with coefficients of variation between 32 (for RCT) and 63% (for a30). The proportion of variance regarding dMY, dFPY, and milk composition due to the farm was moderate, whereas for MCP it was low, except for a60, at 69%. Parity affected both yield and quality traits of milk, with least squares means of dMY and dFPY showing an increase and RCT and curd firmness traits a decrease from the first to the last parity class. All milk quality traits, excluding fat, were affected by the stage of lactation; RCT and k20 decreased rapidly and a30 was higher from the first to the last part of lactation. Alpine breeds showed the highest dMY and dFPY but Mediterranean the best percentage of protein, fat, and lactose and a shorter k20 and a greater a30. Among the Mediterranean goats, Murciano-Granadina goats had the highest milk yield, fat, and protein contents, whereas Maltese, Sarda, and Sarda Primitiva were characterized by much more favorable technological properties in terms of k20, a30, and a45. In conclusion, as both the farm and individual factors highly influenced milk composition and MCP traits, improvements of these traits should be based both on modifying management and individual goat factors. As expected, several differences were attributable to the breed effect, with the best milk production for the Alpines and milk quality and coagulation for the Mediterranean goats.  相似文献   

8.
Milk coagulation properties (MCP) analysis is performed using a wide range of methodologies in different countries and laboratories, using different instruments, coagulant activity in the milk, and type of coagulant. This makes it difficult to compare results and data from different research. The aims of this study were to propose a method for the transformation of values of rennet coagulation time (RCT) and curd firmness (a30) and to predict the noncoagulation (NC) probability of milk samples analyzed using different methodologies. Individual milk samples were collected during the morning milking in October 2010 from each of 165 Holstein-Friesian dairy cows in 2 freestall barns in Italy, and sent to 3 laboratories for MCP analysis. For each laboratory, MCP analysis was performed using a different methodology: A, with a computerized renneting meter instrument using 0.051 international milk clotting units (IMCU)/mL of coagulant activity; B, with a Lattodinamografo (Foss-Italia, Padova, Italy) using 0.051 IMCU/mL of coagulant activity; and C, with an Optigraph (Ysebaert, Frépillon, France) using 0.120 IMCU/mL of coagulant activity. The relationships between MCP traits were analyzed with correlation and regression analyses for each pair of methodologies. For each MCP trait, 2 regression models were applied: model 1 was a single regression model, where the dependent and independent variables were the same MCP trait determined by 2 different methodologies; in model 2, both a30 and RCT were included as independent variables. The NC probabilities for laboratories with the highest number of NC samples were predicted based on the RCT and a30 values measured in the laboratories with lower number of NC samples using logistic regression and receiver operating characteristic analysis. The percentages of NC samples were 4.2, 11.5, and 0.6% for A, B, and C, respectively. The transformation of MCP traits was more precise with model 1 for RCT (R2: 0.77-0.82) than for a30 (R2: 0.28-0.63). The application of model 2 was needed when the C measurements were transformed into the other scales. The analyses of NC probabilities of milk samples showed that NC samples from one methodology were well distinguishable (with an accuracy of 0.972-0.996) based on the rennet coagulation time measured with the other methodology. A standard definition for MCP traits analysis is needed to enable reliable comparisons between MCP traits recorded in different laboratories and in different animal populations and breeds.  相似文献   

9.
The aim of this study was to propose the survival analysis technique as a statistical approach for the analysis of rennet coagulation time (RCT) able to make use of coagulating and noncoagulating (NC) milk information in order to estimate potential sources of variations that affects RCT. A total of 1,025 Italian Holstein-Friesian cows (HF; progeny of 54 sires) and 1,234 Brown Swiss cows (BS; progeny of 58 sires) reared in 34 and 38 herds, respectively, were milk-sampled once. Rennet coagulation time was analyzed with a semiparametric proportional hazard model (i.e., a Cox model), with the NC samples considered as censored records. Furthermore, a different censoring scenario, with a new end point at 18 min, was considered after the rearrangement of the time space originally used for the observation of RCT. The percentage of NC samples was almost 10% for HF and 3.5% for BS cows in in the 31 min set, whereas it increased to 44 and 24.9%, respectively, in the 18 min set. Estimated hazard ratios indicated that the most important factors affecting the coagulation process were herd, days in milk, casein number, and milk acidity (expressed in terms of titratable acidity) for both HF and BS, whereas the SCS was relevant only for BS. The survival model seems to be particularly suitable for this analysis, as it can properly account for censored and uncensored records and appropriately use all available information. Moreover, this methodology allows us to rearrange the time space used for the observation of RCT and to define alternative traits (i.e., RCT with an end point at 18 min). Our restriction of the time space and the increased percentage of censored records did not highlight any substantial differences in terms of the risk of coagulating with respect to the traditional 31 min testing time. Although further research is needed to investigate the effect of these sources of variation on cheese yield, our results indicate that casein number, acidity, and SCS may be used as indicator traits for enhancing the technological properties of bovine milk.  相似文献   

10.
Milk coagulation is based on a series of physicochemical changes at the casein micelle level, resulting in formation of a gel. Milk coagulation properties (MCP) are relevant for cheese quality and yield, important factors for the dairy industry. They are also evaluated in herd bulk milk to reward or penalize producers of Protected Designation of Origin cheeses. The economic importance of improving MCP justifies the need to account for this trait in the selection process. A pilot study was carried out to determine the feasibility of including MCP in the selection schemes of the Italian Holstein. The MCP were predicted in 1,055 individual milk samples collected in 16 herds (66 ± 24 cows per herd) located in Brescia province (northeastern Italy) by means of Fourier transform infrared (FTIR) spectroscopy. The coefficient of determination of prediction models indicated moderate predictions for milk rennet coagulation time (RCT = 0.65) and curd firmness (a30 = 0.68), and poor predictions for curd-firming time (k20 = 0.49), whereas the range error ratio (8.9, 6.9, and 9.5 for RCT, k20, and a30, respectively) indicated good practical utility of the predictive models for all parameters. Milk proteins were genotyped and casein haplotypes (αS1-, β-, αS2-, and κ-casein) were reconstructed. Data from 51 half-sib families (19.9 ± 16.4 daughters per sire) were analyzed by an animal model to estimate (1) the genetic parameters of predicted RCT, k20, and a30; (2) the breeding values for these predicted clotting variables; and (3) the effect of milk protein genotypes and casein haplotypes on predicted MCP (pMCP). This is the first study to estimate both genetic parameters and breeding values of pMCP, together with the effects of milk protein genotypes and casein haplotypes, that also considered k20, probably the most important parameter for the dairy industry (because it indicates the time for the beginning of curd-cutting). Heritability of predicted RCT (0.26) and k20 (0.31) were close to the average heritability described in literature, whereas the heritability of a30 was higher (0.52 vs. 0.27). The effects of milk proteins were statistically significant and similar to those obtained on measured MCP. In particular, haplotypes including uncommon variants showed positive (B-I-A-B) or negative (B-A1-A-E) effects. Based on these findings, FTIR spectroscopy-pMCP is proposed as a potential selection criterion for the Italian Holstein.  相似文献   

11.
The aims of this study were to investigate variation of milk coagulation property (MCP) measures and their predictions obtained by mid-infrared spectroscopy (MIR), to investigate the genetic relationship between measures of MCP and MIR predictions, and to estimate the expected response from a breeding program focusing on the enhancement of MCP using MIR predictions as indicator traits. Individual milk samples were collected from 1,200 Brown Swiss cows (progeny of 50 artificial insemination sires) reared in 30 herds located in northern Italy. Rennet coagulation time (RCT, min) and curd firmness (a30, mm) were measured using a computerized renneting meter. The MIR data were recorded over the spectral range of 4,000 to 900 cm−1. Prediction models for RCT and a30 based on MIR spectra were developed using partial least squares regression. A cross-validation procedure was carried out. The procedure involved the partition of available data into 2 subsets: a calibration subset and a test subset. The calibration subset was used to develop a calibration equation able to predict individual MCP phenotypes using MIR spectra. The test subset was used to validate the calibration equation and to estimate heritabilities and genetic correlations for measured MCP and their predictions obtained from MIR spectra and the calibration equation. Point estimates of heritability ranged from 0.30 to 0.34 and from 0.22 to 0.24 for RCT and a30, respectively. Heritability estimates for MCP predictions were larger than those obtained for measured MCP. Estimated genetic correlations between measures and predictions of RCT were very high and ranged from 0.91 to 0.96. Estimates of the genetic correlation between measures and predictions of a30 were large and ranged from 0.71 to 0.87. Predictions of MCP provided by MIR techniques can be proposed as indicator traits for the genetic enhancement of MCP. The expected response of RCT and a30 ensured by the selection using MIR predictions as indicator traits was equal to or slightly less than the response achievable through a single measurement of these traits. Breeding strategies for the enhancement of MCP based on MIR predictions as indicator traits could be easily and immediately implemented for dairy cattle populations where routine acquisition of spectra from individual milk samples is already performed.  相似文献   

12.
This study investigated the potential application of mid-infrared spectroscopy (MIR 4,000-900 cm−1) for the determination of milk coagulation properties (MCP), titratable acidity (TA), and pH in Brown Swiss milk samples (n = 1,064). Because MCP directly influence the efficiency of the cheese-making process, there is strong industrial interest in developing a rapid method for their assessment. Currently, the determination of MCP involves time-consuming laboratory-based measurements, and it is not feasible to carry out these measurements on the large numbers of milk samples associated with milk recording programs. Mid-infrared spectroscopy is an objective and nondestructive technique providing rapid real-time analysis of food compositional and quality parameters. Analysis of milk rennet coagulation time (RCT, min), curd firmness (a30, mm), TA (SH°/50 mL; SH° = Soxhlet-Henkel degree), and pH was carried out, and MIR data were recorded over the spectral range of 4,000 to 900 cm−1. Models were developed by partial least squares regression using untreated and pretreated spectra. The MCP, TA, and pH prediction models were improved by using the combined spectral ranges of 1,600 to 900 cm−1, 3,040 to 1,700 cm−1, and 4,000 to 3,470 cm−1. The root mean square errors of cross-validation for the developed models were 2.36 min (RCT, range 24.9 min), 6.86 mm (a30, range 58 mm), 0.25 SH°/50 mL (TA, range 3.58 SH°/50 mL), and 0.07 (pH, range 1.15). The most successfully predicted attributes were TA, RCT, and pH. The model for the prediction of TA provided approximate prediction (R2 = 0.66), whereas the predictive models developed for RCT and pH could discriminate between high and low values (R2 = 0.59 to 0.62). It was concluded that, although the models require further development to improve their accuracy before their application in industry, MIR spectroscopy has potential application for the assessment of RCT, TA, and pH during routine milk analysis in the dairy industry. The implementation of such models could be a means of improving MCP through phenotypic-based selection programs and to amend milk payment systems to incorporate MCP into their payment criteria.  相似文献   

13.
In this study, milk-coagulation properties (MCP) were characterized in the Sarda sheep breed. Milk composition and MCP [rennet-coagulation time (RCT), curd-firming time [time to reach a curd firmness of 20 mm (k20)], and curd firmness (a30), (a45), and (a60)] were obtained extending the lactodynamographic analysis from 30 to 60 min from a population of 1,121 ewes from 23 different farms. Managerial characteristics of farms and parity, individual daily milk yields and stage of lactation of ewes were recorded. Data were analyzed using a mixed-model procedure with fixed effects of days in milk, parity, daily milk yield, and flock size and the random effect of the flock/test day nested within flock size. Sampled farms were classified as small (<300 ewes) and medium (300 to 600 ewes), and these were kept by family operations, or as large (>600 ewes), often operated through hired workers. Daily milk yield was, on average, 1.58 ± 0.79 L/d and variability for this trait was very high. The average content of fat, protein, and casein was respectively 6.41, 5.39, and 4.20%. The class of flock size had a significant effect only on curd firmness, whereas days in milk affected RCT and k20. The flock test day, parity, and daily milk yield were important sources of variation for all MCP. The mean value of RCT (8.6 min) and the low occurrence of noncoagulating samples (0.44%) confirmed the excellent coagulation ability of sheep milk compared with cattle milk. A more rapid coagulation was observed in mid-lactating, primiparous, and high-yielding ewes. The k20 was usually reached in less than 2 min after gelation, with the most favorable values at mid lactation. The mean value of curd firmness 30 min after rennet addition (a30) was, on average, 50 mm and decreased to 46 and 42 mm respectively after 45 (a45) and 60 min (a60). The decreasing value of curd-firmness traits was likely to be caused by curd syneresis and whey expulsion. The correlation between RCT and a30 was much lower than in dairy cows and about null for a45 and a60. This means that curd firmness in dairy ewes is almost independent of gelation time and this can provide specific information for this species. In conclusion, this study showed that milk from Sarda sheep is characterized by an earlier gelation, a faster increase in curd firmness with time, and greater curd firmness after 30 min compared with dairy cows. Furthermore, correlations between MCP in sheep are much lower than in bovines and some of the assumptions and interpretations related to cows cannot be applied to sheep.  相似文献   

14.
The objectives of the study were to estimate the reproducibility and repeatability of milk coagulation properties (MCP) measured by a computerized renneting meter (CRM) and to evaluate the predictive ability of mid-infrared spectroscopy (MIRS) as an innovative technology for the assessment of rennet coagulation time (RCT, min) and curd firmness (a30, mm). Four samples without addition of preservative (NP) and 4 samples with Bronopol addition (PS) were collected from each of 83 Holstein-Friesian cows. Six hours after collection, 2 replicated measures of MCP were obtained with CRM using 1 NP and 1 PS sample from each cow. Mid-infrared spectra of the remaining NP and PS samples from each animal were recorded after 6 h, 4 d, and 8 d after sampling. Two groups of calibration equations were developed using MIRS spectra and CRM measures of MCP as reference data obtained from analysis of NP and PS, respectively. Reproducibility and repeatability of CRM measures were obtained from REML estimation of variance components on the basis of a linear model including the fixed effects of herd and days in milk class and the random effects of cows, sample treatment (addition or no addition of preservative), and the interaction between cow and sample treatment. Coefficient of reproducibility is an indicator of the agreement between 2 measurements of MCP for the same milk sample preserved with or without addition of Bronopol. Coefficient of repeatability is an indicator of the agreement between repeated measures of MCP. Pearson correlations between MCP measures for NP and PS were 0.97 and 0.83 for RCT and a30, respectively. Reproducibility of CRM measures under different preserving conditions of milk was 93.5% for RCT and 64.6% for a30. Repeatabilities of RCT and a30 measures were 95.7 and 77.3%, respectively. Based on the estimated cross-validation standard errors and coefficients of determination and ratios of standard errors of cross-validation to standard deviation of reference data, the predictive ability of MIRS calibration equations was moderate for RCT and unsatisfactory for a30. Predictive ability of equations based on spectra and MCP measures of PS was greater than that of equations based on data of NP. The study did not provide conclusive evidence on the effectiveness of MIRS as a predictive tool for MCP and it requires an enlargement of the variability of milk sampling circumstances. Because the relevance of MIRS predictions in relation to breeding programs for MCP based on indicator traits relies on the genetic variation of MIRS predictions and on phenotypic and genetic correlations between MIRS predictions and MCP measures, additional specific investigations on these topics are needed.  相似文献   

15.
The objective of this study was to estimate heritabilities and repeatabilities for milk coagulation traits [milk coagulation time (RCT) and curd firmness (E30)] and genetic and phenotypic correlations between milk yield and composition traits (milk fat percentage and protein percentage, urea, somatic cell count, pH) in first-lactation Estonian Holstein dairy cattle. A total of 17,577 test-day records from 4,191 Estonian Holstein cows in 73 herds across the country were collected during routine milk recordings. Measurements of RCT and E30 determined with the Optigraph (Ysebaert, Frepillon, France) are based on an optical signal in the near-infrared region. The cows had at least 3 measurements taken during the period from April 2005 to January 2009. Data were analyzed using a repeatability animal model. There was substantial variation in milk coagulation traits with a coefficient of variation of 27% for E30 and 9% for the log-transformed RCT. The percentage of variation explained by herd was 3% for E30 and 4% for RCT, suggesting that milk coagulation traits are not strongly affected by herd conditions (e.g., feeding). Heritability was 0.28 for RCT and 0.41 for E30, and repeatability estimates were 0.45 and 0.50, respectively. Genetic correlation between both milk coagulation traits was negligible, suggesting that RCT and E30 have genetically different foundations. Milk coagulation time had a moderately high positive genetic (0.69) and phenotypic (0.61) correlation with milk pH indicating that a high pH is related to a less favorable RCT. Curd firmness had a moderate positive genetic (0.48) and phenotypic (0.45) correlation with the protein percentage. Therefore, a high protein percentage is associated with favorable curd firmness. All reported genetic parameters were statistically significantly different from zero. Additional univariate random regression analysis for milk coagulation traits yielded slightly higher average heritabilities of 0.38 and 0.47 for RCT and E30 compared with the heritabilities of the repeatability model.  相似文献   

16.
The aim of this study was to test the modeling of curd-firming (CF) measures and to compare the sheep milk of 3 Alpine breeds supplemented with or without rumen-protected conjugated linoleic acid (rpCLA). Twenty-four ewes of the Brogna, Foza, and Lamon breeds were allotted to 6 pens (2 pens/breed) and fed a diet composed of corn grain, corn silage, dried sugar beet pulp, soybean meal, wheat bran, wheat straw, and a vitamin-mineral mixture. The rpCLA supplement (12 g/d per ewe plus 4 g/d for each lamb older than 30 d) was mixed into the diet of 1 pen per sheep breed (3 pens/treatment) to provide an average of 0.945 and 0.915 g/d per ewe of the cis-9,trans-11 C18:2 and trans-10,cis-12 C18:2 conjugated linoleic acid isomers, respectively. The trial started at 38 ± 23 d after parturition, and individual morning milk samples were collected on d 16, 23, 37, 44, and 59 of the trial. Milk samples were analyzed for composition, and duplicate samples were assessed for milk coagulation properties (MCP). A total of 180 CF measures for each sample (1 every 15 s) were recorded. Model parameters were the rennet coagulation time, the asymptotic potential CF, the CF instant rate constant, the syneresis instant rate constant, the maximum CF achieved within 45 min (CFmax), and the time at achievement of CFmax. The data were analyzed using a hierarchical model that considered the fixed effects of breed, diet, lamb birth, and initial days in milk, which were tested on individual ewe (random) variance; the fixed effect of sampling day, which was tested on the within-ewe sample (random) variance; and the fixed effect of instrument or cuvette position (only for MCP), which was tested on the residual (replicates within samples) variance. The local Alpine sheep breeds displayed similar milk compositions, traditional MCP, and CF modeling parameters. Supplementation with rpCLA triggered changes in milk composition and worsened MCP (e.g., delayed rennet coagulation time, slower CF instant rate constant, and a doubling of syneresis instant rate constant), but did not influence potential CF. Overall, our results indicate that rpCLA supplementation reduced the actual maximum CF (CFmax) but did not modify the interval between rennet addition and CFmax or time to CFmax.  相似文献   

17.
The aim of this study was to investigate associations between pathogen-specific cases of subclinical mastitis and milk yield, quality, protein composition, and cheese-making traits. Forty-one multibreed herds were selected for the study, and composite milk samples were collected from 1,508 cows belonging to 3 specialized dairy breeds (Holstein Friesian, Brown Swiss, and Jersey) and 3 dual-purpose breeds of Alpine origin (Simmental, Rendena, and Grey Alpine). Milk composition [i.e., fat, protein, casein, lactose, pH, urea, and somatic cell count (SCC)] was analyzed, and separation of protein fractions was performed by reversed-phase high performance liquid chromatography. Eleven coagulation traits were measured: 5 traditional milk coagulation properties [time from rennet addition to milk gelation (RCT, min), curd-firming rate as the time to a curd firmness (CF) of 20 mm (k20, min), and CF at 30, 45, and 60 min from rennet addition (a30, a45, and a60, mm)], and 6 new curd firming and syneresis traits [potential asymptotical CF at an infinite time (CFP, mm), curd-firming instant rate constant (kCF, % × min?1), curd syneresis instant rate constant (kSR, % × min?1), modeled RCT (RCTeq, min), maximum CF value (CFmax, mm), and time at CFmax (tmax, min)]. We also measured 3 cheese yield traits, expressing the weights of total fresh curd (%CYCURD), dry matter (%CYSOLIDS), and water (%CYWATER) in the curd as percentages of the weight of the processed milk, and 4 nutrient recovery traits (RECPROTEIN, RECFAT, RECSOLIDS, and RECENERGY), representing the percentage ratio between each nutrient in the curd and milk. Milk samples with SCC > 100,000 cells/mL were subjected to bacteriological examination. All samples were divided into 7 clusters of udder health (UH) status: healthy (cows with milk SCC < 100,000 cells/mL and uncultured); culture-negative samples with low, medium, or high SCC; and culture-positive samples divided into contagious, environmental, and opportunistic intramammary infection (IMI). Data were analyzed using a linear mixed model. Significant variations in the casein to protein ratio and lactose content were observed in all culture-positive samples and in culture-negative samples with medium to high SCC compared to normal milk. No differences were observed among contagious, environmental, and opportunistic pathogens, suggesting an effect of inflammation rather than infection. The greatest impairment in milk quantity and composition, clotting ability, and cheese production was observed in the 2 UH status groups with the highest milk SCC (i.e., contagious IMI and culture-negative samples with high SCC), revealing a discrepancy between the bacteriological results and inflammatory status, and thus confirming the importance of SCC as an indicator of udder health and milk quality.  相似文献   

18.
Genetic parameters of milk rennet coagulation time (RCT) and curd firmness (a30) among the first 3 lactations in Holstein cows were estimated. The data set included 39,960 test-day records from 5,216 Estonian Holstein cows (the progeny of 306 sires), which were recorded from April 2005 to May 2010 in 98 herds across the country. A multiple-lactation random regression animal model was used. Individual milk samples from each cow were collected during routine milk recording. These samples were analyzed for milk composition and coagulation traits with intervals of 2 to 3 mo in each lactation (7 to 305 DIM) and from first to third lactation. Mean heritabilities were 0.36, 0.32, and 0.28 for log-transformed RCT [ln(RCT)] and 0.47, 0.40, and 0.62 for a30 for parities 1, 2, and 3, respectively. Mean repeatabilities for ln(RCT) were 0.53, 0.55, and 0.56, but 0.59, 0.61, and 0.68 for a30 for parities 1, 2 and 3, respectively. Mean genetic correlations between ln(RCT) and a30 were −0.19, −0.14, and 0.02 for parities 1, 2, and 3, respectively. Mean genetic correlations were 0.91, 0.79, and 0.99 for ln(RCT), and 0.95, 0.94, and 0.94 for a30 between parities 1 and 2, 1 and 3, and 2 and 3, respectively. Due to these high genetic correlations, we concluded that for a proper genetic evaluation of milk coagulation properties it is sufficient to record RCT and a30 only in the first lactation.  相似文献   

19.
The objective of the present study was to investigate how the crossbreeding of Holstein (HO) cows with bulls from Nordic and Alpine European breeds affect milk quality traits, traditional milk coagulation properties (MCP), and curd firmness modeling obtained from individual milk samples. A total of 506 individual milk samples were collected from evening milking at 3 commercial farms located in Northern Italy. Over the past decade, the 3 farms have followed crossbreeding programs in part of their herds, whereas the remainder of the animals consisted of purebred HO. The basic scheme was a 3-breed rotation based on the use of Swedish Red (SR) semen on HO cows (SR × HO), the use of Montbéliarde (MO) semen on first-cross cows [MO × (SR × HO)], and the use of HO semen in the third cross. In all herds, a smaller proportion of purebred HO were mated to M and Brown Swiss (BS) bulls, and these first crosses were mated to SR and MO bulls, respectively. Milk samples were analyzed for milk composition and MCP, and parameters for curd firmness were modeled. Compared with purebred HO, crossbred cows produced less milk with lower lactose content, higher fat and protein content, and a tendency for higher casein content. Crossbred cows generally produced milk with a more favorable curd-firming rate (k20) and curd firmness 30 min after rennet addition, among traditional MCP, and better trends of curd firmness measures as shown by model parameters: estimated rennet coagulation time, asymptotical potential value of curd firmness, and curd-firming instant rate constant. Among crossbred cows, SR × HO presented longer rennet coagulation time compared with MO × HO and BS × HO cows, and MO × HO showed shorter k20 compared with BS × HO cows. Among second-generation cows, those sired by SR bulls showed a lower incidence of noncoagulated samples, higher curd firmness 30 min after rennet addition and asymptotical potential value of curd firmness, and faster curd-firming instant rate constant compared with animals sired by MO bulls. Our results revealed that different sire breeds were characterized by specific technological aptitudes, but that these were not strictly related to other milk quality traits. Furthermore, the favorable characteristics (in terms of the quality and technological properties of milk) could be maintained in the third generation of 3-way crosses without negative effects on milk yield, even though the HO heritage had been reduced from 50 to 25%. Our findings, therefore, suggest that different types of sires can be chosen (depending on the intended use of the milk) to ensure the optimization of farm crossbreeding programs.  相似文献   

20.
Milk coagulation properties (MCP) are traditionally expressed using rennet coagulation time (RCT), time to curd firmness (CF) of 20 mm (k20), and CF 30 min after enzyme addition (a30) values, all of which are single-point measures taken from the output of computerized renneting meters, such as the Formagraph. Thus, traditional MCP use only some of the available information. Moreover, because of the worldwide spreading of breeds such as the Holstein-Friesian, characterized by late-coagulating milk, it happens often that some samples do not coagulate at all, that a30 is strongly and negatively related to RCT, and that k20 is not measurable. The aim of the present work was to model CF as a function of time (CFt, mm) over a 30-min interval. The model tested was CFt=CFP×(1−ekCF×(tRCT)), where CFP (mm) is the potential asymptotical CF at an infinite time, kCF (min−1) is the curd firming rate constant, and RCT is measured in minutes. The CFt model was initially applied to data of milk of each of 105 Brown Swiss cows from 7 herds, each sampled once (trial 1). Four samples did not coagulate within 30 min. Eighty-seven of the 101 individual equations obtained fit the CF data of milk samples very well, even though the samples differed in composition, and were produced by cows of different ages and days in milk, reared on different farms (coefficient of determination >0.99; average residual standard deviation = 0.21 mm). Samples with a very late RCT (slowly coagulating samples) yielded so few observational data points that curve parameters could not be precisely estimated. The repeatability of CFt equation parameters was estimated using data obtained from 5 replicates of each of 2 samples of bulk milk from 5 Holstein-Friesian cows analyzed every day for 5 consecutive days (trial 2). Repeatability of RCT was better than that of the other 2 parameters. Moreover, traditional MCP values (RCT, a30, and k20) can be obtained from the individual CFt equations, using all available information. The MCP estimated from equations were very similar to the single-point measures yielded by the computerized renneting meter (coefficient of determination >0.97), but repeatability was slightly better. The model allowed the estimation of k20 for samples with a very late coagulation or with very slow curd firming. Finally, the 3 novel parameters used to assess different milk samples were less interdependent than are the traditional measures, and their practical and scientific utility requires further study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号