首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this study was to quantify the effect of periparturient body condition score (BCS) and body weight (BW) related traits on the incidence of calving dystocia and stillbirths, and to determine any consequent effect of dystocia and stillbirths on BCS, BW, milk production, udder health, and fertility in grazing Holstein-Friesian dairy cows. Up to 2,384 lactation records with data on calving dystocia or stillbirths were available from one research herd across 15 yr. Mixed models and generalized estimating equations were used to quantify all effects. Body condition score or BW 8 wk precalving or at calving, or change precalving did not significantly affect the odds of a difficult calving or stillbirth. Cows that experienced dystocia lost, on average, more BCS and BW between calving and nadir and had significantly reduced nadir BCS and BW. Incidence of stillbirths did not affect BCS in early lactation, although BW loss postpartum was greater following a stillbirth. A dystocia or stillbirth event was associated with reduced 60-d milk yield (42 and 52 kg less milk produced following a difficult calving or a stillbirth, respectively). The effect of stillbirth on milk yield was independent of dystocia. Cows that experienced dystocia had reduced milk concentration of fat, protein, and lactose, whereas average somatic cell score (natural logarithm of somatic cell count) in the first 60-d postpartum was elevated. There was no significant effect of dystocia or stillbirth on clinical mastitis, but pregnancy rates to first service and throughout the 12-wk breeding season were compromised in cows that had experienced difficulty at calving. The significance of the effects of stillbirth on somatic cell score and reduced fertility were mediated through its association with dystocia. In conclusion, periparturient BCS and BW within the range observed in the current study did not significantly affect incidence of dystocia and stillbirth, but these events negatively affected cow performance in early lactation.  相似文献   

2.
Relationships among milk production, body condition score (BCS), body weight (BW), and reproduction were studied using logistic regression on data from 6433 spring-calving Holstein-Friesian dairy cows in 74 commercial herds. Multivariate models were adjusted for herd, breeding value for milk yield, proportion of Holstein-Friesian genes, lactation number, calving period, and degree of calving assistance. Significant associations between reproductive measures and components of energy balance were identified. Higher 200-d milk protein content and higher protein-to-fat ratio at start of breeding were associated with increased likelihood of submission for breeding in the first 21 d of the breeding season (SR21). High 100-d cumulative milk yield as a proportion of estimated 305-d milk yield (low persistency) was associated with a lower likelihood of pregnancy to first service (PREG1), whereas cows reaching peak milk yields earlier tended to have higher PREG1. Cows that reached nadir milk protein content relatively late in lactation had lower PREG1. Milk yield at first service and 305-d milk protein content were positively associated with the likelihood of pregnancy after 42 d of breeding (PR42). Higher 305-d milk lactose content was associated with increased PREG1 and PR42. Mean BCS at 60 to 100 d of lactation was positively associated with both SR21 and PR42, whereas nadir BCS was positively associated with PREG1. Cows with precalving BCS > 3.0 that also lost > 0.5 BCS unit by first service had lower PR42. More BW gain for 90 d after start of breeding was associated with higher SR21 and PREG1; more BW gain for 90 d after first service was associated with higher PR42. Milk protein and lactose content, BCS, and BW changes are important tools to identify cows at risk of poor reproduction.  相似文献   

3.
The objective of this study was to determine if an association existed among body condition score (BCS), body weight (BW), and udder health, as indicated by somatic cell score (SCS) and cases of clinical mastitis (CM). The data consisted of 2,635 lactations from Holstein-Friesian (n = 523) and Jersey (n = 374) cows in a seasonal calving pasture-based research herd between the years 1986 and 2000, inclusive. Increased BCS at calving was associated with reduced SCS in first- and second-parity cows, and greater SCS in cows of third parity or greater. This relationship persisted for most BCS traits throughout lactation. Body weight was positively associated with SCS, although the effect was greater in Jersey cows than in Holstein-Friesians. Increased BCS and BW loss in early lactation were associated with lower SCS and a reduced probability of a high test-day SCC. Body condition score was not significantly related to CM with the exception of a curvilinear relationship between the daily rate of BCS change to nadir and CM in early lactation. Several BW variables were positively associated with a greater likelihood of CM. Nevertheless, most associations with udder health lacked biological significance within the ranges of BCS and BW generally observed on-farm. Results are important in assuring the public that modern dairy systems, where cows are subjected to substantial amounts of BCS mobilization in early lactation, do not unduly compromise cow udder health.  相似文献   

4.
Data from 113 lactations across 76 cows between the years 2002 to 2004 were used to determine the effect of strain of Holstein-Friesian (HF) dairy cow and concentrate supplementation on milk production, body weight (BW), and body condition score (BCS; 1 to 5 scale) lactation profiles. New Zealand (NZ) and North American (NA) HF cows were randomly allocated to 1 of 3 levels of concentrate supplementation [0, 3, or 6 kg of dry matter (DM)/cow per d] on a basal pasture diet. The Wilmink exponential model was fitted within lactation (YDIM = a + b e(−0.05 × DIM) + c × DIM). The median variation explained by the function for milk yield was 86%, between 62 and 69% for milk composition, and 80 and 70% for BW and BCS, respectively. North American cows and cows supplemented with concentrates had greater peak and 270-d milk yield. Concentrate supplementation tended to accelerate the rate of incline to peak milk yield, but persistency of lactation was not affected by either strain of HF or concentrate supplementation. No significant strain by diet interaction was found for parameters reported. New Zealand cows reached nadir BCS 14 d earlier and lost less BW (22 kg) postcalving than NA cows. Concentrate supplementation reduced the postpartum interval to nadir BW and BCS, and incrementally increased nadir BCS. New Zealand cows gained significantly more BCS (i.e., 0.9 × 10−3 units/d more) postnadir than NA cows, and the rate of BCS replenishment increased linearly with concentrate supplementation from 0.5 × 10−3 at 0 kg of DM/d to 0.8 × 10−3 and 1.6 × 10−3 units/d at 3 and 6 kg of DM/d concentrates, respectively. Although there was no significant strain by diet interaction for parameters reported, there was a tendency for a strain by diet interaction in 270-d BCS, suggesting that the effect of concentrate supplementation on BCS gain was, at least partly, strain dependent.  相似文献   

5.
The objective of the present study was to identify and quantify relationships between body condition score (BCS) and body weight (BW) in dairy cows with reproduction variables in pasture-based, seasonal-calving dairy herds. Over 2,500 lactation records from 897 spring-calving Holstein-Friesian dairy cows were used in the analyses. Eleven BCS- and 11 BW-related variables were generated, including observations at calving, nadir, planned start of mating (PSM), and first service, as well as days to nadir and the amount and rate of change between periods. The binary reproductive variables were cycling by PSM, mated in the first 21 d from PSM, pregnant to first service, and pregnant in the first 21, 42, and 84 d of the seasonal mating period. Generalized estimating equations were used to identify BCS and BW variables that significantly affected the probability of a successful reproductive outcome. After adjusting for the fixed effect of year of calving, parity (for cycling by PSM only), and the interval from calving to either first service or PSM, reproductive performance was found to be significantly affected by BW or BCS at key points, and by BCS and BW change during lactation. All reproductive response measures were negatively affected when BCS and BW measures indicated an increased severity and duration of the postpartum negative energy balance. In particular, cycling by PSM was positively associated with calving BCS, whereas pregnancy at 21, 42, and 84 d post-PSM were positively associated with nadir BCS and BW gain post-PSM, and negatively associated with BCS loss between calving and nadir. The results highlight the important role that BCS and BW loss has on reproductive performance, especially in seasonal-calving dairy systems because of the short period between calving and PSM.  相似文献   

6.
The primary objective of this study was to evaluate the effect on dry matter intake (DMI), milk yield, milk composition, body weight (BW), and body condition score (BCS) change of cows offered diets differing in energy density in the last 4 wk of gestation and in the first 8 wk of lactation. Three diets (grass silage:straw, 75:25 on a dry matter basis (SS), grass silage (S), and grass silage + 3 kg concentrate daily (C)) precalving, and two diets (4 kg [LC] or 8 kg [HC] concentrate daily + grass silage ad libitum) postcalving were combined in a 3 x 2 factorial design. Sixty Holstein-Friesian cows entering their second lactation were blocked according to expected calving date and BCS into groups of six and were then allocated at random to the treatments. Individual feeding started 4 wk prior to the expected calving date and measurements were made until the end of the 8th wk of lactation. Mean DMI differed between each of the precalving treatments (7.4, 8.1, and 9.9 kg/d for SS, S, and C, respectively) in the precalving period. The DMI also differed between SS and C for wk 1 to 8 (13.5 and 14.2 kg/d) postcalving. Postcalving, milk (24.2, 26.2, and 28.2 kg/d), fat (933, 1063, and 1171 g/d), and protein (736, 797, and 874 g/d) yields differed between SS, S, and C, respectively. The BCS changes differed between SS and C (-0.09 and 0.12 of a BCS) in the precalving period and between SS and S compared with C (0.02, 0.06, and -0.26 of a BCS) for wk 1 to 8 postcalving. The BW change differed between SS and S compared with C in both wk 1 to 4 (-0.23, -0.37, and -1.25 kg/d) and wk 1 to 8 (0.18, 0.10, and -0.58 kg/ d) postcalving. The BW and BCS were lower at calving for cows on SS compared with C. The greater amount of concentrate supplement postcalving increased DMI, yields of milk, fat, and protein and decreased BW loss in the first 8 wk of lactation. In conclusion, these results indicate that a greater energy density diet in the final 4 wk of the dry period improves cow production in early lactation.  相似文献   

7.
Genetic (co)variances between body condition score (BCS), body weight (BW), milk production, and fertility-related traits were estimated. The data analyzed included 8591 multiparous Holstein-Friesian cows with records for BCS, BW, milk production, and/or fertility from 78 seasonal calving grass-based farms throughout southern Ireland. Of the cows included in the analysis, 4402 had repeated records across the 2 yr of the study. Genetic correlations between level of BCS at different stages of lactation and total lactation milk production were negative (-0.51 to -0.14). Genetic correlations between BW at different stages of lactation and total lactation milk production were all close to zero but became positive (0.01 to 0.39) after adjusting BW for differences in BCS. Body condition score at different stages of lactation correlated favorably with improved fertility; genetic correlations between BCS and pregnant 63 d after the start of breeding season ranged from 0.29 to 0.42. Both BW at different stages of lactation and milk production tended to exhibit negative genetic correlations with pregnant to first service and pregnant 63 d after the start of the breeding season and positive genetic correlations with number of services and the interval from first service to conception. Selection indexes investigated illustrate the possibility of continued selection for increased milk production without any deleterious effects on fertility or average BCS, albeit, genetic merit for milk production would increase at a slower rate.  相似文献   

8.
The objectives of this study were to estimate the heritability of body condition score loss (BCSL) in early lactation and estimate genetic and phenotypic correlations among BCSL, body condition score (BCS), production, and reproductive performance. Body condition scores at calving and postpartum, mature equivalents for milk, fat and protein yield, days to first service, and services per conception were obtained from Dairy Records Management Systems in Raleigh, NC. Body condition score loss was defined as BCS at calving minus postpartum BCS. Heritabilities and correlations were estimated with a series of bivariate animal models with average-information REML. Herd-year-season effects and age at calving were included in all models. The length of the prior calving interval was included for all second lactation traits, and all nonproduction traits were analyzed with and without mature equivalent milk as a covariable. Initial correlations between BCS and BCSL were obtained using BCSL and BCS observations from the same cows. Additional genetic correlation estimates were generated through relationships between a group of cows with BCSL observations and a separate group of cows with BCS observations. Heritability estimates for BCSL ranged from 0.01 to 0.07. Genetic correlation estimates between BCSL and BCS at calving ranged from -0.15 to -0.26 in first lactation and from -0.11 to -0.48 in second lactation. Genetic correlation estimates between BCSL and postpartum BCS ranged from -0.70 to -0.99 in first lactation and from -0.56 to -0.91 in second lactation. Phenotypic correlation estimates between BCSL and BCS at calving were near 0.54, whereas phenotypic correlation estimates between BCSL and postpartum BCS were near -0.65. Genetic correlations between BCSL and yield traits ranged from 0.17 to 0.50. Genetic correlations between BCSL and days to first service ranged from 0.29 to 0.68. Selection for yield appears to increase BCSL by lowering postpartum BCS. More loss in BCS was associated with an increase in days to first service.  相似文献   

9.
Improving body condition score of thin cows in late lactation is necessary, because cows that are thin at drying off exhibit decreased fertility postpartum and are at increased risk of disease and of being culled in the subsequent lactation. Offering a diet low in crude protein (CP) content in late lactation may help to improve body condition score (BCS) at drying off, whereas imposing an extended dry period (EDP) has been advocated as another way to increase BCS at calving. To test these hypotheses, 65 thin cows (mean BCS 2.25 at 14 wk precalving) were managed on 1 of 3 treatments between 13 and 9 wk prepartum: normal protein control {NP; grass silage + 5 kg/d of a normal protein concentrate [228 g of CP/kg of dry matter (DM)]}, low protein [LP; grass silage + 5 kg/d of a low-protein concentrate (153 g of CP/kg of DM)], or EDP (cows dried off at 13 wk precalving and offered a grass silage-only diet). Both NP and LP cows were dried off at wk 8 prepartum, after which all cows were offered a grass silage-only diet until calving. After calving, all cows were offered a common diet (supplying 11.1 kg of concentrate DM/cow per day) for 19 wk. Between 13 and 9 wk prepartum, LP cows had lower DM intake, milk yield, and body weight than NP cows. Whereas EDP cows had lower serum β-hydroxybutyrate and fatty acid concentrations than those of NP cows, BCS at wk 9 prepartum did not differ between treatments. Cows on the LP treatment continued to have lower DMI and BW than those of NP and EDP cows between 8 wk prepartum and calving, but only EDP cows had a higher BCS at calving. Treatment did not affect calving difficulty score or calf birth weight. Although all cows were offered a common diet postpartum, cows on the LP treatment had lower DM intake and milk fat + plus protein yield than cows on any other treatment during the 19-wk period postpartum, but we found no differences in any postpartum indicator of body tissue reserves. The treatments imposed from wk 13 to 9 prepartum had no effect on any fertility or health parameters examined postpartum. Extending the dry period for thin cows improved their BCS at calving but did not allow these cows to achieve the target BCS of 2.75, and we found no beneficial effects of this treatment on cow performance postpartum. Offering a lower-protein diet to thin cows in late lactation did not improve BCS at calving above that of cows on a normal protein diet, but had unexplained long-term negative effects on cow performance.  相似文献   

10.
The objectives of this study were to calculate the heritability of feed efficiency and residual feed intake, and examine the relationships between feed efficiency and other traits of productive and economic importance. Intake and body measurement data were collected monthly on 970 cows in 11 tie-stall herds for 6 consecutive mo. Measures of efficiency for this study were: dry matter intake efficiency (DMIE), defined as 305-d fat-corrected milk (FCM)/305-d DMI, net energy for lactation efficiency (NELE), defined as 305-d FCM/05-d NEL intake, and crude protein efficiency (CPE), defined as 305-d true protein yield/305-d CP intake. Residual feed intake (RFI) was calculated by regressing daily DMI on daily milk, fat, and protein yields, body weight (BW), daily body condition score (BCS) gain or loss, the interaction between BW and BCS gain or loss, and days in milk (DIM). Data were analyzed with 3- and 4-trait animal models and included 305-d FCM or protein yield, DM, NEL, or CP intake, BW, BCS, BCS change between DIM 1 and 60, milk urea nitrogen, somatic cell score, RFI, or an alternative efficiency measure. Data were analyzed with and without significant covariates for BCS and BCS change between DIM 1 and 60. The average DMIE, NELE, and CPE were 1.61, 0.98, and 0.32, respectively. Heritability of gross feed efficiency was 0.14 for DMIE, 0.18 for NELE, and 0.21 for CPE, and heritability of RFI was 0.01. Body weight and BCS had high and negative correlations with the efficiency traits (−0.64 to −0.70), indicating that larger and fatter cows were less feed efficient than smaller and thinner cows. When BCS covariates were included in the model, cows identified as being highly efficient produced 2.3 kg/d less FCM in early lactation due to less early lactation loss of BCS. Results from this study suggest that selection for higher yield and lower BW will increase feed efficiency, and that body tissue mobilization should be considered.  相似文献   

11.
The rate and extent of estimated energy mobilization and the relationship between fat depth at the rib and thurl and body condition score (BCS) were investigated in Jersey and Holstein cows in early lactation. Twenty-six cows were paired by breed, parity, and calving date, and were individually fed a total mixed ration ad libitum from parturition through 120 d in milk. Feed intake and milk production were measured daily; body weight (BW), BCS, subcutaneous fat depth, milk composition, and concentration of plasma nonesterified fatty acids were measured every 2 wk. Estimated tissue energy balance (TEB) was calculated using 1989 NRC equations. Net energy intake was greater in early lactation for Holsteins compared with Jerseys, 37.8 and 28.2 Mcal/d, respectively. Milk energy was greater for Holsteins relative to Jerseys, 30.5 versus 21.2 Mcal/d. Fat depth and BCS did not differ between breeds. A positive relationship existed between fat depth and BCS for Jerseys; however, there was no significant relationship for Holsteins. The best-fit regression model for predicting TEB for Holsteins and Jerseys in early lactation included week of lactation, milk composition, and BCS. Jerseys remained in negative TEB for a shorter period of time relative to Holsteins. The TEB nadir was -6.19 and -12.9 Mcal/d, for Jerseys and Holsteins, respectively. Expressed as a proportion of metabolic BW (BW(0.75)), net energy intake did not differ between breeds, yet milk energy and estimated tissue energy loss were greater for Holsteins compared with Jerseys.  相似文献   

12.
The objective of this study was to examine the effects of live yeast (LY) supplementation and body condition score (BCS, 1-5 scale) at calving on milk production, metabolic status, and rumen physiology of postpartum (PP) dairy cows. Forty Holstein-Friesian dairy cows were randomly allocated to a 2 × 2 factorial design and blocked by yield, parity, BCS, and predicted calving date. Treatments were body condition at calving (low for BCS ≤3.5 or high for BCS ≥3.75; n = 20) and supplementation with LY (2.5 and 10 g of LY/d per cow for pre- and postcalving, respectively; control, no LY supplementation; n = 20). The supplement contained 109 cfu of Saccharomyces cerevisiae/g (Yea-Sacc1026 TS, Alltech Inc., Nashville, TN). Daily milk yield, dry matter intake, milk composition, BCS, body weight, and backfat thickness were recorded. Blood samples were harvested for metabolite analysis on d 1, 5, 15, 25, and 35 PP. Liver samples were harvested by biopsy for triacylglycerol (TAG) and glycogen analysis on d 7 precalving, and on d 7 and 21 PP. Rumen fluid was sampled by rumenocentesis for all cows on d 7 and 21 PP. Supplementation with LY had no effect on milk yield, dry matter intake, rumen fluid pH, or blood metabolites concentration of dairy cows with high or low BCS at calving. Feeding LY increased rumen acetate proportion and protozoal population, tended to increase liver glycogen, and decreased rumen ammonia nitrogen during early lactation. Over-conditioned cows at calving had greater body reserve mobilization and milk production and lower feed intake, whereas cows with a moderate BCS at calving had greater feed intake, lower concentrations of nonesterified fatty acids and β-hydroxybutyrate, lower liver TAG and TAG:glycogen ratio, and faster recovery from body condition loss. Additionally, the data suggest that concentrations of liver enzymes in blood might be used as an indicator for liver TAG:glycogen ratio. Results indicate that in the case of this experiment, where the control treatment was associated with an acceptable rumen pH, feeding yeast did not significantly improve indicators of energy status in dairy cows.  相似文献   

13.
The body condition score (BCS) of a dairy cow is an assessment of the proportion of body fat that it possesses, and it is recognized by animal scientists and producers as being an important factor in dairy cattle management. The scale used to measure BCS differs between countries, but low values always reflect emaciation and high values equate to obesity. The intercalving profile of BCS is a mirror image of the milk lactation profile. Cows lose condition for 50 to 100 d postcalving, because of homeorhetic changes that occur in the somatotropic axis and the sensitivity of peripheral tissues to insulin, and the upregulation of lipolytic pathways in adipose tissue. Management and feeding have little effect on early postcalving BCS loss (wk 1 to 4 postcalving) until the natural period of insulin resistance has passed and the somatotropic axis has recoupled. There is evidence, however, that management and diet can influence the timing of recoupling of the somatotropic axis and the sensitivity of peripheral tissues to insulin, and gene expression differences in adipose tissue 30 d in milk confirm an effect of energy intake on lipogenic enzymes. The BCS in which a cow calves, nadir BCS, and the amount of BCS she loses postcalving are associated with milk production, reproduction, and health. Body condition score may also be a valid indicator of animal welfare, but further research is required to determine the effect of BCS and BCS change on how a cow “feels.” Although the actual strength of the association may vary, there is relative consistency in the associations among calving and nadir BCS, and BCS change on milk production, postpartum anestrous, the likelihood of a successful pregnancy and days open, the risk of uterine infection, and the risk of metabolic disorders. For many production and health variables, the association with BCS is nonlinear, with an optimum calving BCS of 3.0 to 3.25 (5-point scale); lower calving BCS is associated with reduced production and reproduction, whereas calving BCS ≥3.5 (5-point scale) is associated with a reduction in early lactation dry matter intake and milk production and an increased risk of metabolic disorders. Ongoing research into the automation of body condition scoring suggests that it is a likely candidate to be incorporated into decision support systems in the near future to aid producers in making operational and tactical decisions.  相似文献   

14.
The objective was to investigate the associations between body condition scores (BCS) and daily body weight (BW) in the first 150 d of lactation (DIM) and reproductive performance in high-producing dairy cows. Data included automated daily BW measurements and BCS of 2,020 Israeli Holstein cows from 7 commercial farms. Individual BW series were smoothed using penalized cubic splines, and variables representing BW patterns were generated. The presence of 7- and 21-d cycles in BW was determined using time-series analysis. Associations between BW and BCS and conception at first artificial insemination (AI) were analyzed using generalized estimating equations. Multivariate survival analysis was used for associations between BW and BCS and the calving-to-first AI interval, first AI-to-conception interval, and calving-to-conception interval. First-parity cows that lost ≥12% and second-parity cows that lost ≥15% of their BW from calving to nadir BW were less likely to conceive at first AI. Cows without 7-d cycles in BW were 1.48 times more likely to conceive at first AI relative to cows with 7-d cycles. The odds of conceiving at first AI increased by 53% for each additional unit in BCS from 40 to 60 DIM. In the multivariate survival analysis, a BCS of ≤2.5 between 40 and 60 DIM, the percentage of BW lost from calving to nadir BW, and a BW loss of ≥7% from calving to 10 DIM were associated with reduced reproductive performance. The presence of 21-d cycles in BW was associated with high reproductive performance in first-parity [odds ratio (OR) = 1.18] and second-parity cows (OR = 1.22). The presence of 7-d cycles in BW was associated with low reproductive performance in first-parity cows (OR = 0.77), but not in older cows. Based on previous findings and on the associations found in this study, we postulate that 21-d cycles are probably related to the sexual cycle and could be used as a proxy for assessing ovarian activity. Variables representing relative BW loss (%) were better predictors for impaired reproductive performance than those representing absolute BW loss (kg) and may be more suitable for estimating individual adaptation to negative energy balance in herds for which automated daily BW is available.  相似文献   

15.
A total of 850 cows distributed among 13 commercial Holstein herds were involved in this study to compare the effects of 2 different dry period (DP) management strategies on milk and component yields as well as body condition score (BCS) over complete lactations. Within each herd and every 2 mo, cows were assigned to a short (35 d dry; SDP) or conventional (60 d dry; CDP) DP management based on previous lactation 305-d milk yield, predicted calving interval, and parity: primiparous (n = 414) and multiparous (n = 436). Cows assigned to CDP were fed a far-off dry cow ration from dry-off until 21 d prepartum, and were then switched to a precalving ration. Cows assigned to SDP were fed the precalving ration throughout their DP. Rations were different across herds, but the late-lactation, precalving, and early lactation rations were identical for both treatment groups within each herd. Additional milk was obtained at the end of lactation from cows assigned to SDP due to the extended lactation. Average daily milk yield in the following lactation was not different between treatments for third- or greater-lactation cows, but was significantly decreased in second-lactation SDP cows. However, when expressed as energy-corrected milk, this difference was not significant. Although lower for primiparous than multiparous cows, body weight and BCS were not affected by DP management strategy. Milk production and BCS responses to treatments varied among herds. Results from the present study suggest that a short DP management strategy could be more appropriate for today's dairy cows, although not suitable for all cows or all herds.  相似文献   

16.
(Co)variance components for body condition score (BCS), body weight (BW), BCS change, BW change, and milk yield traits were estimated. The data analyzed included 6646 multiparous Holstein-Friesian cows with records for BCS, BW, and(or) milk yield at different stages of lactation from 74 dairy herds throughout Southern Ireland. Heritability estimates for BCS ranged from 0.27 to 0.37, while those for BCS change ranged from 0.02 to 0.10. Heritability estimates for BW records varied from 0.39 to 0.50, while heritabilities for BW change were similar to those observed for BCS change (0.03 to 0.09). The genetic correlations between BCS and BW at the same days in milk deviated little from 0.50, and the genetic correlations between BCS change and BW change over the same period ranged from 0.42 to 0.55. BCS and BW directly postpartum were both phenotypically and genetically negatively correlated with both BW change and BCS change in early lactation. The genetic correlations between BCS and milk yield were negative. The results of the present study show that animals that lose most BCS in early lactation tend to gain most BCS in late lactation, a trend also exhibited by BW.  相似文献   

17.
The objective of this study was to investigate, describe, and quantify daily body weight (BW) changes in the first 120 d of lactation in high-producing dairy cows. Data included 255,287 daily BW measurements from 2,167 Israeli Holstein dairy cows originating from 7 commercial dairy farms. Individual series of measurements were first smoothed using cubic splines for generating variables representing BW changes in early lactation and further analysis of the data. To construct standard BW curves stratified by parity and adjusted for farm, mixed models for repeated measurements were fit to the smoothed data, and least squares means for day in lactation were plotted. Time-series analysis techniques using polynomial functions of day in lactation and pairs of sine and cosine functions representing 7- and 21-d cycles were performed separately on each individual series of measurements. Additionally, generalized estimating equations were used to perform similar analysis on the data set as a whole. Mean days from calving to nadir BW increased significantly from first to later parities, as did mean BW loss from calving to nadir. The first-parity cow lost 6.5% of her BW from calving to d 29 in lactation, and second-parity and greater-parity cows lost 8.5 and 8.4% of their BW to d 34 and 38 in lactation, respectively. After nadir BW was reached, first-parity cows regained relative BW at a greater rate than did older parity cows. The trend in BW was nonlinear. A 7-d cycle was present in 247 cows (11.4%) and a 21-d cycle was present in 715 cows (33.0%). Presence of a 21-d cycle was associated with a 33% reduction in the risk of being diagnosed with inactive ovaries. Fewer days from calving to nadir BW and smaller BW loss from calving to nadir, coupled with a faster post-nadir increase in relative BW in first-parity cows compared with older cows indicated a smaller energy deficit in early lactation. Association between 21-d cycles in BW and ovarian activity suggest that these cycles were physiological and related to the estrous cycle. Therefore, monitoring them could be useful for indirectly assessing ovarian activity in a herd.  相似文献   

18.
In pasture-based systems, cows are generally thinner at the end of lactation than cows fed total mixed rations and, as a result, over-feeding of metabolizable energy (ME) during the far-off nonlactating period is a standard management policy to achieve optimum calving body condition score (BCS). An alternative would be to manage cows to gain BCS through late lactation, such that cows ended lactation close to optimum calving BCS and maintenance of BCS through to calving. We sought to quantify the effect of moderate or excessive ME intakes during the far-off nonlactating period in cows that had been managed to gain or maintain BCS through late lactation and whether the far-off management strategy interacted with close-up level of feeding. Effects on milk production and circulating indicators of energy balance and metabolic health in early lactation were evaluated. A herd of 150 cows was randomly assigned to 1 of 2 feeding levels in late lactation to achieve a low and high BCS at the time of dry-off (approximately 4.25 and 5.0 on a 10-point scale). Following dry-off, both herds were managed to achieve a BCS of 5.0 one month before calving; this involved controlled feeding (i.e., maintenance) and over-feeding of ME during the far-off dry period. Within each far-off feeding-level treatment, cows were offered 65, 90, or 120% of their pre-calving ME requirements for 3 wk pre-calving in a 2 × 3 factorial arrangement (i.e., 25 cows/treatment). Body weight and BCS were measured weekly before and after calving, and milk production was measured weekly until wk 7 postcalving. Blood samples were collected weekly for 4 wk pre-calving and 5 wk postcalving, and on d 0, 1, 2, 3, and 4 relative to calving, and analyzed for indicators of energy balance (e.g., blood fatty acids, β-hydroxybutyrate), calcium status, and inflammatory state. No interaction was observed between far-off and close-up feeding levels. Over-feeding of ME to low BCS cows during the far-off nonlactating period reduced blood fatty acid and β-hydroxybutyrate concentrations in early lactation, and increased blood albumin to globulin ratio compared with cows that were dried off close to recommended calving BCS and control-fed during the far-off dry period. Cows consuming 65% of their ME requirements during the close-up period had lower fatty acids and β-hydroxybutyrate in early lactation, but produced less milk, particularly during the first 21 d of lactation, had more than 3-fold greater concentration of haptoglobin immediately postcalving, and had a lower blood cholesterol concentration and albumin to globulin ratio, when compared with cows offered 90 or 120% of their ME requirements. Collectively, these measurements indicate that a severe restriction (<70% of ME requirements) during the close-up nonlactating period increases the risk of disease in early lactation and reduces milk production. In summary, far-off over-feeding of ME to cows that needed to gain BCS did not influence peripartum metabolic health in grazing dairy cows, but restricting cows below 70% ME requirements during the close-up transition period resulted in a blood profile indicative of greater inflammation.  相似文献   

19.
The objective of this study was to determine associations between body weight (BW) and body condition score (BCS) variables indicating a more severe negative energy balance in early lactation and events of somatic cell counts (SCC) >250,000 cells/mL and SCC >400,000 cells/mL in dairy cows. We studied lactations from 634 primiparous and 1,086 multiparous Israeli Holstein dairy cows originating from 7 commercial dairy farms. Generalized mixed models with a random herd effect were used to quantify the effects of BW and BCS variables in early lactation on events of elevated SCC. Data were analyzed using 2 different approaches. In the first approach, only first events in a lactation were taken into account, whereas in the second approach, all events in a lactation were analyzed and repeated events from the same cow were accounted for. Although no associations were found between the different BW and BCS variables and first events of elevated SCC, associations were present between these variables and events of elevated SCC when all events were analyzed. The cumulative incidence of a lactation with multiple events of SCC >250,000 cells/mL was 8.8 and 27.7% for primiparous and multiparous cows, respectively. The odds of an event of SCC >250,000 cells/mL were 25% greater for cows belonging to the upper quartile in relative BW loss from calving to nadir BW (loss >12.3, 15.0, and 15.7% for first-, second-, and third- parity and greater cows, respectively) compared with cows losing less relative BW. Odds of an event were 44% greater for cows with ketosis when compared with cows without. The cumulative incidence of a lactation with multiple events of SCC >400,000 cells/mL was 4.1 and 14.3% for primiparous and multiparous cows, respectively. The odds of an event of SCC >400,000 cells/mL were 43% greater for cows belonging to the upper quartile in relative BW loss from calving to nadir BW compared with cows losing less relative BW. Odds of an event were 33% greater for cows with ketosis when compared with cows without. Assuming that extreme BW loss and ketosis in early lactation indicate a more severe negative energy balance, our findings support the hypothesis that greater negative energy balance in early lactation predisposes dairy cows to udder inflammation. Considering the fact that many of the events were recurring, we stress the importance of including all events in the analysis and postulate the possibility of long-term detrimental effects of negative energy balance on udder health.  相似文献   

20.
Fifty-two multiparous dairy cows were allocated to 4 treatments consuming 5.4, 8.2, 10.0, or 11.0 kg/d of pasture dry matter per cow for 27 +/- 9.6 d precalving. This equated to 1.3, 1.9, 2.4, and 2.6% of body weight (BW; not including the conceptus weight). Following calving, all cows were fed ad libitum on pasture. Blood was sampled 17 d precalving, on day of calving, and on d 1, 2, 3, 4, 7, 14, 28, and 35 postcalving. Results suggest that the near-term grazing dairy cow requires 1.05 MJ of ME/kg of BW(0.75) and that previous estimates of energy requirements were underestimated. Precalving plasma concentrations of glucose, insulin-like growth factor-1, and leptin increased quadratically with increasing pasture intake. This was associated with precalving plasma concentrations of growth hormone that declined linearly, and concentrations of nonesterified fatty acids and beta-hydroxybutyrate that declined quadratically with increasing dry matter intake (DMI). Postcalving plasma concentrations of these metabolites showed no lasting effect of precalving feeding. The effect of precalving nutrition on milk production was small, and other than milk fat, was confined to wk 1 postcalving. Milk fat yield increased with increasing precalving DMI and calving body condition score until wk 3 post-calving, after which treatment effects were not evident. These results indicate that the level of feeding in grazing dairy cows during the last month before calving has only small effects on cow metabolic and hormonal status, and on milk production in the first 5 wk of lactation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号