首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Mixture models are appealing for identifying hidden structures affecting somatic cell score (SCS) data, such as unrecorded cases of subclinical mastitis. Thus, liability-normal mixture (LNM) models were used for genetic analysis of SCS data, with the aim of predicting breeding values for such cases of mastitis. Here, putative mastitis statuses and breeding values for liability to putative mastitis were inferred solely from SCS observations. In total, there were 395,906 test-day records for SCS from 50,607 Danish Holstein cows. Four different statistical models were fitted: A) a classical (nonmixture) random regression model for test-day SCS; B1) an LNM test-day model assuming homogeneous (co)variance components for SCS from healthy (IMI-) and infected (IMI+) udders; B2) an LNM model identical to B1, but assuming heterogeneous residual variances for SCS from IMI- and IMI+ udders; and C) an LNM model assuming fully heterogeneous (co)variance components of SCS from IMI- and IMI+ udders. For the LNM models, parameters were estimated with Gibbs sampling. For model C, variance components for SCS were lower, and the corresponding heritabilities and repeatabilities were substantially greater for SCS from IMI- udders relative to SCS from IMI+ udders. Further, the genetic correlation between SCS of IMI- and SCS of IMI+ was 0.61, and heritability for liability to putative mastitis was 0.07. Models B2 and C allocated approximately 30% of SCS records to IMI+, but for model B1 this fraction was only 10%. The correlation between estimated breeding values for liability to putative mastitis based on the model (SCS for model A) and estimated breeding values for liability to clinical mastitis from the national evaluation was greatest for model B1, followed by models A, C, and B2. This may be explained by model B1 categorizing only the most extreme SCS observations as mastitic, and such cases of subclinical infections may be the most closely related to clinical (treated) mastitis.  相似文献   

3.
A random regression model with both random and fixed regressions fitted by Legendre polynomials of order 4 was compared with 3 alternative models fitting linear splines with 4, 5, or 6 knots. The effects common for all models were a herd-test-date effect, fixed regressions on days in milk (DIM) nested within region-age-season of calving class, and random regressions for additive genetic and permanent environmental effects. Data were test-day milk, fat and protein yields, and SCS recorded from 5 to 365 DIM during the first 3 lactations of Canadian Holstein cows. A random sample of 50 herds consisting of 96,756 test-day records was generated to estimate variance components within a Bayesian framework via Gibbs sampling. Two sets of genetic evaluations were subsequently carried out to investigate performance of the 4 models. Models were compared by graphical inspection of variance functions, goodness of fit, error of prediction of breeding values, and stability of estimated breeding values. Models with splines gave lower estimates of variances at extremes of lactations than the model with Legendre polynomials. Differences among models in goodness of fit measured by percentages of squared bias, correlations between predicted and observed records, and residual variances were small. The deviance information criterion favored the spline model with 6 knots. Smaller error of prediction and higher stability of estimated breeding values were achieved by using spline models with 5 and 6 knots compared with the model with Legendre polynomials. In general, the spline model with 6 knots had the best overall performance based upon the considered model comparison criteria.  相似文献   

4.
The distribution of somatic cell scores could be regarded as a mixture of at least two components depending on a cow's udder health status. A heteroscedastic two-component Bayesian normal mixture model with random effects was developed and implemented via Gibbs sampling. The model was evaluated using datasets consisting of simulated somatic cell score records. Somatic cell score was simulated as a mixture representing two alternative udder health statuses ("healthy" or "diseased"). Animals were assigned randomly to the two components according to the probability of group membership (Pm). Random effects (additive genetic and permanent environment), when included, had identical distributions across mixture components. Posterior probabilities of putative mastitis were estimated for all observations, and model adequacy was evaluated using measures of sensitivity, specificity, and posterior probability of misclassification. Fitting different residual variances in the two mixture components caused some bias in estimation of parameters. When the components were difficult to disentangle, so were their residual variances, causing bias in estimation of Pm and of location parameters of the two underlying distributions. When all variance components were identical across mixture components, the mixture model analyses returned parameter estimates essentially without bias and with a high degree of precision. Including random effects in the model increased the probability of correct classification substantially. No sizable differences in probability of correct classification were found between models in which a single cow effect (ignoring relationships) was fitted and models where this effect was split into genetic and permanent environmental components, utilizing relationship information. When genetic and permanent environmental effects were fitted, the between-replicate variance of estimates of posterior means was smaller because the model accounted for random genetic drift.  相似文献   

5.
Multiple-trait random regression animal models with simultaneous and recursive links between phenotypes for milk yield and somatic cell score (SCS) on the same test day were fitted to Canadian Holstein data. All models included fixed herd test-day effects and fixed regressions within region-age at calving-season of calving classes, and animal additive genetic and permanent environmental regressions with random coefficients. Regressions were Legendre polynomials of order 4 on a scale from 5 to 305 d in milk (DIM). Bayesian methods via Gibbs sampling were used for the estimation of model parameters. Heterogeneity of structural coefficients was modeled across (the first 3 lactations) and within (4 DIM intervals) lactation. Model comparisons in terms of Bayes factors indicated the superiority of simultaneous models over the standard multiple-trait model and recursive parameterizations. A moderate heterogeneous (both across- and within-lactation) negative effect of SCS on milk yield (from −0.36 for 116 to 265 DIM in lactation 1 to −0.81 for 5 to 45 DIM in lactation 3) and a smaller positive reciprocal effect of SCS on milk yield (from 0.007 for 5 to 45 DIM in lactation 2 to 0.023 for 46 to 115 DIM in lactation 3) were estimated in the most plausible specification. No noticeable differences among models were detected for genetic and environmental variances and genetic parameters for the first 2 regression coefficients. The curves of genetic and permanent environmental variances, heritabilities, and genetic and phenotypic correlations between milk yield and SCS on a daily basis were different for different models. Rankings of bulls and cows for 305-d milk yield, average daily SCS, and milk lactation persistency remained the same among models. No apparent benefits are expected from fitting causal phenotypic relationships between milk yield and SCS on the same test day in the random regression test-day model for genetic evaluation purposes.  相似文献   

6.
The current methodology for estimating genetic parameters for SCC (SCS) does not account for the difference in SCS between healthy cows and cows with an intramammary infection (IMI). We propose a two-component finite mixed normal mixture model to estimate IMI prevalence, separate SCS subpopulation means, individual posterior probabilities of IMI, and SCS variance components. The theory is presented and the expectation-conditional maximization algorithm is utilized to compute maximum likelihood estimates. The methodology is illustrated on two simulated data sets based on the current knowledge of SCS parameters. Maximum likelihood estimates of IMI prevalence and SCS subpopulation means were close to simulated values, except for the estimate of IMI prevalence when both subpopulations were almost confounded. Individual posterior probabilities of IMI were always higher among infected than among healthy cows. Error and additive variance components obtained under the mixture model were closer to simulated values than restricted maximum likelihood estimates obtained assuming a homogeneous SCS distribution, especially when subpopulations were completely separated and when mixing proportion was highest. Convergence was linear and rapid when priors were chosen with caution. The advantages of the methodology are demonstrated, and its feasibility for large data sets is discussed.  相似文献   

7.
The dataset used in this analysis contained a total of 341,736 test-day observations of somatic cell scores from 77,110 primiparous daughters of 1965 Norwegian Cattle sires. Initial analyses, using simple random regression models without genetic effects, indicated that use of homogeneous residual variance was appropriate. Further analyses were carried out by use of a repeatability model and 12 random regression sire models. Legendre polynomials of varying order were used to model both permanent environmental and sire effects, as did the Wilmink function, the Lidauer-M?ntysaari function, and the Ali-Schaeffer function. For all these models, heritability estimates were lowest at the beginning (0.05 to 0.07) and higher at the end (0.09 to 0.12) of lactation. Genetic correlations between somatic cell scores early and late in lactation were moderate to high (0.38 to 0.71), whereas genetic correlations for adjacent DIM were near unity. Models were compared based on likelihood ratio tests, Bayesian information criterion, Akaike information criterion, residual variance, and predictive ability. Based on prediction of randomly excluded observations, models with 4 coefficients for permanent environmental effect were preferred over simpler models. More highly parameterized models did not substantially increase predictive ability. Evaluation of the different model selection criteria indicated that a reduced order of fit for sire effects was desireable. Models with zeroth- or first-order of fit for sire effects and higher order of fit for permanent environmental effects probably underestimated sire variance. The chosen model had Legendre polynomials with 3 coefficients for sire, and 4 coefficients for permanent environmental effects. For this model, trajectories of sire variance and heritability were similar assuming either homogeneous or heterogeneous residual variance structure.  相似文献   

8.
Random regression models were used to estimate genetic parameters for test-day milk yield in Murrah buffaloes using Bayesian inference. Data comprised 17,935 test-day milk records from 1,433 buffaloes. Twelve models were tested using different combinations of third-, fourth-, fifth-, sixth-, and seventh-order orthogonal polynomials of weeks of lactation for additive genetic and permanent environmental effects. All models included the fixed effects of contemporary group, number of daily milkings and age of cow at calving as covariate (linear and quadratic effect). In addition, residual variances were considered to be heterogeneous with 6 classes of variance. Models were selected based on the residual mean square error, weighted average of residual variance estimates, and estimates of variance components, heritabilities, correlations, eigenvalues, and eigenfunctions. Results indicated that changes in the order of fit for additive genetic and permanent environmental random effects influenced the estimation of genetic parameters. Heritability estimates ranged from 0.19 to 0.31. Genetic correlation estimates were close to unity between adjacent test-day records, but decreased gradually as the interval between test-days increased. Results from mean squared error and weighted averages of residual variance estimates suggested that a model considering sixth- and seventh-order Legendre polynomials for additive and permanent environmental effects, respectively, and 6 classes for residual variances, provided the best fit. Nevertheless, this model presented the largest degree of complexity. A more parsimonious model, with fourth- and sixth-order polynomials, respectively, for these same effects, yielded very similar genetic parameter estimates. Therefore, this last model is recommended for routine applications.  相似文献   

9.
The objectives of this study were to apply a finite mixture model (FMM) to data for somatic cell count in goats and to compare the fit of the FMM with that of a standard linear mixed effects model. Bacteriological information was used to assess the ability of the model to classify records from healthy or infected goats. Data were 4518 observations of somatic cell score (SCS) and bacterial infection from both udder halves of 310 goats from 5 herds in Northern Italy. The records were from a complete production season, and were taken monthly from February to November 2000. Explanatory factors in both models included a 3-parameter regression on days in milk (DIM); fixed class effects of herd-test-day, parity group, and udder side (left or right); and random effects of goat and udder half within goat. In addition, the 2-component FMM included a fixed mean for the second component of the model (theoretically corresponding to infected udder halves), as well as an unknown probability of membership to a given putative infection status. A Bayesian statistical approach was used for the analysis with Gibbs sampling used to obtain draws from posterior distributions of parameters of interest. Two sampling chains of 200,000 cycles each were generated for each model. The FMM yielded a much lower estimate of residual variance than the standard model (1.28 vs. 3.02 SCS2), and a slightly higher estimate for the between-goat variance (1.79 vs. 1.48). The deviance information criterion (DIC) was used to compare the fit of the 2 models. The DIC was much lower for the FMM, indicating a better fit to the data. The FMM was able to classify correctly 60 and 48% of the healthy and infected observations, respectively. This was slightly higher than what would be expected from random classification, but not high enough for useful mastitis diagnosis. Nevertheless, increased precision of genetic evaluation is the goal of applying the FMM, rather than timely and accurate mastitis diagnosis. The results suggest that more research on FMM for SCS is merited and necessary for proper application.  相似文献   

10.
Genetic evaluation using BLUP can accommodate heterogeneous variances if the necessary variance components are known; this may require estimation of variance components within each heterogeneous subclass. Properties of sire and residual variance estimates obtained by an empirical Bayes approach, which combines within-herd and prior estimates, were examined via simulation. Prior estimates were obtained using REML across herds, as if variances were homogeneous. Convergence was improved by incorporation of prior information such that variance component estimates could be obtained in within-herd situations for which a REML algorithm failed to converge. Accuracy of sire variance estimates was greatest when both within-herd and prior information were used, but improvement in accuracy of residual variance estimates associated with incorporation of prior information was minimal. Correlations between sires' standardized true transmitting abilities and PTA that used empirical Bayes variance estimates were larger than those obtained when heterogeneity was ignored. Proportions of sires selected, based on standardized PTA, from environments with differing genetic and residual variances became more uniform as the relative weight placed on within-herd data in variance estimation increased. Thus, useful variance component estimates can be obtained within individual herds by using empirical Bayes methods with across-herd estimates as prior information; this may allow prediction of breeding values that are less influenced by heterogeneous variances.  相似文献   

11.
《Journal of dairy science》2021,104(12):12994-13007
The objective of this study was to investigate genetic variation and genotype by environment (G × E) interactions for fertility (including age at first calving and calving interval), somatic cell score (SCS), and milk production traits for Iranian Holsteins. Different environments were defined based on the climatic zones (cold, semi-cold, and moderate) and considering the herd location. Data were collected between 2003 and 2018 by the National Animal Breeding Center of Iran (Karaj). Variance and covariance components and genetic correlations were estimated using 2 different models, which were analyzed using Bayesian methods. For both models, performance of traits in each climate were considered as different traits. Fertility traits were analyzed using a trivariate model. Furthermore, SCS and production traits were analyzed using trivariate random regression models (records in different climate zones considered as different traits). For the fertility traits, the largest estimates of heritability were observed in cold climate. Fertility performance was always better in cold environment. Genetic correlations between climatic zones ranged from 0.85 to 0.94. For daily measurements of SCS and production traits, heritability ranged from 0.031 to 0.037 and 0.069 to 0.209, respectively. Genetic variances were the highest in the semi-cold and moderate climates for the SCS and production traits, respectively. Furthermore, across the studied climates, 305-d genetic correlation ranged from 0.756 to 0.884 for SCS and from 0.925 to 0.957 for the production traits. The structure of genetic correlation within each climate indicated a negative correlation between early and late lactation for SCS, especially in the cold climate and for milk production in the moderate climate. For fat percentage, in all climatic zones, the lowest genetic correlations were observed between early and mid-lactation. In addition, for protein production in the cold climate, a negative correlation was observed between early and late lactation. Results indicated heterogeneous variance components for all the studied traits across various climatic zones. Estimated genetic correlations for SCS revealed that the genetic expression of animals may vary by climatic zone. Results indicated the existence of G × E interaction due to the climatic condition, only for SCS. Therefore, in Iranian Holsteins, the effect of G × E interactions should not be neglected, especially for SCS, as different sires might be optimal for use in different climatic zones.  相似文献   

12.
Finite mixture, multiple-trait, random regression animal models with recursive links between phenotypes for milk yield and somatic cell score (SCS) on the same test-day were applied to first lactation Canadian Holstein data. All models included fixed herd-test-day effects and fixed regressions within region-age at calving-season of calving classes, and animal additive genetic and permanent environmental regressions with random coefficients. Causal links between phenotypes for milk yield and SCS were fitted separately for records from healthy cows and cows with a putative, subclinical form of mastitis. Bayesian methods via Gibbs sampling were used for the estimation of model parameters. Bayes factors indicated superiority of the model with recursive link from milk to SCS over the reciprocal recursive model and the standard multiple-trait model. Differences between models measured by other, single-trait model comparison criteria (i.e., weighted mean squared error, squared bias, and correlation between observed and expected data) were negligible. Approximately 20% of test-day records were classified as originating from cows with mastitis in recursive mixture models. The proportion of records from cows infected with mastitis was largest at the beginning of lactation. Recursive mixture models exhibited different distributions of data from healthy and infected cows in different parts of lactation. A negative effect of milk to SCS (up to −0.15 score points for every kilogram of milk for healthy cows from 5 to 45 d in milk) was estimated for both mixture components (healthy and infected) in all stages of lactation for the most plausible model. The magnitude of this effect was stronger for healthy cows than for cows infected with mastitis. Different patterns of genetic and environmental correlations between milk and SCS for healthy and infected records were revealed, due to heterogeneity of structural coefficients between mixture components. Estimated breeding values for SCS from the best fitting model for sires of infected daughters were more related to estimated breeding values for the same trait from the regular multiple-trait model than evaluations for sires of mastitis-free cows.  相似文献   

13.
Test-day (TD) models are used in most countries to perform national genetic evaluations for dairy cattle. The TD models estimate lactation curves and their changes as well as variation in populations. Although potentially useful, little attention has been given to the application of TD models for management purposes. The potential of the TD model for management use depends on its ability to describe within- or between-herd variation that can be linked to specific management practices. The aim of this study was to estimate variance components for milk yield, milk component yields, and somatic cell score (SCS) of dairy cows in the Ragusa and Vicenza areas of Italy, such that the most relevant sources of variation can be identified for the development of management parameters. The available data set contained 1,080,637 TD records of 42,817 cows in 471 herds. Variance components were estimated with a multilactation, random-regression, TD animal model by using the software adopted by NRS for the Dutch national genetic evaluation. The model comprised 5 fixed effects [region × parity × days in milk (DIM), parity × year of calving × season of calving × DIM, parity × age at calving × year of calving, parity × calving interval × stage of pregnancy, and year of test × calendar week of test] and random herd × test date, regressions for herd lactation curve (HCUR), the animal additive genetic effect, and the permanent environmental effect by using fourth-order Legendre polynomials. The HCUR variances for milk and protein yields were highest around the time of peak yield (DIM 50 to 150), whereas for fat yield the HCUR variance was relatively constant throughout first lactation and decreased following the peak around 40 to 90 DIM for lactations 2 and 3. For SCS, the HCUR variances were relatively small compared with the genetic, permanent environmental, and residual variances. For all the traits except SCS, the variance explained by random herd × test date was much smaller than the HCUR variance, which indicates that the development of management parameters should focus on between-herd parameters during peak lactation for milk and milk components. For SCS, the within-herd variance was greater than the between-herd variance, suggesting that the focus should be on management parameters explaining variances at the cow level. The present study showed clear evidence for the benefits of using a random regression TD model for management decisions.  相似文献   

14.
Artificial insemination centers routinely collect records of quantity and quality of semen of bulls throughout the animals’ productive period. The goal of this paper was to explore the use of random regression models with orthogonal polynomials to analyze repeated measures of semen production of Spanish Holstein bulls. A total of 8,773 records of volume of first ejaculate (VFE) collected between 12 and 30 mo of age from 213 Spanish Holstein bulls was analyzed under alternative random regression models. Legendre polynomial functions of increasing order (0 to 6) were fitted to the average trajectory, additive genetic and permanent environmental effects. Age at collection and days in production were used as time variables. Heterogeneous and homogeneous residual variances were alternatively assumed. Analyses were carried out within a Bayesian framework. The logarithm of the marginal density and the cross-validation predictive ability of the data were used as model comparison criteria. Based on both criteria, age at collection as a time variable and heterogeneous residuals models are recommended to analyze changes of VFE over time. Both criteria indicated that fitting random curves for genetic and permanent environmental components as well as for the average trajector improved the quality of models. Furthermore, models with a higher order polynomial for the permanent environmental (5 to 6) than for the genetic components (4 to 5) and the average trajectory (2 to 3) tended to perform best. High-order polynomials were needed to accommodate the highly oscillating nature of the phenotypic values. Heritability and repeatability estimates, disregarding the extremes of the studied period, ranged from 0.15 to 0.35 and from 0.20 to 0.50, respectively, indicating that selection for VFE may be effective at any stage. Small differences among models were observed. Apart from the extremes, estimated correlations between ages decreased steadily from 0.9 and 0.4 for measures 1 mo apart to 0.4 and 0.2 for most distant measures for additive genetic and phenotypic components, respectively. Further investigation to account for environmental factors that may be responsible for the oscillating observations of VFE is needed.  相似文献   

15.
Existence of individual variation in the onset of heat stress for daily milk yield of dairy cows was assessed. Data included 353,376 test-day records of 38,383 first-parity Holsteins from a random sample of US herds. Three hierarchical models were investigated. Model 1 inferred the value of a temperature-humidity index (THI) at which mean yield began to decline as well as the extent of that decline. Model 2 assumed individual variation in yield decline beyond a common THI threshold. Model 3 additionally assumed individual variation for the onset of heat stress. Deviance information criteria indicated the superiority of model 3 over model 2. For model 2, genetic correlation between milk yield in the absence of heat stress and the THI threshold for heat stress was −0.4 (0.11) [marginal posterior mean (marginal posterior standard deviation)]. For model 3, genetic correlations were −0.53 (0.05) between milk yield and THI threshold and −0.62 (0.08) between milk yield and yield decay beyond the THI threshold. Total standard deviation (sum of additive genetic and permanent environmental standard deviations) for the THI threshold was 3.95 (0.06), and more than half of that variation had an additive genetic origin [56% (5%)]. Because of the high genetic correlation [0.95 (0.03)] between yield decay and THI threshold with model 3, using only one of them as a selection criterion for heat tolerance would modify the other in the desired direction.  相似文献   

16.
The objectives of this study were to examine genetic associations between clinical mastitis and somatic cell score (SCS) in early first-lactation cows, to estimate genetic correlations between SCS of cows with and without clinical mastitis, and to compare genetic evaluations of sires based on SCS or clinical mastitis. Clinical mastitis records from 15 d before to 30 d after calving and first test-day SCS records (from 6 to 30 d after calving) from 499,878 first-lactation daughters of 2,043 sires were analyzed. Results from a bivariate linear sire model analysis of SCS in cows with and without clinical mastitis suggest that SCS is a heterogeneous trait. Heritability of SCS was 0.03 for mastitic cows and 0.08 for healthy cows, and the genetic correlation between the 2 traits was 0.78. The difference in rank between sire evaluations based on SCS of cows with and without clinical mastitis varied from −994 to 1,125, with mean 0. A bivariate analysis with a threshold-liability model for clinical mastitis and a linear Gaussian model for SCS indicated that heritability of liability to clinical mastitis is at least as large as that of SCS in early lactation. The mean (standard deviation) of the posterior distribution of heritability was 0.085 (0.006) for liability to clinical mastitis and 0.070 (0.003) for SCS. The posterior mean (standard deviation) of the genetic correlation between liability to clinical mastitis and SCS was 0.62 (0.03). A comparison of sire evaluations showed that genetic evaluation based on SCS was not able to identify the best sires for liability to clinical mastitis. The association between sire posterior means for liability to clinical mastitis and sire predicted transmitting ability for SCS was far from perfect.  相似文献   

17.
First-lactation milk yield test-day records of Canadian Holsteins were analyzed by single-trait random regression test-day models that assumed normal or Student's-t distribution for residuals. Objectives were to test the performance of the robust statistical models that use heavy-tailed distributions for the residual effect. Models fitted were: Gaussian, Student's-t, and Student's-t with fixed number of degrees of freedom (equal to 5, 15, 30, 100 or 1000) for the t distribution. Bayesian methods with Gibbs sampling were used to make inferences about overall model plausibility through Bayes factors, posterior means for covariance components, estimated breeding values for regression coefficients, solutions for permanent environmental regressions, and residuals of the models. Bayes factors favored Student's-t model with the posterior mean of degrees of freedom equal to 2.4 over all other models, indicating very strong departure from normality. Number of outliers in Student's-t model was reduced by 35% in comparison with the Gaussian model. Differences in covariance components for regression coefficients between models were small, and rankings of animals based on additive genetic merit for the first two regression coefficients (total yield and persistency) were similar. Results from the Gaussian and Student's-t models with fixed degrees of freedom become more alike (smaller departures from normality for Student's-t models) with increasing number of degrees of freedom for the t-distributions. For any pair of Student's-t models, the one with the smaller number of degrees of freedom for the t-distribution was shown to be superior. Similarly, number of outliers increased with increasing degrees of freedom for the t distribution.  相似文献   

18.
Animals that are robust to environmental changes are desirable in the current dairy industry. Genetic differences in micro-environmental sensitivity can be studied through heterogeneity of residual variance between animals. However, residual variance between animals is usually assumed to be homogeneous in traditional genetic evaluations. The aim of this study was to investigate genetic heterogeneity of residual variance by estimating variance components in residual variance for milk yield, somatic cell score, contents in milk (g/dL) of 2 groups of milk fatty acids (i.e., saturated and unsaturated fatty acids), and the content in milk of one individual fatty acid (i.e., oleic acid, C18:1 cis-9), for first-parity Holstein cows in the Walloon Region of Belgium. A total of 146,027 test-day records from 26,887 cows in 747 herds were available. All cows had at least 3 records and a known sire. These sires had at least 10 cows with records and each herd × test-day had at least 5 cows. The 5 traits were analyzed separately based on fixed lactation curve and random regression test-day models for the mean. Estimation of variance components was performed by running iteratively expectation maximization-REML algorithm by the implementation of double hierarchical generalized linear models. Based on fixed lactation curve test-day mean models, heritability for residual variances ranged between 1.01 × 10−3 and 4.17 × 10−3 for all traits. The genetic standard deviation in residual variance (i.e., approximately the genetic coefficient of variation of residual variance) ranged between 0.12 and 0.17. Therefore, some genetic variance in micro-environmental sensitivity existed in the Walloon Holstein dairy cattle for the 5 studied traits. The standard deviations due to herd × test-day and permanent environment in residual variance ranged between 0.36 and 0.45 for herd × test-day effect and between 0.55 and 0.97 for permanent environmental effect. Therefore, nongenetic effects also contributed substantially to micro-environmental sensitivity. Addition of random regressions to the mean model did not reduce heterogeneity in residual variance and that genetic heterogeneity of residual variance was not simply an effect of an incomplete mean model.  相似文献   

19.
The objectives of this study were to estimate variance components for test-day milk, fat, and protein yields and average daily SCS in 3 subsets of Italian Holsteins using a multiple-trait, multiple-lactation random regression test-day animal model and to determine whether a genetic heterogeneous variance adjustment was necessary. Data were test-day yields of milk, fat, and protein and SCS (on a log2 scale) from the first 3 lactations of Italian Holsteins collected from 1992 to 2002. The 3 subsets of data included 1) a random sample of Holsteins from all herds in Italy, 2) a random sample of Holsteins from herds using a minimum of 75% foreign sires, and 3) a random sample of Holsteins from herds using a maximum of 25% foreign sires. Estimations of variances and covariances for this model were achieved by Bayesian methods using the Gibbs sampler. Estimated 305-d genetic, permanent environmental, and residual variance was higher in herds using a minimum of 75% foreign sires compared with herds using a maximum of 25% foreign sires. Estimated average daily heritability of milk, fat, and protein yields did not differ among subsets. Heritability of SCS in the first lactation differed slightly among subsets and was estimated to be the highest in herds with a maximum of 25% foreign sire use (0.19 ± 0.01). Genetic correlations across lactations for milk, fat, and protein yields were similar among subsets. Genetic correlations across lactations for SCS were 0.03 to 0.08 higher in herds using a minimum of 75% or a maximum of 25% foreign sires, compared with herds randomly sampled from the entire population. Results indicate that adjustment for heterogeneous variance at the genetic level based on the percentage of foreign sire use should not be necessary with a multiple-trait random regression test-day animal model in Italy.  相似文献   

20.
Genetic correlations among milk, fat, and protein yields; body size composite (BSC); udder composite (UDC); and productive life (PL) in Holsteins were investigated over time. The data set contained 25,280 records of cows born in Wisconsin between 1979 and 1993. The multiple trait random regression (MT-RR) animal model included registration status, herd-year, age group, and stage of lactation as fixed effects; additive genetic effects with random regressions (RR) on year of birth using the first-order Legendre polynomial; and residual effects. Heterogeneous residual variances were considered in the model. Estimates of variance components and genetic correlations among traits from MT-RR were compared with those estimated with a multiple trait interval (MT-I) model, which assumed that every 3-yr interval was a separate trait and included the same effects as in the MT-RR model except for the RR. Genetic correlations estimated with MT-RR and MT-I models over time among all traits were compared with correlations among breeding values predicted with the single trait (ST) model without RR. Correlations among breeding values predicted with MT-RR, ST, and MT models were also calculated. Additive genetic and residual variances for all traits except PL increased over time; those for PL were constant. As a result, heritability estimates had no significant changes during the 15 yr. Genetic correlations of PL with milk, fat, protein, and BSC declined to zero or negative; those with UDC remained positive. Correlations among breeding values predicted with ST, MT, and MT-RR models were relatively high for all traits except PL. Genetic correlations between PL and other traits varied over time, with some correlations changing sign. For accurate indirect prediction of PL from other traits, the genetic correlations among the traits need to be re-estimated periodically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号