首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The shelf life of pasteurized dairy products depends partly on the concentration of Bacillus cereus spores in raw milk. Based on a translation of contamination pathways into chains of unit-operations, 2 simulation models were developed to quantitatively identify factors that have the greatest effect on the spore concentration in milk. In addition, the models can be used to determine the reduction in concentration that could be achieved via measures at the farm level. One model predicts the concentration when soil is the source of spores, most relevant during grazing of cows. The other model predicts the concentration when feed is the main source of spores, most relevant during housing of cows. It was estimated that when teats are contaminated with soil, 33% of the farm tank milk (FTM) contains more than 3 log10 spores/L of milk. When feed is the main source, this is only 2%. Based on the predicted spore concentrations in FTM, we calculated that the average spore concentration in raw milk stored at the dairy processor during the grazing period is 3.5 log10 spores/L of milk and during the housing period is 2.1 log10 spores/L. It was estimated that during the grazing period a 99% reduction could be achieved if all farms minimize the soil contamination of teats and teat cleaning is optimized. During housing, reduction of the concentration by 60% should be feasible by ensuring spore concentrations in feed below 3 log10 spores/g and a pH of the ration offered to the cows below 5. Implementation of these measures at the farm level ensures that the concentration of B. cereus spores in raw milk never exceeds 3 log10 spores/L.  相似文献   

2.
The contamination of raw milk with Bacillus cereus spores was studied during the indoor confinement of dairy cattle. The occurrence of spores in fresh and used bedding material, air samples, feed, feces, and the rinse water from milking equipment was compared with the spore level in bulk tank milk on 2 farms, one of which had 2 different housing systems. A less extensive study was carried out on an additional 5 farms. High spore concentrations of >100 spores/L in the raw milk were found on 4 of the farms. The number of spores found in the feed, feces, and air was too small to be of importance for milk contamination. Elevated spore contents in the rinse water from the milking equipment (up to 322 spores/L) were observed and large numbers of spores were found in the used bedding material, especially in free stalls with >5 cm deep sawdust beds. At most, 87,000 spores/g were found in used sawdust bedding. A positive correlation was found between the spore content in used bedding material and milk (r = 0.72). Comparison of the genetic fingerprints obtained by the random amplified polymorphic DNA PCR of isolates of B. cereus from the different sources indicated that used bedding material was the major source of contamination. A separate feeding experiment in which cows were experimentally fed B. cereus spores showed a positive relationship between the number of spores in the feed and feces and in the feces and milk (r = 0.78). The results showed that contaminated feed could be a significant source of spore contamination of raw milk if the number of spores excreted in the feces exceeded 100,000/g.  相似文献   

3.
The prevalence of Bacillus cereus, in a total of 381 samples of dried milk products (milk with rice, milk substitute, milk powder, milk-cereal-rice, pudding milk, flan, and mousse) used by the Chilean School Feeding Program, was investigated. The potential of 94 selected isolates of B. cereus to produce diarrhoeal enterotoxin (by the BCET-RPLA test) in BHI culture, as well as the ability of enterotoxigenic-strains to grow at psychrotrophic temperatures were also verified. B. cereus was found in 175 of 381 of the samples analysed (45.9%), reaching levels from 3.0 to 10(4) spores g(-1). As expected, the higher prevalence and counts were observed in those products that contained whole rice, cereals and pulses extruded, and food additives. Of the 94 isolates of B. cereus tested for diarrhoeal enterotoxin production, 28 (29.8%) were positive, and none of these was able to grow at < or = 7 degrees C. The prevalence of B. cereus in dried milk products analysed was fairly high, although it was present in low number. However, as they were composed to a large extent of enterotoxigenic mesophilic strains, the potential risk for the safety of reconstituted products held at improper temperature should not be neglected.  相似文献   

4.
A year-long survey of 24 dairy farms was conducted to determine the effects of farm management on the concentrations of butyric acid bacteria (BAB) spores in farm tank milk (FTM). The results were used to validate a control strategy derived from model simulations. The BAB spore concentrations were measured in samples of FTM, feces, bedding material, mixed corn and grass silage fed to cows in the barn, and soil. In addition, a questionnaire was used to gather farm management information such as bedding material used and teat cleaning method applied. The average BAB spore concentration in FTM was 2.7 log10 spores/L, and 33% of the FTM samples exceeded a concentration of 3 log10 spores/L. Control of the average spore concentration in mixed silage fed was the only aspect of farm management that was significantly related to the concentration of BAB spores in FTM. Farms that fed mixed silage with the lowest average BAB spore concentrations (3.4 log10 spores/g) produced FTM with the lowest average concentration (2.1 log10 spores/L). The efficiency of farm management in controlling the BAB spore concentration in FTM depended to a large extent on the ability of farmers to prevent incidents with elevated BAB spore concentrations in mixed silage (>5 log10 spores/g) and not on the average BAB spore concentration in mixed silage across the year. The survey showed that farmers should aim for a concentration in mixed silage of less than 3 log10 spores/g and should prevent the concentration from exceeding 5 log10 spores/g to ensure a concentration in FTM of less than 3 log10 spores/L. These results correspond with the previously reported model simulations.  相似文献   

5.
The objective of this work was to study high hydrostatic pressure (HHP) inactivation of spores of Bacillus cereus ATCC 9139 inoculated in model cheeses made of raw milk, together with the effects of the addition of nisin or lysozyme. The concentration of spores in model cheeses was approximately 6-log10 cfu/g of cheese. Cheeses were vacuum packed and stored at 8 degrees C. All samples except controls were submitted to a germination cycle of 60 MPa at 30 degrees C for 210 min, to a vegetative cells destruction cycle of 300 or 400 MPa at 30 degrees C for 15 min, or to both treatments. Bacillus cereus counts were measured 24 h and 15 d after HHP treatment. The combination of both cycles improved the efficiency of the whole treatment. When the second pressure-cycle was of 400 MPa, the highest inactivation (2.4 +/- 0.1 log10 cfu/g) was obtained with the presence of nisin (1.56 mg/L of milk), whereas lysozyme (22.4 mg/L of milk) did not increase sensitivity of the spores to HHP. For nisin (0.05 and 1.56 mg/L of milk), no significant differences were found between counts at 24 h and 15 d after treatment. Considering that mesophilic spore counts usually range from 2.6 to 3.0 log10 cfu/ml in raw milk, HHP at mild temperatures with the addition of nisin may be useful for improving safety and preservation of soft curd cheeses made from raw milk.  相似文献   

6.
Sunsik, a ready-to-eat food in Korea, is comprised of various agricultural and marine products, and has been an important concern in Bacillus cereus food poisoning. The aim of this study was to investigate the toxin profiles, genotypic and phenotypic patterns as well as antibiotic resistance of B. cereus strains isolated from Sunsik. A subtyping method known as automated repetitive sequence-based PCR system (DiversiLab™) was used to assess the intraspecific biodiversity of these isolates. Thirty-five B. cereus strains were isolated from 100 commercial Sunsik samples, all of which harbored at least 1 enterotoxin gene. The detection rates of nheABC, hblCDA, cytK, and entFM enterotoxin gene among all isolates were 97%, 86%, 77%, and 100%, respectively. Most strains also produced corresponding enterotoxins such as HBL (83%) and NHE (94%). One strain (2.9%) carried the emetic toxin genes, including ces and EM1, and was positive for the HEp-2 cell emetic toxin assay. Most strains were positive for various biochemical tests such as salicin hydrolysis (86%), starch fermentation (89%), hemolysis (89%), motility test (100%) and lecithinase hydrolysis (89%). All isolates were susceptible to most antibiotics although they were highly resistant to β-lactam antibiotics. By using the automated rep-PCR system, all isolates were successfully differentiated, indicating the diversity of B. cereus strains present in Sunsik.  相似文献   

7.
To increase the understanding of how different factors affect the bacterial growth in deep sawdust beds for dairy cattle, the microbiological status of Bacillus cereus and coliforms in deep sawdust-bedded free stalls was investigated over two 14-d periods on one farm. High counts of B. cereus and coliforms were found in the entire beds. On average, 4.1 log10B. cereus spores, 5.5 log10B. cereus, and 6.7 log10 coliforms per gram of bedding could be found in the upper layers of the sawdust likely to be in contact with the cows’ udders. The highest counts of B. cereus spores, B. cereus, and coliforms were found in the bedding before fresh bedding was added, and the lowest immediately afterwards. Different factors of importance for the growth of B. cereus in the bedding material were explored in laboratory tests. These were found to be the type of bedding, pH, and the type and availability of nutrients. Alternative bedding material such as peat and mixtures of peat and sawdust inhibited the bacterial growth of B. cereus. The extent of growth of B. cereus in the sawdust was increased in a dose-dependent manner by the availability of feces. Urine added to different bedding material raised the pH and also led to bacterial growth of B. cereus in the peat. In sawdust, a dry matter content greater than 70% was needed to lower the water activity to 0.95, which is needed to inhibit the growth of B. cereus. In an attempt to reduce the bacterial growth of B. cereus and coliforms in deep sawdust beds on the farm, the effect of giving bedding daily or a full replacement of the beds was studied. The spore count of B. cereus in the back part of the free stalls before fresh bedding was added was 0.9 log units lower in stalls given daily bedding than in stalls given bedding twice weekly. No effect on coliform counts was found. Replacement of the entire sawdust bedding had an effect for a short period, but by 1 to 2 mo after replacement, the counts of B. cereus spores in the beds had increased about 2 log units and were as high as they were before bed replacement. Therefore, free-stall management could, to a limited extent, reduce the content of B. cereus spores in the beds by daily bedding and entire bed replacement.  相似文献   

8.
9.
Bacillus cereus endospores were challenged by heat treatments simulating typical domestic/industrial cooking regimes and the resulting effects on germination, viability and sub-lethal heat damage determined using differential plate counting on a rich versus selective medium, flow cytometry (FCM), beta-D-glucuronidase (GUD) activity and OD(600) measurement. Additionally, these techniques were used to investigate the effect on endospores of storage in a non-nutrient medium at 4 degrees C for 1 month. Plate counting revealed that heating generated sub-populations of sub-lethally damaged endospores, with the more severe heat treatments generating larger proportions of sub-lethally damaged endospores. These findings were also reflected in FCM analyses, which detected large amounts of heterogeneity among the populations of heat-treated endospores and uncovered differences in the proportions of membrane-damaged endospores and those displaying esterase activity pre- and post-treatment. Plate count data suggested that both the control and heat-treated endospores lost viability during storage, with FCM data indicating that the proportion of membrane-damaged endospores increased and those displaying the esterase activity decreased. The FCM, GUD and OD(600) data suggested that germination rates decreased with the increasing severity of heat treatment. This study demonstrates that a combination of plate counting and FCM can be used to detect heterogeneity in the response of endospores to insults.  相似文献   

10.
Different teat-cleaning methods were evaluated to determine their effect on the presence of spores from anaerobic bacterial spore-formers in the milk. Artificial contamination was used to achieve uniform contamination of teats to reduce the number of cows and samples needed in the experiments and still obtain adequate power to detect differences among tested methods. Teats were contaminated experimentally with a large amount of Clostridium tyrobutyricum spores in a manure-water slurry. Various types of dry and moistened towels and different combinations of methods using soap or 2 types of towels, together with cleaning times of 10 or 20 s, were compared in 2 Latin square-designed experiments with 7 cows, 7 treatments, and 4 replications in each experiment. In comparison with control (no cleaning and no forestripping), cleaning teats with dry paper towels for 10 s reduced concentration of spores in milk by 45 to 50%. A 50 to 74% reduction was achieved using different types of moist towels for 10 s. Methods using 2 towels, soap, or a longer cleaning time reduced bacterial contamination by 85 to 91%. The most effective methods in reducing milk spore content (96% reduction) were use of a moist washable towel with or without soap followed by drying with a dry paper towel, for a total time of 20 s per cow. One of the best cleaning methods was studied in an additional experiment to determine the effect of different teat contamination mixtures. The Latin square-designed experiment with 8 cows, 8 treatments, and 2 replications showed that cleaning was independent of the tested contamination matrix (manure, soil, or sawdust), type of spores (Cl. tyrobutyricum and Bacillus cereus), or degree of contamination (manure or extra manure).  相似文献   

11.
The aim of the present study was (i) to type, by genotypic and phenotypic methods, a collection of psychrotrophic bacteria belonging to the Bacillus cereus group collected in a farm and in 6 egg breaking companies during a period covering a warm and a cold season, and (ii) to characterize the growth potential in liquid whole egg, and the sanitary risk potential (cytotoxic activity on Caco-2 cells and adhesion on stainless steel) of each isolate of the collection. The investigation of specific psychrotrophic and mesophilic signatures together with the study of ability to grow at 6 °C and/or at 43 °C on optimal agar medium allowed highlighting twelve profiles, the major one corresponding to the species Bacillus weihenstephanensis (46.2% of the collection). The diversity of the profiles depended on the season and on the origin of the isolates. All the isolates were able to grow at the same level in liquid whole egg and in optimal medium, even at low temperature. Under the same conditions, the cytotoxic activity depended on the isolate, the medium and the temperature. At 10 °C, no isolate was cytotoxic in liquid whole egg and only one, belonging to the Bacillus weihenstephansensis species, in the optimal medium. All the isolates were able to adhere on stainless steel at various levels, from 2.6 ± 0.2 log cfu/cm2 to 4.9 ± 0.1 log cfu/cm2. A large majority (80.8%) was strongly adhering and could lead to the formation of biofilms in industrial equipments.  相似文献   

12.
The effect of sporulation temperature on Bacillus cereus spore germination triggered by the nutrient germinants inosine and l-alanine was investigated. The germination (expressed as % A(600nm) fall) of heat-activated spores of B. cereus strain ATCC14579 produced at 20 and 37 degrees C, and of psychrotrophic strains LM9 and D15 produced at 15 and 37 degrees C was followed in a germination buffer containing inosine at concentrations between 0.01 and 10mmoll(-1), or l-alanine between 1 and 100mmoll(-1). Spores wet-heat resistance at 90 degrees C was also determined. Spores of the three strains produced at the lowest temperatures generally showed a higher germination capacity in response to both inosine and in l-alanine than those produced at 37 degrees C, and were also more susceptible to heat. Low sporulation temperature is confirmed as a detrimental factor to B. cereus spore wet-heat resistance, and conversely gave spores with a sensitivity to the nutrient germinants inosine and l-alanine higher than that of spores formed close to the maximal sporulation temperature.  相似文献   

13.
Bacillus cereus is an endospore-forming bacterium able to cause food-associated illness. Different treatment processes are used in the food industry to reduce the number of spores and thereby the potential of foodborne disease. Chitosan is a polysaccharide with well-documented antibacterial activity towards vegetative cells. The activity against bacterial spores, spore germination and subsequent outgrowth and growth (the latter two events hereafter denoted (out)growth), however, is poorly documented. By using six different chitosans with defined macromolecular properties, we evaluated the effect of chitosan on Bacillus cereus spore germination and (out)growth using optical density assays and a dipicolinic acid release assay. (Out)growth was inhibited by chitosan, but germination was not. The action of chitosan was found to be concentration-dependent and also closely related to weight average molecular weight (Mw) and fraction of acetylation (FA) of the biopolymer. Chitosans of low acetylation (FA = 0.01 or 0.16) inhibited (out)growth more effectively than higher acetylated chitosans (FA = 0.48). For the FA = 0.16 chitosans with medium (56.8 kDa) and higher Mw (98.3 kDa), a better (out)growth inhibition was observed compared to low Mw (10.6 kDa) chitosan. The same trend was not evident with chitosans of 0.48 acetylation, where the difference in activity between the low (19.6 kDa) and high Mw (163.0 kDa) chitosans was only minor. In a spore test concentration corresponding to 102-103 CFU/ml (spore numbers relevant to food), less chitosan was needed to suppress (out)growth compared to higher spore numbers (equivalent to 108 CFU/ml), as expected. No major differences in chitosan susceptibility between three different strains of B. cereus were detected. Our results contribute to a better understanding of chitosan activity towards bacterial spore germination and (out)growth.  相似文献   

14.
Bacillus cereus is an ever-present problem. It is widely distributed in several environments such as soil and plants and is commonly isolated from food and additives. In this study we analyzed 97 foodborne B. cereus sensu stricto strains isolated in Brazil in the 1980's, 1990's and 2000's in order to investigate the genetic diversity (assessed by Rep-PCR), antimicrobial resistance and toxigenic profiles (presence of hblA, hblC and hblD; nheA, nheB and nheC as well as cytK, ces and entFM genes) of such strains. The majority of the strains (79, 81.4%) were β-hemolytic. The NHE complex was found in 82 strains (84.5%) and HBL complex was found in 61 (62.9%) strains. All strains were negative to ces. The cytK-2 gene was found in 44 (45.4%) strains. The predominant toxigenic pattern was type I (32, 33%) which included strains positive for all toxin genes but ces. Computer assisted cluster analysis of Rep-PCR profiles showed a high genetic diversity. Seven major clusters comprising two or more strains were found and cluster 1 was predominant (ten strains, nine of them showing 100% similarity). This cluster included strains isolated in the 1980's and the 1990's. Cluster analysis of Rep-PCR profiles based on decade of isolation, source, hemolytic pattern, toxigenic and antibiotic resistance patterns revealed a similar clustering pattern as found in the analysis including all strains. The inability to observe a predominant band pattern when Rep-PCR cluster analysis was based on decade of isolation suggests that this diversity has been maintained over time. All strains were susceptible to gentamicin. We detected resistance to tetracycline (11 strains showing intermediate resistance and nine completely resistant strains), clindamycin (ten intermediate strains) and vancomycin (one strain). Clindamycin resistance showed statistical association with strains isolated in 2000's. The predominant resistance pattern was type A (72, 72.2%) which included strains susceptible to all drugs tested. Our results suggest that the majority of the strains present in several types of food in Brazil pose a potential risk to cause food poisoning due to the high prevalence of toxin genes found in these strains. However, additional studies involving cytotoxicity tests and affiliation of these strains to phylogenetic groups based on molecular data would be useful to better evaluate this potential and could provide a more accurate indication of the risk.  相似文献   

15.
Although sporulation environmental factors are known to impact on Bacillus spore heat resistance, they are not integrated into predictive models used to calculate the efficiency of heating processes. This work reports the influence of temperature and pH encountered during sporulation on heat resistance of Bacillus weihenstephanensis KBAB4 and Bacillus licheniformis AD978 spores. A decrease in heat resistance (δ) was observed for spores produced either at low temperature, at high temperature or at acidic pH. Sporulation temperature and pH maximizing the spore heat resistance were identified. Heat sensitivity (z) was not modified whatever the sporulation environmental factors were. A resistance secondary model inspired by the Rosso model was proposed. Sporulation temperatures and pHs minimizing or maximizing the spore heat resistance (T(min(R)), T(opt(R)), T(max(R)), pH(min(R)) and pH(opt(R))) were estimated. The goodness of the model fit was assessed for both studied strains and literature data. The estimation of the sporulation temperature and pH maximizing the spore heat resistance is of great interest to produce spores assessing the spore inactivation in the heating processes applied by the food industry.  相似文献   

16.
Bacillus sporothermodurans produces highly resistant endospores that can survive ultra-high-temperature treatment in milk. The induction of endospore germination before a heat treatment could be an efficient method to inactivate these bacteria and ensure milk sterility. In this work, the rate of spore germination of B. sporothermodurans LTIS27 was measured in distilled water after high-pressure treatments with varying pressure (50–600 MPa), treatment temperature (20–50 °C), pressure-holding time (5–30 min) and post-pressurization incubation time (30–120 min) at 37 °C or 4 °C. The results showed that pressure-induced germination was maximal (62%) after a treatment at 200 MPa and 20 °C and increased with pressure-holding time and post-pressurization incubation time. Treatment temperature had no significant effect on germination. A central composite experimental design with three factors (pressure, pressure-holding time, and post-pressurization incubation time) using response surface methodology was used to optimize the germination rate in distilled water and in skim milk. No factor interaction was observed. Germination was induced at lower pressure and was faster in milk than in distilled water, but complete germination was not reached. The optimum germination obtained with experimental data was 5.0 log cfu/mL in distilled water and 5.2 log cfu/mL in milk from 5.7 log cfu/mL of spores initially present in the suspension. This study shows the potential of using high hydrostatic pressure to induce the germination of B. sporothermodurans spores in milk before a heat treatment.  相似文献   

17.
The aim of this study was to design a thermal treatment(s) for pork luncheon roll, which would destroy Bacillus cereus and Clostridium perfringens vegetative cells and spores. B. cereus and C. perfringens vegetative and spore cocktails were used to inoculate luncheon meat. Samples were subjected to different temperatures and removal times. The decimal-reduction times (D-values) were calculated by linear regression analysis (D = -1/slope of a plot of log surviving cells versus time). The log(10) of the resulting D-values were plotted against their corresponding temperatures to calculate (-1/slope of the curve) the thermal resistance (z-values) of each cocktail. The D-values for vegetative cells ranged from 1 min (60 degrees C) to 33.2 min (50 degrees C) for B. cereus and from 0.9 min (65 degrees C) to 16.3 min (55 degrees C) for C. perfringens. The D-values for B. cereus spores ranged from 2.0 min (95 degrees C) to 32.1 min (85 degrees C) and from 2.2 min (100 degrees C) to 34.2 min (90 degrees C) for C. perfringens. The z-values were calculated to be 6.6 and 8.5 degrees C for B. cereus vegetative and spores, respectively, and 7.8 and 8.4 degrees C for C. perfringens vegetative cells and spores, respectively. The D-values of B. cereus and C. perfringens suggest that a mild cook of 70 degrees C for 12s and 1.3 min would achieve a 6 log reduction of B. cereus and C. perfringens vegetative cells, respectively. The equivalent reduction of B. cereus and C. perfringens spores would require the pork luncheon meat to be heated for 36 s at 105 and 110 degrees C, respectively. The results of this study provide the thermal inactivation data necessary to design a cooking protocol for pork luncheon roll that would inactivate B. cereus and C. perfringens vegetative cells and spores. The data may also be used in future risk assessment studies.  相似文献   

18.
The major objectives of this study were to determine the incidence, diversity and characteristics of Bacillus cereus group spp. isolated from food products marketed in Belgium. The food products investigated in this study included cooked pasta, lasagna, béchamel sauce, bolognaise sauce, fresh minced beef, fresh-cut vegetables and raw basmati rice. B. cereus group spp. were detected in 56.3% (324 of 575) of the samples giving rise to 380 strains. The highest incidence (100%) occurred in the raw basmati rice. Although only 10 (2.6%) of the 380 isolates were determined to be psychrotolerant (able to grow at ≤ 7 °C), 25 (6.2%), 189 (49.7%) and 334 (87.9%) isolates were able to grow at mild temperature abuse conditions of 8 °C, 9 °C and 10 °C, respectively. The large diversity of the isolates obtained (overall and between isolates obtained from the same product type) was highlighted by the results of the (GTG)5 PCR fingerprinting of 80 selected isolates. Sixty-one of these 80 isolates belonged to 15 distinct clusters (≥ 85% Pearson correlation) whereas the remaining 19 were each clustered separately. Further diversity was also found in the distribution of toxin genes as 16 different profiles were observed in the 80 selected isolates. Whilst none of 80 selected strains harboured the ces gene required for the production of the emetic toxin cereulide, 42 strains (52.5%) carried all seven genes required for the production of the diarrhoeal enterotoxins: haemolytic BL, non-haemolytic enterotoxin and cytotoxin K. The results of this study highlight not only the omnipresence but also the highly diverse ecology of B. cereus spp. within and across several food product types available on the retail market in Belgium. They should also provide the impetus for more studies to enable detailed risk assessment studies to be performed.  相似文献   

19.
Bacillus cereus is a foodborne bacterial pathogen that causes diarrhea and vomiting. In this study, the usefulness of bacteriophages to eradicate B. cereus from fermented foods was investigated. A total of 13 phages were isolated from Korean fermented food products, and 2 (BCP1-1 and BCP8-2) were further characterized. Transmission electron microscopy (TEM), restriction enzyme digestion pattern analysis, and SDS-PAGE of the structural proteins suggest that both phages belong to the family Myoviridae, containing approximately 150 kbp-long genomes. The host ranges of both phages were limited to B. cereus group species (12/13), as they were not able to lyse other Gram-positive or negative strains including Bacillus subtilis. Purified phages were used to inhibit B. cereus growth in a model fermented food system, cheonggukjang, a fast-fermented soybean paste product. BCP1-1 and BCP8-2 were able to effectively eradicate B. cereus from the food only if divalent cations (Ca2+, Mg2+, or Mn2+) were added to the medium. Further studies reveal that divalent cations are essential for phage adsorption, while a monovalent cation (Na+) is required for the post-adsorption phase of phage infection. Taken together, our findings imply that a phage could be an ideal anti-bacterial agent for use in fermented food products that require the presence of beneficial microflora and, during phage application, optimization of phage reaction conditions is critical for the successful utilization of phage biocontrol.  相似文献   

20.
Elhariry HM 《Food microbiology》2011,28(7):1266-1274
The present study was designed to investigate the ability of six Bacillus cereus strains to attach and form biofilm on cabbage and lettuce surfaces. These six strains were; a reference strain DSMZ 345 and five biofilm-producing strains (aquatic strains; TUB8, TUB30, TUB31, TUB32 and TUB33) isolated from drinking-water distribution network. Hydrophobicity, biofilm formation ability, attachment strength (SR) of spores and vegetative cells of the six B. cereus strains were also determined. Due to their high hydrophobicity, spores of all strains had high ability to attach polystyrene and did not affect by dilution of tryptone soy broth (TSB, 1:20 v/v) in the in vitro experiment. Significant (p < 0.05) enhancement in vitro biofilm formation by vegetative cells of B. cereus was recorded in the diluted TSB. The highest biofilm formation on cabbage and lettuce surfaces was obtained by spores and vegetative cells of all tested strains on the 4th hour of the incubation period. These populations were significantly (p < 0.05) increased by elongating incubation time from 4 h to 24 h except DSMZ 345 and TUB8. Biofilm formation behavior obtained by B. cereus spores and vegetative cells on the polystyrene surface was different compared with that recorded on produce surface. The SR of both spores and vegetative cells of the studied strains to the lettuce surface was higher than that of the cabbage surface. The hydrophobicity, biofilm formation and SR of spores and vegetative cells of the biofilm-producing strains were higher than that of the reference strain DSMZ 345. Scanning electron microscopy (SEM) exposed random distribution of cells either on the surface or cut edge, without clear obvious affinity for the surface structures. Increasing in the presence of large clusters of cells on leaf surfaces was demonstrated after 4 and 24 h.In conclusion, use of aquatic environmental isolates is more useful for studying biofilm formation than the reference strain. Lettuce surface supported the attachment of B. cereus spores and vegetative cells compared with the cabbage surface. Further investigations are required to improve our knowledge of biofilm formation mechanisms by the human pathogenic microorganisms, especially by using the environmental and clinical isolates. To ensure safety level of green-leafy vegetables, biofilm formation after harvest should be considered as critical control point during handling of these vegetables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号