首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Ten ruminally cannulated lactating Holstein cows that were part of a larger trial studying the effects of feeding different proteins on milk production were used in a replicated 5 x 5 Latin square to quantify flows of microbial and rumen-undegradable protein (RUP) in omasal digesta. Cows were fed total mixed rations containing (dry matter basis) 44% corn silage, 22% alfalfa silage, 2% urea, and 31% concentrate. The basal diet contained 31% high-moisture corn; equal N from one of four protein supplements was added to the other diets at the expense of corn: 9% solvent soybean meal (SSBM), 10% expeller soybean meal (ESBM), 5.5% blood meal (BM), and 7% corn gluten meal (CGM). Omasal sampling was used to quantify total AA N (TAAN) and nonammonia N (NAN) flows from the rumen. Estimates of RUP were made from differences between total and microbial N flows, including a correction for RUP in the basal diet. Modifying a spectrophotometric assay improved total purine recovery from isolated bacteria and omasal samples and gave estimates of microbial TAAN and NAN flows that were similar to a standard HPLC method. Linear programming, based on AA patterns of the diet and isolated omasal bacteria and ruminal protozoa, appeared to overestimate microbial TAAN and NAN flows compared to the purine assays. Yields of microbial TAAN and NAN determined using any method was not affected by diet and averaged 32 to 35 g NAN per kilogram of organic matter truly digested in the rumen. On average, National Research Council (NRC) equations underpredicted microbial N flows by 152 g/d (vs. HPLC), 168 g/d (vs. spectrophotometry), and 244 g/d (vs. linear programming). Estimates of RUP (means from the HPLC and spectrophotometric methods) were: SSBM, 27%, ESBM, 45%, BM, 60%, and CGM, 73%. Except for CGM, RUP values averaged about 20 percentage units lower than those reported by the NRC.  相似文献   

2.
This study investigated the effects of plant species (red clover vs. timothy-meadow fescue) and forage maturity at primary harvest (early vs. late cut silage) on rumen fermentation, nutrient digestion, and nitrogen metabolism including omasal canal AA flow and plasma AA concentration in lactating cows. Five dairy cows equipped with rumen cannulas were used in a study designed as a 5 × 5 Latin square with 21-d periods. The diets consisted of early-cut and late-cut grass and red clover silage, respectively, and a mixture of late-cut grass and early-cut red clover silages given ad libitum with 9 kg/d of a standard concentrate. Grass silage dry matter intake tended to decrease but that of red clover silages tended to increase with advancing maturity. Milk yields were unchanged among treatments, milk protein and fat concentrations being lower for red clover than for grass silage diets. Rumen fluid pH was unchanged but volatile fatty acid and ammonia concentrations were higher for red clover than for grass silage diets. Intake of N, and omasal canal flows of total nonammonia N (NAN), microbial NAN, and dietary NAN were higher for red clover than for grass silage diets but were not affected by forage maturity. However, microbial NAN flow and amount of N excreted in the feces decreased with advancing maturity for grass diets but increased for red clover diets. Apparent ruminal N degradability of the diets was unchanged, but true ruminal N degradability decreased and efficiency of microbial synthesis increased with red clover diets compared with grass silage diets. Omasal canal flows of AA, except those for Met and Cys, were on average 20% higher for red clover than grass silage diets. Omasal canal digesta concentrations of Leu, Phe, branched-chain, and essential AA were higher but those of Met lower for red clover than for grass silage diets. Plasma AA concentrations, except for His (unchanged) and Met (lower), were higher for red clover than for grass diets. However, none of these AA-related variables were affected by forage maturity. Total digestibility of N and excretion of N in the urine were higher for red clover than for grass diets and decreased with advancing maturity. It was concluded that despite the higher total AA supply of cows fed red clover versus grass silage diets, further milk production responses on red clover diets were compromised by an inadequate supply of Met as evidenced by lower Met concentration in the AA profile of omasal digesta and plasma.  相似文献   

3.
Eight ruminally cannulated Holstein cows that were part of a larger lactation trial were used in 2 replicated 4 × 4 Latin squares to quantify effects of supplementing protein as urea, solvent soybean meal (SSBM), cottonseed meal (CSM), or canola meal (CM) on omasal nutrient flows and microbial protein synthesis. All diets contained (% of dry matter) 21% alfalfa silage and 35% corn silage plus 1) 2% urea plus 41% high-moisture shelled corn (HMSC), 2) 12% SSBM plus 31% HMSC, 3) 14% CSM plus 29% HMSC, or 4) 16% CM plus 27% HMSC. Crude protein was equal across diets, averaging 16.6%. The CSM diet supplied the least rumen-degraded protein and the most rumen-undegraded protein. Microbial nonammonia N flow was similar among the true protein supplements but was 14% lower in cows fed urea. In vivo ruminal passage rate, degradation rate, and estimated escape for the 3 true proteins were, respectively, 0.044/h, 0.105/h, and 29% for SSBM; 0.051/h, 0.050/h, and 51% for CSM; and 0.039/h, 0.081/h, and 34% for CM. This indicated that CSM protein was less degraded because of both a faster passage rate and slower degradation rate. Omasal flow of individual AA, branched-chain AA, essential AA, nonessential AA, and total AA all were lower in cows fed urea compared with one of the true protein supplements. Among the 3 diets supplemented with true protein, omasal flow of Arg was greatest on CSM, and omasal flow of His was greatest on CSM, intermediate on CM, and lowest on SSBM. Lower flows of AA and microbial nonammonia N explained lower yields of milk yield and milk components observed on the urea diet in the companion lactation trial. These results clearly showed that supplementation with true protein was necessary to obtain sufficient microbial protein and rumen-undegraded protein to meet the metabolizable AA requirements of high-producing dairy cows.  相似文献   

4.
Eight ruminally cannulated lactating cows from a study on the effects of dietary rumen degraded protein (RDP) on production and N metabolism were used to compare 15N, total purines, amino acid (AA) profiles, and urinary excretion of purine derivatives (PD) as microbial markers for quantifying the flow of microbial protein at the omasal canal. Dietary RDP was gradually decreased by replacing solvent soybean meal and urea with lignosulfonate-treated soybean meal. The purine metabolites xanthine and hypoxanthine were present in digesta and microbial samples and were assumed to be of microbial origin. The sum of the purines and their metabolites (adenine, guanine, xanthine, and hypoxanthine) were defined as total purines (TP) and used as a microbial marker. Decreasing dietary RDP from 13.2 to 10.6% of dry matter (DM) reduced microbial nonammonia N (NAN) flows estimated using TP (from 415 to 369 g/d), 15N (from 470 to 384 g/d), AA profiles (from 392 to 311 g/d), and PD (from 436 to 271 g/d). Averaged across diets, microbial NAN flows were highest when estimated using TP and 15N (398 and 429 g/d), lowest when using PD (305 g/d), and intermediate when using AA profiles (360 g/d) as microbial markers. Correlation coefficients between 15N and TP for fluid-associated bacteria, particle-associated bacteria, and total microbial NAN flows were 0.38, 0.85, and 0.69, respectively. When TP was used as the microbial marker, ruminal escape of dietary NAN was not affected by replacing solvent soybean meal with lignosulfonate-treated soybean meal in the diets. The direction and extent of response of dietary and microbial NAN flow to dietary treatments were similar when estimated using 15N, AA profiles, and PD, and were in agreement with previously published data and National Research Council predictions. Microbial and dietary NAN flows from the rumen estimated using 15N appeared to be more accurate and precise than the other markers. Caution is required when interpreting results obtained using TP as the microbial marker.  相似文献   

5.
This study conducted according to a 4 x 4 Latin square with 28 d periods and four ruminally cannulated Finnish Ayrshire cows investigated the effect of protein supplements differing in amino acid (AA) profile and rumen undegradable protein content on postruminal AA supply and milk production. Mammary metabolism of plasma AA and other nutrients were also studied. The basal diet (Control; 13.4% crude protein) consisted of grass silage and barley in a ratio of 55:45 on a dry matter basis. The other three isonitrogenous diets (17.0% crude protein) were control + fishmeal (FM), control + soybean meal (SBM), and control + corn gluten meal (CGM). The protein supplements replaced portions of dry matter of the control diet maintaining the silage to barley ratio constant for all diets. Dry matter intake was limited to 95% of the preexperimental ad libitum intake and was similar (mean 19.8 kg/d dry matter) across the diets. Protein supplements increased milk, lactose, and protein yields but did not affect yields of energy-corrected milk or milk fat. Milk protein yield response was numerically lowest for diet SBM. Protein supplements increased milk protein concentration but decreased milk fat and lactose concentrations. Microbial protein synthesis and rumen fermentation parameters were similar across the diets, except for an increased rumen ammonia concentration for diets supplemented with protein feeds. Protein supplements increased N intake, ruminal organic matter and N, and total tract organic matter, N, and neutral detergent fiber digestibilities. Protein supplements also increased N and AA flows into the omasum, with SBM giving the lowest and CGM the highest flows. This was associated with an unchanged microbial N flow and a higher undegraded dietary N flow. The omasal flows of individual AA reflected differences in total N flow and AA profile of the experimental diets. Differences in AA flows did not always reflect plasma AA concentrations. The results indicated that AA supply of dairy cows fed a grass silage-cereal diet can be manipulated using protein supplements differing in ruminal protein degradability and AA profile. Lower milk production response to SBM than that to FM and CGM appeared to be related mainly to lower N and AA supplies arising from a high ruminal protein degradability of SBM. Histidine appeared to be the first limiting AA for milk protein synthesis on the control diet. Mammary gland may regulate AA uptake according to requirements.  相似文献   

6.
Twenty-eight (8 with ruminal cannulas) lactating Holstein cows were assigned to seven 4 × 4 Latin squares in a 16-wk trial to study the effects on production and ruminal metabolism of feeding differing proportions of rumen-degraded protein (RDP) from soybean meal and urea. Diets contained [dry matter (DM) basis] 40% corn silage, 15% alfalfa silage, 28 to 30% high-moisture corn, plus varying levels of ground dry shelled corn, solvent- and lignosulfonate-treated soybean meal, and urea. Proportions of the soybean meals, urea, and dry corn were adjusted such that all diets contained 16.1% crude protein and 10.5% RDP, with urea providing 0, 1.2, 2.4, and 3.7% RDP (DM basis). As urea supplied greater proportions of RDP, there were linear decreases in DM intake, yield of milk, 3.5% fat-corrected milk, fat, protein, and solids-not-fat, and of weight gain. Milk contents of fat, protein, and solids-not-fat were not affected by source of RDP. Replacing soybean meal RDP with urea RDP resulted in several linear responses: increased excretion of urinary urea-N and concentration of milk urea-N, blood urea-N, and ruminal ammonia-N and decreased excretion of fecal N; there was also a trend for increased excretion of total urinary N. A linear increase in neutral detergent fiber (NDF) digestibility, probably due to digestion of NDF-N from lignosulfonate-treated soybean meal, was observed with greater urea intake. Omasal sampling revealed small but significant effects of N source on measured RDP supply, which averaged 11.0% (DM basis) across diets. Increasing the proportion of RDP from urea resulted in linear decrease in omasal flow of dietary nonammonia N (NAN) and microbial NAN and in microbial growth efficiency (microbial NAN/unit of organic matter truly digested in the rumen). These changes were paralleled by large linear reductions in omasal flows of essential, nonessential, and total amino acids. Overall, these results indicated that replacing soybean meal RDP with that from urea reduced yield of milk and milk components, largely because of depressed microbial protein formation in the rumen and that RDP from nonprotein-N sources was not as effective as RDP provided by true protein.  相似文献   

7.
The objective of this study was to evaluate the effect of rolled barley supplementation on microbial composition and omasal flows of bacterial, protozoal, and nonmicrobial AA in cows fed fresh perennial ryegrass (Lolium perenne L.; PRG). Ten ruminally cannulated multiparous Holstein cows averaging (mean ± standard deviation) 49 ± 23 d in milk and 513 ± 36 kg of body weight were assigned to 1 of 2 treatments in a switchback design. The treatment diets were PRG only or PRG plus 3.5 kg of dry matter rolled barley (G+RB). The study consisted of three 29-d periods where each period consisted of 21 d of diet adaptation and 8 d of data and sample collection. A double-marker system was used to quantify nutrient flow entering the omasal canal along with 15N-ammonium sulfate to label and measure the microbial and nonmicrobial omasal flow of AA. Overall, rolled barley supplementation had no effect on the AA composition of the omasal liquid-associated and particle-associated bacteria. Rolled barley supplementation affected the AA concentrations of omasal protozoa; however, the differences were nutritionally minor. Particle-associated bacteria AA flow was increased for all AA, except for Trp and Pro, in cows fed the G+RB diet. Rolled barley supplementation had no effect on protozoal AA flow. On average, protozoa accounted for 23% of the microbial essential AA flow, which ranged from 17 to 28% for Trp and Lys, respectively. The flow of all AA in omasal true digesta increased in cows fed the G+RB diet compared with the PRG-only diet, resulting in a 228 g/d increase in total AA flow in cows fed the G+RB diet. This increase in total AA flow in cows fed the G+RB diet was due to an increase in microbial AA flow. Rolled barley supplementation had no effect on nonmicrobial AA flow. The nonmicrobial AA flow modestly contributed to total AA flow, accounting for 15.6% on average. These results indicated that extensive ruminal degradation of PRG AA occurred (83.5%), and we demonstrated that cows consuming PRG-based diets exhibit a large dependence on microbial AA to support metabolizable AA supply. Rolled barley supplementation can increase the omasal flow of microbial AA in cows consuming PRG-based diets. However, further research is required to elucidate if this increased AA supply can support higher milk yield under such dietary conditions.  相似文献   

8.
Six lactating cows were fitted with ruminal and duodenal cannula to measure protein digesta flow to the duodenum during early and midlactation. Diets were composed of corn grain, corn silage, and orchardgrass hay plus supplemental fish meal or soybean meal. Diets contained 15.5% CP and 20.7 ADF. Cobalt-EDTA and Yb were used as liquid and particulate digesta markers and cytosine was used as microbial marker. Corrected organic matter digestibilities in the stomachs were 48.4, 49.8, 44.9, and 53.2% for fish meal and soybean meal diets and early and midlactation, respectively. Preduodenal degradabilities were 47.2, 65.8, 56.7, and 56.2% for fish meal and soybean meal diets and early and midlactation, respectively. Nitrogen recoveries at the duodenum were 93.2 and 84.3% for fish meal and soybean meal diets. Intake of amino acids was greater when cows were fed the soybean meal diet, but total flows of amino acids to the duodenum were similar for both diets. Greater quantity of protein escaping ruminal degradation in cows fed fish meal compared with soybean meal was counterbalanced by less microbial synthesis in the rumen.  相似文献   

9.
Eight ruminally cannulated Holstein cows that were part of a larger lactation trial were blocked by days in milk and randomly assigned to replicated 4 × 4 Latin squares to quantify effects of nonprotein N (NPN) content of alfalfa silage (AS) and red clover silage (RCS) on omasal nutrient flows. Diets, fed as total mixed rations, contained 50% dry matter from control AS (CAS), ammonium tetraformate-treated AS (TAS), late maturity RCS (RCS1), or early maturity RCS (RCS2). Silages differed in NPN and acid detergent insoluble N (% of total N): 50 and 4% (CAS); 45 and 3% (TAS); 27 and 8% (RCS1); 29 and 4% (RCS2). The CAS, TAS, and RCS2 diets had 36% high-moisture shelled corn and 3% soybean meal, and the RCS1 diet had 31% high-moisture shelled corn and 9% soybean meal. All diets contained 10% corn silage, 27% neutral detergent fiber, and 17 to 18% crude protein. Compared with RCS, feeding AS increased the supply of rumen-degraded protein and omasal flows of nonammonia N and microbial protein, which may explain the improved milk yield observed in the companion lactation trial. However, omasal flow of rumen-undegraded protein was 34% greater on RCS. Except for Arg, omasal flows of individual AA, branched-chain AA, nonessential AA, essential AA, and total AA did not differ between cows fed AS vs. RCS. Within AS diets, no differences in omasal AA flows were observed. However, omasal flows of Asp, Ser, Glu, Cys, Val, Ile, Tyr, Lys, total nonessential AA, and total AA all were higher in cows fed RCS1 vs. cows fed RCS2. In this trial, there was no advantage to reducing NPN content of hay-crop silage.  相似文献   

10.
Mixed model analysis of data from 32 studies (122 diets) was used to evaluate the precision and accuracy of the omasal sampling technique for quantifying ruminal-N metabolism and to assess the relationships between nonammonia-N flow at the omasal canal and milk protein yield. Data were derived from experiments in cattle fed North American diets (n = 36) based on alfalfa silage, corn silage, and corn grain and Northern European diets (n = 86) composed of grass silage and barley-based concentrates. In all studies, digesta flow was quantified using a triple-marker approach. Linear regressions were used to predict microbial-N flow to the omasum from intake of dry matter (DM), organic matter (OM), or total digestible nutrients. Efficiency of microbial-N synthesis increased with DM intake and there were trends for increased efficiency with elevated dietary concentrations of crude protein (CP) and rumen-degraded protein (RDP) but these effects were small. Regression of omasal rumen-undegraded protein (RUP) flow on CP intake indicated that an average 32% of dietary CP escaped and 68% was degraded in the rumen. The slope from regression of observed omasal flows of RUP on flows predicted by the National Research Council (2001) model indicated that NRC predicted greater RUP supply. Measured microbial-N flow was, on average, 26% greater than that predicted by the NRC model. Zero ruminal N-balance (omasal CP flow = CP intake) was obtained at dietary CP and RDP concentrations of 147 and 106 g/kg of DM, corresponding to ruminal ammonia-N and milk urea N concentrations of 7.1 and 8.3 mg/100 mL, respectively. Milk protein yield was positively related to the efficiency of microbial-N synthesis and measured RUP concentration. Improved efficiency of microbial-N synthesis and reduced ruminal CP degradability were positively associated with efficiency of capture of dietary N as milk N. In conclusion, the results of this study indicate that the omasal sampling technique yields valuable estimates of RDP, RUP, and ruminal microbial protein supply in cattle.  相似文献   

11.
A dual flow continuous culture system was used to determine the effects of four protein sources (soybean meal, Ca-ligno-sulfonate treated-soybean meal, blood meal, and feather meal), supplied individually or in combination in diets composed predominantly of alkaline hydrogen peroxide-treated wheat straw, on ruminal microbial fermentation and amino acid flow. Diets containing blood meal had lower organic matter and fiber digestion, NH3 N and VFA concentrations, and CP degradation but higher non-NH3 N, dietary N, total amino acid, and essential amino acid flows. Feather meal fed alone or combined with other sources was not different from the blood meal diet in organic matter and fiber digestion. Combining treated soybean meal and blood meal resulted in similar organic matter and fiber digestibilities compared with the soybean meal diets. This combination was similar to the treated soybean meal diet in VFA concentration, non-NH3 N, and essential and total amino acid flows; however, amino acid profile was different with this combination, showing higher histidine and leucine flows. Results from this study suggest that amino acid profiles of digesta leaving the rumen may be manipulated by choice of protein supplement when diets containing a low protein, highly fermentable feedstuff such as alkaline hydrogen, peroxide-treated wheat straw are fed.  相似文献   

12.
We partitioned the flow of amino acids (AA) to the abomasum among rumen undegradable protein (RUP) and bacterial, protozoal, and endogenous fractions using four Holstein cows in midlactation that were equipped with ruminal and abomasal cannulas. A 2 x 2 factorial design with four diets, combinations of high or low ruminally degradable organic matter, and rumen degradable protein, was employed. Crude protein (CP) and AA contents of ruminal bacteria and protozoa and abomasal digesta were determined. Equations for the source compositions and in vivo flows of CP and 16 AA were then solved simultaneously with a linear program to estimate the contribution of RUP, bacterial, protozoal, and endogenous CP to AA flows. The flows of RUP and bacterial AA were not affected by diet. Low dietary RDP increased the flow of protozoal AA to the abomasum, but the ruminally degradable organic matter content of the diet did not affect protozoal AA flow. Across diets, RUP, bacterial, protozoal, and endogenous fractions provided 55, 33, 11, and <1% of the CP, and 62, 26, 12, and <1% of the AA that reached the abomasum. The linear program was a useful tool for partitioning AA that flows to the abomasum. The technique may also allow dietary effects on ruminal microbes and the AA profile of protein flowing to the duodenum to be better understood and perhaps manipulated.  相似文献   

13.
Four groups of cows in early lactation, each group containing one mature cow and three cows in first lactation, were in a 4 × 4 Latin-square arrangement of treatments for us to study influences of altering quantity of undegraded dietary crude protein and quantity of crude protein on milk production and composition. Diets supplemented with protein sources were 1) soybean meal positive control (22.7% crude protein), 2) whole cottonseed-corn gluten meal (14.7% crude protein), 3) extruded whole soybean (14.5% crude protein), or 4) soybean meal supplemented (15.7% crude protein). Concentrate and sorghum silage were fed in a ratio of 62:38 dry matter. Dry matter intake was not influenced by dietary crude protein concentration or source. Cows consuming diet 2 produced less milk, milk protein, total solids, and solids-not-fat than cows receiving diets 1 and 4. Efficiency of conversion of dietary crude protein to milk protein was highest for cows receiving diet 3 and lowest for diet 1.Trial 2, a 4 × 4 Latin-square trial for collection of abomasal digesta, had four ruminal and abomasal cannulated steers and the four diets from the lactation trial; the trial was to determine the influence of source and concentrations of protein on quantity of protein reaching the abomasum daily. Crude protein intake by steers fed diet 1 was greater than for the other three diets. Percentages recovery of dietary crude protein were 122 and 130 for treatments 2 and 3, intermediate for treatment 4 (107%), and lowest for diet 1 (88.0%); crude protein digestibility in the total tract was highest for steers receiving diet 1.  相似文献   

14.
This study evaluated the impact of some methodological factors on the flows of nutrients at the omasal canal and duodenum of dairy cows fed corn-based diets. Three ruminally and duodenally cannulated cows were assigned to an incomplete 4 × 4 Latin square with four 14-d periods and fed diets formulated to contain different amounts and ruminal degradabilities of crude protein. Samples from the omasal canal and duodenum were obtained and processed according to methodologies routinely used in our laboratories and elsewhere. Methodological factors that were evaluated included microbial references and markers, digesta markers, and sampling sites (techniques). Considerable variation was found for the compositions of microbial references and their impact on the intestinal supply of microbial nonammonia nitrogen. Likewise, it appears that variation in measuring the ruminal outflow of nitrogen fractions of microbial and dietary origin could be reduced by using 15N rather than purines as microbial markers. Sampling from the omasum and duodenum resulted in differences for ruminal outflow and site of digestion as well as digestibility of some nutrients, particularly nitrogen fractions and starch. A sizable portion of this variation was associated with deviations from the assumed ideal behavior of digesta markers and collection of samples that were unrepresentative of true digesta. Collectively, outcomes from this study indicate that more research will be required to determine the accuracy of nutrient flows and the agreement between measurements at the omasal canal and duodenum when dairy cows are fed a variety of diets under different feeding systems. Therefore, caution is recommended when extrapolating or interpreting the underlying biology of published results as well as the results of their application (e.g., model parameters and predictions).  相似文献   

15.
Four Holstein cows fitted with ruminal, duodenal, and ileal cannulae were used in a 4 x 4 Latin square design to measure ruminal protein degradation and small intestinal digestion of diets containing untreated soybean meal or soybean meal treated with heat and either water, xylose, or calcium lignosulfonate. Diets consisting of 40% corn silage, 10% alfalfa cubes, and 50% grain mix, and averaging 16.8% crude protein (DM basis) were fed four times daily. Approximately 50% of the total dietary protein was supplied by the respective soybean meal source. Ruminal protein degradation was 70.6, 69.6, 55.8, and 53.7% for diets containing untreated soybean meal, water-soybean meal, xylose-soybean meal, and calcium lignosulfonate-soybean meal, respectively. Duodenal non-NH3 N flow (g/d) and absorption of non-NH3 N (g/d) in the small intestine were generally not affected by treatment. Duodenal bacterial N flow (g/d) was lower with xylose-soybean meal and lignosulfonate-soybean meal than with untreated soybean meal. Treatment of soybean meal with xylose or calcium lignosulfonate was successful in decreasing ruminal protein degradation. However, it may be necessary to include a source of readily fermentable N in diets that contain protected proteins in order to supply adequate NH3 N for microbial protein synthesis.  相似文献   

16.
Four Holstein cows fitted with ruminal and duodenal cannulas were used in a 4 x 4 Latin square to investigate the effects of source (corn gluten meal or soybean meal) and amount (14.5 or 11.0%) of CP on ruminal fermentation, passage of nutrients to the small intestine, and animal performance. Cows wee fed for ad libitum intake a diet of 60% corn silage and 40% concentrate on a DM basis. The treatments, arranged in a 2 x 2 (source x amount of CP) factorial, were 1) 14.5% CP, soybean meal; 2) 11.0% CP, soybean meal; 3) 14.5% CP, corn gluten meal; and 4) 11.0% CP, corn gluten meal. Digestion in the rumen of OM, starch, ADF, and NDF was not affected by source or amount of CP in the diet. Total VFA and NH3 concentrations in ruminal fluid were increased by feeding diets that contained 14.5% CP or soybean meal. FLows of non-NH3 N and amino acids to the duodenum were greater in cows fed the 14.5% CP diets because of a greater flow of non-NH3 nonmicrobial N to the duodenum. Larger amounts of lysine passed to the duodenum when cows were fed soybean meal compared with corn gluten meal. Microbial N flow to the duodenum and efficiency of microbial growth were not affected by treatments, suggesting that ruminal NH3 concentration was not limiting for maximal microbial protein synthesis. Feeding 14.5% CP diets increased the production of milk (29.5 vs. 26.8 kg/d) and milk protein compared with 11.0% CP diets, possibly because of greater passage of amino acids to the small intestine. Feeding soybean meal to cows increased production of milk protein compared with feeding corn gluten meal, possibly because more lysine passed to the small intestine.  相似文献   

17.
A study was conducted to determine the effects of replacing canola meal (CM) as the major protein source with wheat-based dried distillers grains with solubles (W-DDGS) on ruminal fermentation, microbial protein production, omasal nutrient flow and animal performance. Eight lactating dairy cows were fed in a replicated 4 × 4 Latin square design with 28-d periods (20 d of dietary adaptation and 8 d of measurements). Four cows in one Latin square were ruminally cannulated for measurements of ruminal fermentation characteristics and flow of nutrients at the omasal canal. Cows were fed either a standard barley silage-based total mixed ration containing CM as the major protein supplement (0% W-DDGS, control) or diets formulated to contain 10, 15, and 20% W-DDGS (dry matter basis), with W-DDGS replacing primarily CM. Diets were isonitrogenous (18.9% crude protein) and contained 3.0, 3.2, 3.5, and 3.7% ether extract for 0, 10, 15, and 20% W-DDGS, respectively. Diets contained 50% forage and 50% concentrate. Inclusion of W-DDGS linearly increased dry matter intake (29.5, 31.2, 30.2, and 31.9 kg/d for 0, 10, 15, and 20% W-DDGS, respectively). The addition of W-DDGS in place of CM resulted in a 1.2- to 1.8-kg increase in milk yield (42.9, 44.7, 44.1, and 44.5 kg/d for 0, 10, 15, and 20% W-DDGS); however, a quadratic change in feed efficiency (i.e., milk yield/DM intake) occurred as the dietary level of W-DDGS increased. Treatments did not differ for milk fat, protein, and lactose concentrations; however, quadratic changes were observed in milk yields of fat (1.48, 1.56, 1.62, and 1.55 kg/d for 0, 10, 15, and 20% W-DDGS, respectively), protein (1.44, 1.46, 1.49, and 1.42 kg/d) and lactose (1.96, 2.02, 2.09, and 1.93 kg/d). Ruminal fermentation characteristics did not change except that the inclusion of 20% W-DDGS resulted in a decrease and a tendency for a decrease in molar concentrations of isobutyrate and total volatile fatty acids, respectively. Omasal flow of total bacterial nonammonia N (NAN) and bacterial efficiency (g of total bacterial NAN flow/kg of organic matter truly digested in the rumen) were not different among diets; however, feeding W-DDGS resulted in a quadratic increase in nonammonia nonbacterial N flow at the omasal canal (271, 318, 336, and 311 g/d for 0, 10, 15, and 20% W-DDGS, respectively). These data indicate that W-DDGS can substitute for CM as the major protein source in dairy cow diets without negatively affecting ruminal fermentation, microbial protein production, and omasal nutrient flow, and can potentially increase dry matter intake and milk yield.  相似文献   

18.
The aims of this experiment were (1) to compare the effects of a soybean meal with an enzymatic treatment (ESBM) to reduce the concentration of antinutritional factors versus a standard soybean meal (SBM) on foregut and small intestine digestion in weaned dairy calves and (2) to estimate the endogenous losses of crude protein (CP) in the small intestine. Our hypothesis was that a diet containing ESBM instead of SBM would improve ruminal and small intestine digestion and absorption of nutrients. A T-cannula was placed in the duodenum, and a second T-cannula was installed in the distal ileum of 12 Holstein calves at approximately 3 wk of age. Calves were weaned on d 42, and on d 50 they were assigned randomly to a quadruplicated 3 × 3 Latin square with 10-d periods. Digesta samples were collected on d 7 and 8 from the ileum and d 9 and 10 from the duodenum. The diets were fed for ad libitum intake and consisted of a calf starter (CS) of 20% CP with SBM as the main source of protein (CTRL), and an isonitrogenous CS with an ESBM instead of SBM (ENZT). A third diet with a low content of CP (10%) and no soy protein was fed to estimate endogenous N losses and digestibilities of test ingredients. Flows and digestibilities of nutrients were compared between CTRL and ENZT and their test ingredients (SBM vs. ESBM, respectively). Duodenal net flows of CP and total AA as well as ruminal microbial protein synthesis per kilogram of digested CP were greater, and flow of nonprotein N and CP true (corrected by endogenous and microbial flows) foregut digestibility were lower with ENZT than CTRL. The apparent small intestine digestibilities of CP and total AA were greater for ESBM than SBM, but there were no differences between the CTRL and ENZT diets. We observed no differences in digestibilities at the duodenum or ileum of starch or NDF, but true small intestine digestibilities of CP and all AA were greater with ENZT than CTRL. Total endogenous protein losses in the small intestine estimated from calves fed the low-CP with no soy protein diet were 37 ± 1.5 g of CP and 29 ± 1.4 g of AA/kg of DMI. These values may be considered the basal endogenous losses as they are similar to values obtained with the regression method, which estimates N losses when dietary N is null. Our results indicated that the inclusion of an ESBM improved the efficiency of ruminal microbial protein synthesis per digested kilogram of organic matter and CP, and increased CP and AA absorption in the small intestine despite a greater proportion of undigested dietary protein entering the duodenum.  相似文献   

19.
Camelina is a drought- and salt-tolerant oil seed, which in total ether extract (EE) contains up to 74% polyunsaturated fatty acids. The objective of this study was to assess the effects of replacing calcium salts of palm oil (Megalac, Church & Dwight Co. Inc., Princeton, NJ) with camelina seed (CS) on ruminal fermentation, digestion, and flows of fatty acids (FA) and AA in a dual-flow continuous culture system when supplemented at 5 or 8% dietary EE. Diets were randomly assigned to 8 fermentors in a 2 × 2 factorial arrangement of treatments in a replicated 4 × 4 Latin square design, with four 10-d experimental periods consisting of 7 d for diet adaptation and 3 d for sample collection. Treatments were (1) calcium salts of palm oil supplementation at 5% EE (MEG5); (2) calcium salts of palm oil supplementation at 8% EE (MEG8); (3) 7.7% CS supplementation at 5% EE (CS5); and (4) 17.7% CS supplementation at 8% EE (CS8). Diets contained 55% orchardgrass hay, and fermentors were fed 72 g of dry matter/d. On d 8, 9, and 10 of each period, digesta effluent samples were taken for ruminal NH3, volatile fatty acids, nitrogen metabolism analysis, and long-chain FA and AA flows. Statistical analysis was performed using the MIXED procedure (SAS Institute Inc., Cary, NC). We detected an interaction between FA source and dietary EE level for acetate, where MEG8 had the greatest molar proportion of acetate. Molar proportions of propionate were greater and total volatile fatty acids were lower on CS diets. Supplementation of CS decreased overall ruminal nutrient true digestibility, but dietary EE level did not affect it. Diets containing CS had greater biohydrogenation of 18:2 and 18:3; however, biohydrogenation of 18:1 was greater in MEG diets. Additionally, CS diets had greater ruminal concentrations of trans-10/11 18:1 and cis-9,trans-11 conjugated linoleic acid. Dietary EE level at 8% negatively affected flows of NH3-N (g/d), nonammonia N, and bacterial N as well as the overall AA outflow. However, treatments had minor effects on individual ruminal AA digestibility. The shift from acetate to propionate observed on diets containing CS may be advantageous from an energetic standpoint. Moreover, CS diets had greater ruminal outflow of trans-10/11 18:1 and cis-9,trans-11 conjugated linoleic acid than MEG diets, suggesting a better FA profile available for postruminal absorption. However, dietary EE at 8% was deleterious to overall N metabolism and AA outflow, indicating that CS can be fed at 5% EE without compromising N metabolism.  相似文献   

20.
Fatty amides of high oleate fats and calcium salts of palm oil were reported to resist biohydrogenation by ruminal microorganisms. This study was conducted to determine whether converting polyunsaturated fat sources to amides and calcium salts had equal ability to resist biohydrogenation. A total mixed ration consisting of forage and concentrate contained (dry basis): 1) 2.45% soybean oil (SBO), 2) 2.75% calcium salt of SBO, 3) 2.75% amide of SBO, or 4) 2.75% of a mixture of the calcium salt and amide (80:20, wt/wt) of SBO. The 4 diets were fed ad libitum to 4 multiparous lactating Holstein cows fitted with ruminal cannulas in a 4 x 4 Latin square with 21-d periods. Omasal samples were taken to measure postruminal fatty acid content and determine the extent of ruminal biohydrogenation. Adding SBO to the diets as either calcium salts or amides increased omasal flow of C18:2 (n-6) from 25 to 39 g/d. Omasal flow of C18:1 increased from 36 to 49 g/d when SBO was fed to cows as calcium salts, but increased to 86 g/d when SBO was fed as amides. Adding the soybean amide to the diet more than doubled the delivery of C18:1 (n-9) to the omasum of lactating cows, but it also increased trans fatty acid production in the rumen accompanied by milk fat depression. In this study, calcium salts and amide derivatives of fatty acids were both effective in enhancing omasal flow of unsaturataed fatty acids in lactating dairy cows. Amides were more effective than calcium salts for increasing the postruminal flow of oleic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号