首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We fabricated a standard sample for a near-field optical microscope using scanning probe lithography. The sample contains a wedged pattern, which allows the measurement of various sizes within one image. The optical resolution of our near-field optical microscope has been evaluated as 40 nm, which was obtained by measuring the narrowest separable gap width of the wedged pattern. Thus a standard sample containing the wedged pattern enables clear evaluation of the resolution.  相似文献   

3.
In order to realize a small linewidth two-dimensional direct laser lithographic technique with enhanced resolution, we propose two apparatuses. The first one uses a polarizing beam splitter to separate a source beam into two output beams, and these two beams overlap on the focal point and make a narrow interferogram that sharpens the focused beam spot. The direction of the sharpened beam spot is controlled by a tilting mirror. This scheme is fast and easy to align. However, one serious problem, the interferogram shifting phenomenon, was observed during a long term fabrication. To obtain long term stability, we propose the second scheme that employs a calcite wave plate module attached to a motorized rotary motor. In this setup, the direction of the focused beam spot is controlled by the rotary motor.  相似文献   

4.
Choi I  Kim Y  Yi J 《Ultramicroscopy》2008,108(10):1205-1209
In this study, we propose a simple and effective method for fabricating hierarchical silicon structures via the combination of scanning probe lithography (SPL) and wet chemical etching. Here, silicon oxide structures were protruded from a 100-oriented silicon surface, followed by the passivation of silicon nitride by AFM tip-induced local oxidation. Based on the two-dimensional (2D) silicon oxide patterns, three-dimensional (3D) microstructures with high aspect ratios were formed by wet etching with HF and KOH. A variety of combinations of SPL and the etching process allowed us to fabricate diverse silicon-based structures such as deep-etched microstructures and multi-terraced nanostructures.  相似文献   

5.
Plasmon-coupled tip-enhanced near-field optical microscopy   总被引:3,自引:0,他引:3  
Near the cut‐off radius of a guided waveguide mode of a metal‐coated glass fibre tip it is possible to couple radiation to surface plasmons propagating on the outside surface of the metal coating. These surface plasmons converge toward the apex of the tip and interfere constructively for particular polarization states of the initial waveguide mode. Calculations show that a radially polarized waveguide mode can create a strong field enhancement localized at the apex of the tip. The highly localized enhanced field forms a nanoscale optical near‐field source.  相似文献   

6.
The interpretation of the detection process in near-field optical microscopy is reviewed on the basis of a discussion about the possibility of establishing direct comparisons between experimental images and the solutions of Maxwell equations or the electromagnetic local density of states. On the basis of simple physical arguments, it is expected that the solutions of Maxwell equations should agree with images obtained by collecting mode near-field microscopes, while the electromagnetic local density of states should be considered to provide a practical interpretation of illumination mode near-field microscopes.
We review collecting mode near-field microscope images where the conditions to obtain good agreement with the solutions of Maxwell equations have indeed been identified. In this context of collecting mode near-field microscopes, a fundamentally different functionality between dielectric and gold-coated tips has been clearly identified experimentally by checking against the solutions of Maxwell equations. It turns out that dielectric tips detect a signal proportional to the optical electric field intensity, whereas gold-coated tips detect a signal proportional to the optical magnetic field intensity. The possible implications of this surprising phenomenon are discussed.  相似文献   

7.
A near-field scanning optical microscope has been combined with a two-colour time-resolved pump-probe measurement system. It has a noise-equivalent transmittance change of 5.0 × 10−5 for a probe pulse with an intensity of 30 nW. The system has been used for evaluating molecular thin films that have a domain structure, particularly for observing a gate action of the single domains. The results include key features to understand an origin of the domains and suggest that the film composition is uniform over a distance of several micrometres.  相似文献   

8.
Diffracted fields from 100-nm aperture near-field scanning optical microscopy (NSOM) probes and uncoated tapered fibres are measured and analysed. Using a solid angle scanner, the two-dimensional intensity distribution and polarization state of the diffracted light are resolved experimentally. Polarization analyses show that circularly polarized input light does not maintain its polarization state for all diffraction angles, and is completely filtered into linearly polarized light at large polar diffraction angles. This drastic decomposition originates from the vector nature of light diffracted by the sub-wavelength aperture. There is a fundamental difficulty in generating circularly polarized light near the aperture of NSOM probes owing to polarization-dependent diffraction in the near-field regime. This is illustrated by the Bethe-Bouwkamp model using circularly polarized input light.  相似文献   

9.
We describe an apertureless scanning near-field optical microscope (SNOM) based on the local second-harmonic generation enhancement resulting from an electromagnetic interaction between a probe tip and a surface. The imaging mechanisms of such apertureless second-harmonic SNOM are numerically studied. The technique allows one to achieve strongly confined sources of second-harmonic light at the probe tip apex and/or surface area under the tip. First experimental realization of this technique has been carried out using a silver-coated fibre tip as a probe. The experiments reveal a strong influence of the tip–surface interaction as well as polarization of the excitation light on images obtained with apertureless second-harmonic SNOM. The technique can be useful for studying the localized electromagnetic excitations on surfaces as well as for visualization of lateral variations of linear and nonlinear optical properties of surfaces.  相似文献   

10.
基于散射式近场探测原理,设计并搭建了散射式太赫兹扫描近场光学显微系统(THz s-SNOM),实现了纳米量级空间分辨率的太赫兹近场显微成像测量。该系统以输出频率范围为0.1~0.3THz的太赫兹倍频模块为发射源,通过纳米探针的针尖产生纳米光源与样品相互作用,并将样品表面的倏逝波转化为可在远场测量的辐射波。通过探针逐点扫描样品表面,同时获得了样品表面的形貌图和太赫兹近场显微图。该系统的显微分辨率取决于探针针尖的曲率半径,而与太赫兹波的波长无关。使用该系统测量了金薄膜/硅衬底样品和石墨烯样品的近场显微图,结果表明,近场显微的空间分辨率优于60nm,波长与空间分辨率之比高达λ/26000。  相似文献   

11.
12.
Spin-sensitive optical near-field microscopy and spectroscopy are proposed based on the study on the conserved quantities in optical near-field interactions of atoms with dielectric surfaces. A two-step photoionization spectra of Cs atoms resolving hyperfine structures are demonstrated near a planar dielectric surface by using evanescent waves. These techniques of state/spin-selective excitation and highly sensitive detection, combined with the techniques of optical pumping, will open up possibilities of space- and polarization-sensitive detection of optical near‐fields using atomic probes. This novel method provides us with a useful technique for the observation of polarization nature of the optical near-field and controlling the spin states of mesoscopic electronic systems.  相似文献   

13.
研究了太赫兹散射式扫描近场光学显微镜(Terahertz scattering-type scanning near-field optical microscopy,THz s-SNOM)对亚表面金属微纳结构的显微成像检测。首次采用自主搭建的THz s-SNOM系统对表面覆盖了六方氮化硼薄膜的金微米线进行太赫兹近场显微测量,获得了具有纳米量级空间分辨率和较高对比度的近场显微图。结合全波数值模拟,分析了THz s-SNOM探测亚表面金属微纳结构的空间分辨率、近场散射信号强度和成像对比度。研究表明,THz s-SNOM具有优良的亚表面显微成像检测能力,可应用于微纳电子器件的亚表面结构表征和缺陷检测。  相似文献   

14.
We have developed fibre probes suitable for 325 nm UV light excitation and a photoluminescence near-field scanning optical microscope (NSOM) and demonstrated the photoluminescence imaging of phosphor BaMgAl10O17:Eu2+ (BAM) particles. The probe was fabricated by a two-step-etching method that we developed. The probe had a large taper angle at the top of the probe and a small taper angle at the root. The NSOM image was different from the topographical structure but roughly reflected the corresponding features of the particles. The inhomogeneity of the photoluminescence intensity between BAM particles was observed in the NSOM image. The photoluminescence intensity with various bandpass filters showed differences between the individual particles, which means that they have different spectra.  相似文献   

15.
We have developed a new type of scanning near-field optical microscope (SNOM) utilizing optical fibres. The probe tip is controlled by shear force feedback with a fibre interferometer and signal light is collected directly by a multimode fibre. These features make the SNOM head more compact and less sensitive to vibration. Further advantages of this new type of SNOM are that it obviates the need for optical windows in the cryostat and offers easy optical alignment.  相似文献   

16.
Using cross-hatched, patterned semiconductor surfaces and round 20-nm-thick gold pads on semiconductor wafers, we investigate the imaging characteristics of a reflection near-field optical microscope with an uncoated fibre tip for different polarization configurations and light wavelengths. It is shown that cross-polarized detection allows one to effectively suppress far-field components in the detected signal and to realize imaging of optical contrast on the sub-wavelength scale. The sensitivity window of our microscope, i.e. the scale on which near-field optical images represent mainly optical contrast, is found to be ≈100 nm for light wavelengths in the visible region. We demonstrate imaging of near-field components of a dipole field and purely dielectric contrast (related to well-width fluctuations in a semiconductor quantum well) with a spatial resolution of ≈100 nm. The results obtained show that such a near-field technique can be used for polarization-sensitive imaging with reasonably high spatial resolution and suggest a number of applications for this technique.  相似文献   

17.
The inexpensive fabrication of high-quality probes for near-field optical applications is still unsolved although several methods for integrated fabrication have been proposed in the past. A further drawback is the intensity loss of the transmitted light in the 'cut-off' region near the aperture in tapered optical fibres typically used as near-field probes. As a remedy for these limitations we suggest here a new wafer-scale semibatch microfabrication process for transparent photoplastic probes. The process starts with the fabrication of a pyramidal mould in silicon by using the anisotropic etchant potassium hydroxide. This results in an inverted pyramid limited by < 111 > silicon crystal planes having an angle of ∼ 54°. The surface including the mould is covered by a ∼ 1.5 nm thick organic monolayer of dodecyltrichlorosilane (DTS) and a 100-nm thick evaporated aluminium film. Two layers of photoplastic material are then spin-coated (thereby conformal filling the mould) and structured by lithography to form a cup for the optical fibre microassembly. The photoplastic probes are finally lifted off mechanically from the mould with the aluminium coating. Focused ion beam milling has been used to subsequently form apertures with diameters in the order of 80 nm. The advantage of our method is that the light to the aperture area can be directly coupled into the probe by using existing fibre-based NSOM set-ups, without the need for far-field alignment, which is typically necessary for cantilevered probes. We have evidence that the aluminium layer is considerably smoother compared to the 'grainy' layers typically evaporated on free-standing probes. The optical throughput efficiency was measured to be about 10−4. This new NSOM probe was directly bonded to a tuning fork sensor for the shear force control and the topography of a polymer sample was successfully obtained.  相似文献   

18.
A phase-change optical disc was observed using a reflection-mode scattering-type scanning near-field optical microscope (RS-SNOM). In an a.c.-mode SNOM image, the 1.2 μm × 0.6 μm recording marks were successfully observed although the data were recorded on the groove. In contrast, no recording marks could be resolved in a d.c.-mode SNOM image. These results are in good agreement with those from a numerical simulation using the finite difference time domain method. The resolution was better than 100 nm with a.c.-mode SNOM operation and the results indicate that recording marks in phase-change optical media can be directly observed with the RS-SNOM.  相似文献   

19.
The optical destruction thresholds of conventionally etched and tube-etched near-field optical probes were measured. One of the main advantages of tube-etched tips is their smooth glass surface after taper formation. Presumably for this reason, a destruction limit of over 120 μJ was obtained, almost twice as large as that of the rougher, conventionally etched fibre probes. The use of additional adhesion layers (Ti, Cr, Co and Ni) between the glass surface and the aluminium coating produced, especially for tube-etched tips, a significant increase in the optical destruction threshold. With increasingly thin metal coatings, the use of a protection coating that prevents corrosion during aging is recommended. An additional increase in optical stability was achieved by applying mixed-metal coatings: alternating thin titanium and thick aluminium layers yielded fibre probes with superior properties that achieved average optical destruction thresholds of > 270 μJ. This is an increase in stability of > 400% compared with conventionally fabricated near-field optical tips.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号