首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
采用气压浸渗法制备高体积分数的镀TiC金刚石/铝复合材料,通过SEM和EDS等手段对复合材料的断口形貌进行分析,并研究TiC镀层对复合材料界面和热膨胀性能的影响。结果表明:TiC镀层改善金刚石颗粒与铝合金基体之间的选择性粘结现象,断裂方式以基体断裂为主。部分TiC会被氧化成TiO2并与铝合金基体反应生成Al2O3,从而实现金刚石颗粒与铝合金基体之间良好的界面结合;TiC镀层有效地降低复合材料的热膨胀系数(CTE),增强复合材料热膨胀性能的稳定性。在体积分数相同的情况下,CTE随金刚石颗粒尺寸的减小而减小。  相似文献   

2.
This study was pertained to the effects of Ti coating on diamond surfaces and Si addition into Al matrix on the thermal conductivity(TC) and the coefficient of thermal expansion(CTE) of diamond/Al composites by pressure infiltration.The fracture surfaces,interface microstructures by metal electro-etching and interfacial thermal conductance of the composites prepared by two methods were compared.The results reveal that Ti coating on diamond surfaces and only12.2 wt% Si addition into Al matrix could both improve the interfacial bonding and increase the TCs of the composites.But the Ti coating layer introduces more interfacial thermal barrier at the diamond/Al interface compared to adding 12.2 wt% Si into Al matrix.The diamond/Al composite with 12.2 wt% Si addition exhibits maximum TC of 534 W·m~(-1)·K~(-1)and a very low CTE of 8.9×10~(-6)K~(-1),while the coating Ti-diamond/Al composite has a TC of 514 W·m~(-1)·K~(-1)and a CTE of 11.0×10~(-6)K~(-1).  相似文献   

3.
Ti-coated SiCp particles were developed by vacuum evaporation with Ti to improve the interfacial bonding of SiCp/Al composites. Ti-coated SiC particles and uncoated SiC particles reinforced Al 2519 matrix composites were prepared by hot pressing, hot extrusion and heat treatment. The influence of Ti coating on microstructure and mechanical properties of the composites was analyzed by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The results show that the densely deposited Ti coating reacts with SiC particles to form TiC and Ti5Si3 phases at the interface. Ti-coated SiC particle reinforced composite exhibits uniformity and compactness compared to the composite reinforced with uncoated SiC particles. The microstructure, relative density and mechanical properties of the composite are significantly improved. When the volume fraction is 15%, the hardness, fracture strain and tensile strength of the SiCp reinforced Al 2519 composite after Ti plating are optimized, which are HB 138.5, 4.02% and 455 MPa, respectively.  相似文献   

4.
Ti-coated SiC particles were developed to improve the wear resistance of Fe-Cu-Sn alloy metal matrices designed for diamond tools. The phase structure of the Ti-coated SiC particles was investigated by X-ray diffraction. Ti coating on SiC was composed of Ti5Si3, TiC, and Ti. Excellent interfacial bonding between SiC and the matrix was realized. The SiC/iron alloy composites, prepared by hot pressing at 820 °C, were studied by wear and bending strength tests, and scanning electron microscope. For the composites reinforced by uncoated SiC particles, the wear resistance was improved, but the bending strength decreased. The composites with Ti-coated SiC particles outperformed the composites with uncoated SiC particles in both wear resistance and bending strength tests.  相似文献   

5.
采用气压浸渗法制备了金刚石体积分数为65%的铝基复合材料,分析了复合材料的显微组织并对热膨胀系数(CTE)进行了测试,研究了镀TiC金刚石/铝复合材料的热膨胀性能。结果表明,金刚石颗粒在铝合金基体中分布均匀,组织致密;TiC镀层有效地改善了金刚石颗粒与铝合金基体间选择性粘结现象,增强了金刚石与基体间的界面结合;镀TiC使复合材料热膨胀系数明显降低,Turner模型和Kerner模型的均值可以预测其热膨胀系数,而对于未镀层的复合材料则可以用Kerner模型进行预测。  相似文献   

6.
Continuous SiC fiber reinforced copper matrix(SiCf/Cu) composites were prepared by fiber coating method,and Ti6Al4V interlayer was introduced as an interfacial modification coating to improve the interfacial bonding strength.The interfacial reaction characteristics were investigated by transmission electron microscopy(TEM).The results show that nearly all the titanium atoms reacted with the carbon coating of SiC fibers to form two layers of TiC.Also,a thin copper layer that is sandwiched between these two layers was detected.No Ti-Cu interfacial reaction product was observed.The formation process of the interfacial reaction along with its mechanism was discussed.  相似文献   

7.
铝合金表面激光熔覆原位自生TiC增强金属基复合材料涂层   总被引:8,自引:0,他引:8  
以Ti,SiC混合粉末作为预置合金涂层,采用2kW连续Nd:YAG固体激光器进行激光熔覆处理,在6061铝合金表面借助于接触反应法制备原位生成TiC颗粒增强Al-Ti复合材料涂层。试验结果表明:采用适合的激光辐照工艺参数,可获得增强相TiC弥散分布,以Ti-Al金属间化合物及Al过饱和固溶体为主要组成相的复合材料熔覆层组织。TiC颗粒与复合材料基体润湿良好,熔覆层结晶致密,与6061铝合金基材呈良好的冶金,珂明显地改善铝合金的表面性能。  相似文献   

8.
The interfacial reactions of B4C-coated and C-coated SiC fiber reinforced Ti–43Al–9V composites were investigated by scanning electron microscope and transmission electron microscope. The detailed microstructures as well as the chemical composition throughout the reaction zone were identified. For SiCf/B4C/TiAl composite, the reaction zone from B4C coating to TiAl matrix is composed of 4 layers, namely, a carbon-rich layer, a mixed layer of TiB2 + amorphous carbon, a TiC layer and a mixed layer of TiB + Ti2AlC. For SiCf/C/TiAl composite, the reaction zone from C coating to TiAl matrix is composed of 3 layers, namely, a fine-grained TiC layer, a coarse-grained TiC layer and a thick Ti2AlC layer. For both kinds of composites, the reaction mechanisms of the interfacial reactions were analyzed, and the corresponding reaction kinetics were calculated. The activation energies of interfacial reaction in SiCf/B4C/TiAl composite and SiCf/B4C/TiAl composite are 308.1 kJ/mol and 230.7 kJ/mol, respectively.  相似文献   

9.
金刚石/碳化硅/铝复合材料的热膨胀性能   总被引:1,自引:0,他引:1  
采用气压浸渗法制备金刚石/碳化硅/铝复合材料,研究复合材料的断口形貌以及界面反应,测试复合材料的热膨胀性能。结果表明:金刚石表面Ti镀层使得其选择性粘附不同于未镀钛金刚石的,而在各个面上均粘附有Al,金刚石与基体间有着良好的界面结合,断裂方式以基体断裂为主,其界面反应后,Ti以Al3Ti和Ti-Al-Si等金属间化合物的形式析出,提高金刚石/铝界面的结合强度,降低复合材料的热膨胀系数;随着金刚石颗粒粒径的增大,金刚石和碳化硅颗粒间粒径比的增大增加了整个复合材料的体积分数,从而降低了其热膨胀系数;金刚石颗粒粒径增大导致热膨胀系数升高。这两方面共同影响复合材料的热膨胀系数,但前者起主导作用;金刚石和碳化硅在不同配比下的热膨胀系数随着复合材料中碳化硅含量的增加逐渐增大,Terner模型与Kerner模型的计算平均值能较好地预测实验结果。  相似文献   

10.
B4C/Al复合材料是目前最理想的中子吸收材料,广泛用于乏燃料储存。本文利用液态搅拌法制备B4C/Al复合材料,通过添加Ti元素,探讨了界面反应对材料的界面结构和力学性能的影响。研究发现,Ti元素通过参与界面反应,改变了界面结构,在B4C颗粒表面形成了紧密结合的纳米TiB2界面层;Ti的添加消除了界面微裂纹、微孔、分离等缺陷。随着界面反应程度的加强,材料强度提高,尤其反应脱落的纳米TiB2颗粒作为原位第二强化相进一步增强基体。B4C/Al复合材料断裂过程表现为韧窝延性断裂;TiB2界面层增强了B4C颗粒与基体的结合,断裂行为从B4C-Al界面脱落转变为B4C颗粒断裂;但过渡的界面反应会形成微韧窝,引起材料延伸率下降。  相似文献   

11.
The interfacial thermal conductance (ITC) and thermal conductivity (TC) of diamond/Al composites with various coatings were theoretically studied and discussed. A series of predictions and numerical analyses were performed to investigate the effect of thickness, sound velocity, and other parameters of coating layers on the ITC and TC. It is found that both the ITC and TC decline with increasing coating thickness, especially for the coatings with relatively low thermal conductivity. Nevertheless, if the coating thickness is close to zero, or quite a small value, the ITC and TC are mainly determined by the constants of the coating material. Under this condition, coatings such as Ni, TiC, Mo 2 C, SiC, and Si can significantly improve the ITC and TC of diamond/Al composites. By contrast, coatings like Ag will exert the negative effect. Taking the optimization of interfacial bonding into account, conductive carbides such as TiC or Mo 2 C with low thickness can be the most suitable coatings for diamond/Al composites.  相似文献   

12.
B4C-coated diamond (diamond@B4C) particles are used to improve the interfacial bonding and thermal properties of diamond/Cu composites. Scanning electron microscopy, x-ray diffraction, and x-ray photoelectron spectroscopy were applied to characterize the formed B4C coating on diamond particles. It is found that the B4C coating strongly improves the interfacial bonding between the Cu matrix and diamond particles. The resulting diamond@B4C/Cu composites show high thermal conductivity of 665 W/mK and low coefficient of thermal expansion of 7.5 × 10?6/K at 60% diamond volume fraction, which are significantly superior to those of the composites with uncoated diamond particles. The experimental thermal conductivity is also theoretically analyzed to account for the thermal resistance at the diamond@B4C-Cu interface boundary.  相似文献   

13.
Diamond-copper composites were prepared by powder metallurgy, in which the diamond particles were pre-coated by magnetic sputtering with copper alloy containing a small amount of carbide forming elements (including B, Cr, Ti, and Si). The influence of the carbide forming element additives on the microstructure and thermal conductivity of diamond composites was investigated. It is found that the composites fabricated with Cu-0.5B coated diamond particles has a relatively higher density and its thermal conductivity approaches 300 W/(m·K). Addition of 0.5%B improves the interfacial bonding and decreases thermal boundary resistance between diamond and Cu, while addition of 1%Cr makes the interfacial layer break away from diamond surface. The actual interfacial thermal conductivity of the composites with Cu-0.5B alloy coated on diamond is much higher than that of the Cu-1Cr layer, which suggests that the intrinsic thermal conductivity of the interfacial layer is an important factor for improving the thermal conductivity of the diamond composites.  相似文献   

14.
《Intermetallics》2007,15(4):489-494
The processing, microstructures and mechanical properties of intermetallic alloy based on Al–Mo–Zr–Co (AMZC) and its composites reinforced with micro-sized TiC, partially stabilized zirconia (PSZ)-ZrO2 or SiC particulates were investigated. The results showed that the alloy system exhibits multi-phase microstructures, composed of several aluminides including ZrAl2, Al5Co2, Al9Co2, AlMo3, Al8Mo3 and Zr2Al. The AMZC/SiC composite showed poor mechanical properties, due to the existence of residual porosity and weak interfacial bonding. In contrast, the other two composites exhibited superiority in both flexural strength and fracture toughness at room temperature than the Al–Mo–Zr–Co-based multi-phase alloy. Homogeneous distribution of ceramic particles and perfect interfacial bonding accounted for the improvement of strength. The addition of TiC or ZrO2 particle into the matrix alloy produced remarkable toughening effect.  相似文献   

15.
《Acta Materialia》2000,48(7):1443-1450
Ti–6%Al–4%V composites containing 20 vol.% TiC particles were sintered at temperatures between 1273 and 1773 K for holding times of up to 20 h. Neutron diffraction and low voltage field emission gun scanning electron microscopy were used to investigate the development of the interfacial reaction region between the reinforcement and matrix. It has been observed that there is an interaction zone surrounding each particle caused by the diffusion of carbon from the reinforcement to the titanium alloy matrix. The extent of this reaction increases with increasing processing temperature and holding time. The single phase formed at the interfacial boundary between the particles and the matrix was determined from lattice parameter measurements to be stoichiometric Ti2C. The significance of these findings are discussed in terms of previous work on interfacial characterization of TiC particulate reinforced Ti–6%Al–4%V composites.  相似文献   

16.
The effect of particle size, particle volume fraction, and matrix microstructure on the fracture initiation toughness of in situ TiCp–AlNp/Al composite was examined. The composites were Al matrix reinforced with 7.8–19.6 vol.% of TiC and AlN particles produced in situ by S-V-L reaction synthetics. The average particle diameters of TiC and AlN were 3.5 and 0.9 μm, respectively, which were distributed in the Al in a matrix dispersedly manner. The room-temperature plane-strain toughness measured using three-point bending specimens ranged from 12.7 to 37.5 MPa . Toughness was adversely affected by an increase in the TiCp–AlNp volume fraction. Fractography revealed that these composites failed in a ductile manner, with voids initiating at the in situ reinforcing TiC and AlN particles. The experimentally measured plane-strain toughness properties of in situ TiCp–AlNp/Al composite agrees with the Rice and Johnson model.  相似文献   

17.
钛合金表面激光熔覆原位生成TiC增强复合涂层   总被引:31,自引:2,他引:31  
利用Cr3C2和TiC生成自由能和稳定性的差异,通过激光熔化法在Ti6Al4V表面制备TiC颗粒增强钛基复合材料涂层,结果表明:选择合适的激光处理工艺,可使Cr3C2和Ti合金粉末通过原位结晶置换反应生成TiC/Ti复合材料熔覆层。亚微米级的TiC颗粒均匀地分布于复合材料的基体中,复合材料的基体组织随合金粉末的成分不同而改变。  相似文献   

18.
SiC reinforced tungsten matrix composites were fabricated via the spark plasma sintering process. In order to prevent an interfacial reaction between the SiC and tungsten during sintering, TiOx coated SiC particles were synthesized by a solution-based process. TiOx layer coated SiC particles were treated in high temperature nitriding conditions or annealed in a high temperature vacuum to form TiN or TiC coated SiC particles, respectively. The TiC layers coated on SiC particles successfully prevented tungsten from reacting with SiC; hence the proposed process resulted in successful fabrication of the SiC/W composites. The mechanical properties such as compressive strength and flexural strength of the composites were measured. Additionally, the effect of SiC on the high temperature oxidative ablation of tungsten was also investigated. The addition of SiC resulted in an improved oxidative ablation resistance of the tungsten-based composites.  相似文献   

19.
为探究双相增强体对铝基复合材料拉伸性能和断裂行为的影响,采用真空热压烧结工艺在580 ℃,30 MPa条件下保温10 min制备了FeCoCrNiAl高熵合金颗粒增强7075铝基复合材料(HEAp/Al),Ni-Co-P镀层修饰碳纤维增强7075铝基复合材料(CF/Al)和FeCoCrNiAl高熵合金颗粒及Ni-Co-P镀层修饰碳纤维混杂增强铝基复合材料(CF-HEAp/Al)。并对不同复合材料微观结构及拉伸性能进行分析表征及比较。结果表明:CF-HEAp/Al复合材料的屈服强度(YS)与极限拉伸强度(UTS)随纤维含量的升高(体积分数由0至40%)呈现先增大后降低的变化,延伸率则逐渐降低。鉴于Ni-Co-P镀层修饰碳纤维与FeCoNiCrAl高熵合金颗粒的混杂强化效应, CF-HEAp/Al复合材料的YS和UTS较HEAp/Al与CF/Al复合材料明显提高,且其断口表现出基体韧性断裂及纤维拔出与断裂的多种失效特征。  相似文献   

20.
《Acta Materialia》2003,51(17):4977-4989
An innovative spray-deposition technique has been applied to produce in situ TiC/Al and TiC/Al–20Si–5Fe–3Cu–1Mg composites. This technique provides a new route to solve the problems of losses and agglomeration of the reinforcement particles when they are injected into the spray cone of molten droplets during spray forming process. Experimental results have shown that the presence of needle-like Al3Ti and Al–Si–Fe compounds, which are detrimental not only to the fracture toughness, but also to the stability of the microstructure, can be eliminated completely from the final product by using a proper Ti:C molar ratio of 1:1.3 in the Ti–C–Al preforms and adding 5 wt% TiC particles to Al–20Si–5Fe–3Cu–1Mg alloy. Moreover, another major problem of coarsening of silicon particles usually encountered in the hypereutectic Al–Si alloys has also been solved by the technique. The silicon particles in the spray-deposited 5 wt% TiC/Al–20Si–5Fe–3Cu–1Mg composite were much refined (∼2 μm) compared to those (∼5 μm) obtained in the matrix alloy without TiC addition. The formation and elimination mechanisms of Al3Ti phase in TiC/Al composites can be explained based on thermodynamic theory. The modification of the microstructures in the spray-deposited Al–20Si–5Fe–3Cu–1Mg alloy can be interpreted in the light of the knowledge of atomic diffusion. The experimental results also showed that the ultimate tensile strength of the TiC/Al composites was improved over that of the unreinforced Al matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号