首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
为了研究缝合对泡沫夹芯复合材料抗低速冲击的影响,以未缝合、全厚度缝合和冲击面纤维面板三类缝合碳纤维泡沫夹芯复合材料板为研究对象,采用落锤冲击试验机对泡沫夹芯复合材料板进行10J能量的冲击试验。然后使用水浸超声波扫描成像系统对冲击后的复合材料板进行损伤检测,得出泡沫夹芯复合材料板内部不同深度层的损伤情况。采用ABAQUS有限元软件对上述三类泡沫夹芯复合材料板进行有限元模拟,得出了低速冲击响应过程及面板的损伤情况,并进行了实验与数值模拟结果对比分析。研究结果表明,缝合会使得各铺层的损伤趋向均匀化,能够大幅提高层合板的整体性使各铺层之间的衔接更加紧密。在较小冲击能量下,全厚度缝合与冲击面纤维面板缝合都能够抑制分层的破坏,并且抑制分层的效果相差不大,且靠近冲击面的层与层之间更加容易产生分层的破坏。  相似文献   

2.
在ABAQUS分析平台中建立了缝合泡沫夹层复合材料在低速冲击下的动力学有限元模型,采用杆单元模拟缝线树脂柱的作用,基于Hashin破坏准则模拟层板面内损伤,通过各向同性硬化本构模型利用等效塑性变形模拟泡沫夹芯损伤演化。针对相同铺层的缝合和未缝合泡沫夹层结构,模拟了相同冲击能量下的低速冲击响应过程及面板、泡沫的损伤情况,数值结果与实验结果吻合较好,证明了该方法的有效性和准确性。研究结果表明,在低速冲击下,泡沫夹层结构引入缝线后虽然降低了泡沫缓冲吸能的作用,使得面板表面受到较大的冲击破坏,但增强了整体刚度,增大了面板抵抗弯曲变形的能力,减小了内部面板的损伤,使其在改善复合材料面板易分层缺陷的同时还依然拥有优良的面内性能。  相似文献   

3.
采用碳纤维和芳纶纤维增强复合材料对波纹夹芯结构的面板进行层间混杂铺层设计,通过真空辅助树脂灌注(VARI)成型工艺制备混杂波纹夹芯结构。在60 J、80 J和100 J三种不同冲击能量下,研究了面板混杂铺层方式对波纹夹芯结构低速冲击性能及冲击后压缩强度的影响,并利用超声C扫和工业CT断层成像两种无损检测技术对波纹夹芯结构的冲击损伤机制进行了分析。结果表明:冲击能量较低时,波纹夹芯结构的吸收能量基本不受面板的混杂铺层方式影响,而凹坑深度随表层碳纤维层数增加而减少。冲击能量较高时,面板为分层式混杂(碳/芳纶纤维单层交替铺层)的波纹夹芯结构的抗冲击性能最好,纤维断裂损伤和层间分层主要发生在试样表层,但损伤面积较大;面板为夹层式混杂(以碳纤维为蒙皮、芳纶纤维为芯材)的波纹夹芯结构具有较高的吸收能量,整个上面板的纤维都发生了断裂破坏,但损伤面积较小。碳/芳纶混杂波纹夹芯结构的面板采用分层式和夹层式的混杂铺层设计时,具有较高的冲击后压缩强度。  相似文献   

4.
马健  燕瑛 《复合材料学报》2013,30(1):230-235
为了发展缝合泡沫夹芯复合材料低速冲击损伤的多尺度分析方法, 建立了缝合泡沫简化力学模型, 将缝合泡沫等效为缝线树脂柱增强的正交各向异性芯材, 其材料参数由各组分性能及所占体积分数根据均一化理论计算得出; 同时, 建立冲击试验有限元模型, 通过界面元模拟面板与芯材之间的层间分层。采用GENOA渐进损伤分析模块对缝合结构冲击动态响应过程进行数值模拟, 并将计算结果与试验记录进行对比分析。结果表明: 缝合可以减小面板破坏面积, 抑制面板与泡沫分层的扩展; 但缝纫会对结构造成初始损伤, 较高的缝合密度使芯材刚度增加, 不利于泡沫结构的缓冲吸能。数值模拟结果与试验记录吻合良好, 验证了多尺度分析方法的正确性。  相似文献   

5.
以泡沫铝为夹芯材料,玄武岩纤维(BF)和超高分子量聚乙烯纤维(UHMWPE)复合材料为面板,制备夹层结构复合材料。研究纤维类型、铺层结构和芯材厚度对泡沫铝夹层结构复合材料冲击性能和损伤模式的影响规律,并与铝蜂窝夹层结构复合材料性能进行对比分析。结果表明:BF/泡沫铝夹层结构比UHMWPE/泡沫铝夹层结构具有更大的冲击破坏载荷,但冲击位移和吸收能量较小。BF和UHMWPE两种纤维的分层混杂设计比叠加混杂具有更高的冲击破坏载荷和吸收能量。随着泡沫铝厚度的增加,夹层结构复合材料的冲击破坏载荷降低,破坏吸收能量增大。泡沫铝夹层结构比铝蜂窝夹层结构具有更高的冲击破坏载荷,但冲击破坏吸收能量较小;泡沫铝芯材以冲击部位的碎裂为主要失效形式,铝蜂窝芯材整体压缩破坏明显。  相似文献   

6.
设计了聚甲基丙烯酰亚胺(PMI)泡沫、 交联聚氯乙烯(X-PVC)泡沫、 NOMEX蜂窝、 缝合PMI以及开槽PMI泡沫等形式的玻璃布面板夹层结构复合材料, 研究了芯材种类和厚度、 面板玻璃布层数以及缝合和开槽等因素对夹层结构低速冲击性能的影响。结果表明, PMI泡沫芯较X-PVC泡沫芯和NOMEX蜂窝芯具有更高的冲击破坏载荷和吸收能量。随着泡沫密度及面板厚度的增加, 夹层结构复合材料的冲击破坏载荷和破坏吸收能量增大。合理的缝合和开槽, 能够增加PMI泡沫夹层结构的强度、 刚度及界面性能, 提高冲击承载能力。  相似文献   

7.
整体屈曲是缝纫复合材料夹芯板的一种重要失效模式。考虑到缝纫夹芯复合材料板一般较厚且面板与芯层厚度相差较大, 缝纫工艺对夹芯板刚度影响较大的特点, 基于高阶剪切理论, 编制了缝纫泡沫夹芯复合材料板稳定性分析的有限元程序。利用该程序对多个算例进行了计算, 所得临界屈曲应力与文献及试验结果吻合很好。同时, 讨论了不同边界条件下缝纫泡沫夹芯复合材料板稳定性随缝纫参数(包括针距、 行距和缝纫针半径)以及结构参数(包括面板铺层角、 芯层厚度和缝纫夹芯板边长)的变化规律。   相似文献   

8.
缝纫泡沫夹芯复合材料的刚度预测与试验验证   总被引:4,自引:3,他引:1  
基于材料细观结构,建立了缝纫泡沫夹芯复合材料的刚度预测模型,并进行了刚度性能的相关试验验证。其中,对缝纫复合材料层合面板部分,考虑了缝纫角对单胞尺寸和富脂区大小的影响,以及缝纫前后层合面板厚度的变化对复合材料面板纤维体积含量的影响,采用改进的纤维弯曲模型计算了缝纫复合材料层合面板的刚度;对缝纫增强的泡沫夹芯部分,把缝线树脂柱看作是泡沫基体中的增强相,将其简化为特殊的单向增强复合材料,提出了用串并联组合模型来预测其刚度。试验测试了缝纫泡沫夹芯复合材料板试件的刚度。应用本文模型对缝纫层合面板和缝纫泡沫夹芯复合材料板的刚度进行预测,结果均与试验结果吻合较好。采用理论模型系统研究了缝纫参数和结构参数对缝纫泡沫夹芯复合材料刚度的影响。  相似文献   

9.
采用泡沫金属子弹撞击加载的方式研究了T700碳纤维复合材料面层-泡沫铝芯体的夹芯结构动力响应。利用激光测速装置、高速摄像仪和位移传感器记录了泡沫子弹的撞击速度、子弹撞击夹芯板全过程和夹芯板后面板中心点的位移时程曲线。研究了加载冲量和芯层相对密度对夹芯板冲击响应的影响,得到了碳纤维复合材料-泡沫铝夹芯板的变形与失效模式。同时,采用ABAQUS有限元软件进行数值模拟,研究了复合材料面板铺层方式、面层厚度、芯层厚度和相对密度以及泡沫铝子弹的长度、速度和相对密度等参数对夹芯板冲击响应的影响。  相似文献   

10.
对不同缝合参数的缝合泡沫夹芯结构复合材料真空辅助树脂传递模塑成型(VARTM)工艺进行数值模拟,研究了针距、行距、缝针直径、芯板厚度及纤维面板厚度等缝合参数对缝合泡沫夹芯结构复合材料VARTM工艺树脂流动充填的影响。结果表明,改变缝合行距对树脂的流动充填速度影响不大,缝合行距越大,树脂在下层纤维面板流动的同步性越差,制品出现空隙及干斑的可能性越大;缝合针距越小,树脂完成充填的时间越长;分别增加缝针直径和泡沫芯板的厚度,树脂完成充填时间呈线性增长,缝针直径越大,下层纤维面板树脂浸润效果越好;纤维面板厚度增加,树脂完成充填的时间变长,且相对于其他缝合参数,纤维面板厚度对树脂流动充填时间影响最大;缝合针距、泡沫芯板的厚度及纤维面板的厚度都不影响树脂在下层纤维面板的浸润效果。  相似文献   

11.
碳纤维/环氧树脂基复合材料层合板在航天、汽车等领域应用广泛,使用中难免遇到低速冲击事件(生产使用过程中工具坠落等)产生安全隐患,分层破坏是其受到低速冲击后的主要损伤形式,会严重影响复合材料层合板的强度和使用寿命。为提高其抗冲击性能,通过短纤维增韧的方式探究超高分子量聚乙烯短纤维的铺层数量和铺层位置对复合材料层合板低速冲击性能的影响。研究结果表明:添加6层短纤维的复合材料层合板最大载荷由3.19 kN增加到4.86 kN,吸收能量由18.27 J增加到28.89 J,分别提高了52.3%和58.12%。冲击后剩余强度明显提高,两层短纤维铺层增韧方式的复合材料层合板冲击后剩余强度最大,为164.73 MPa,相比原样提高95%。超高分子量聚乙烯短纤维加入后复合材料层合板的冲击损伤阻抗提高,冲击后的凹痕深度下降,并且抗分层能力提升。其增韧机制是断裂面表面能增加,冲击使部分纤维被拔出,出现纤维桥联现象,拔出的纤维会降低分层前沿的应力集中,增大分层扩展的阻力,使分层破坏在扩展过程中需要消耗更多的能量,有效阻碍了裂纹的传播。  相似文献   

12.
缝合复合材料低速冲击损伤研究   总被引:4,自引:0,他引:4       下载免费PDF全文
通过三维动力学有限元法,采用空间杆单元来描述缝线,结合试验系统地研究了缝合复合材料的低速冲击损伤问题。采用修正的赫兹接触定律计算冲击接触力,NewMark直接积分法求解运动方程,求解冲击过程中的应力应变;在Chang和Hou等的分层扩展准则基础上,提出一修正的分层扩展准则并考虑纤维断裂,建立了分析低速冲击损伤面积的方法;对相同铺层的缝合与未缝合复合材料层板进行了低速冲击试验。分析结果与实验结果具有良好的一致性,证明本文中提出的修正的分层扩展准则是正确的。计算及试验结果均表明,在相同冲击能量作用下,缝合使冲击损伤面积明显减小。   相似文献   

13.
建立一个有效的计算模型, 以分析复合材料层板在静压入过程中发生分层、 纤维断裂的现象。该计算模型基于有限元程序的三维逐渐损伤理论对层板的静压入全过程进行模拟, 对逐层逐个单元的损伤进行判断, 可以模拟任意角度、 铺层厚度的层板在递增载荷下的逐渐损伤破坏过程。对炭纤维增强环氧树脂基复合材料层板在静压入过程中发生的分层和纤维断裂现象进行预测,并与实验结果进行比较; 对炭纤维增强双马来酰亚胺树脂基复合材料层板在静压入过程中的分层损伤和最终破坏接触力的大小进行预测,并与低速冲击下的结果进行比较。数值仿真与实验结果吻合较好, 表明静压入分析方法是复合材料层板在低速冲击下产生损伤的可替换分析方法。   相似文献   

14.
通过真空辅助树脂传递模塑成型工艺(VARTM)技术制备了缝合和未缝合碳纤维/泡沫夹芯复合材料,并进行了低速冲击和冲击后压缩实验,利用深度测量仪检测冲击后的表面凹坑深度.使用Origin软件拟合出了表征损伤阻抗性能的冲击能量-凹坑深度曲线及表征损伤容限性能的凹坑深度-剩余压缩强度曲线.以未缝合复合材料为对比,发现缝合能有...  相似文献   

15.
缝纫泡沫夹芯复合材料细观纤维柱破坏行为   总被引:1,自引:0,他引:1       下载免费PDF全文
缝纫泡沫夹芯复合材料中的纤维柱在拔出过程中的破坏行为复杂导致结构承载性能难以预测。采用真空辅助树脂注射(VARI)工艺制备了缝纫泡沫夹芯复合材料,并使用层间拉伸试验(ITT)研究了缝纫泡沫夹芯复合材料中含有单根缝线纤维柱细观试件的破坏过程。讨论了不同破坏现象对缝线纤维柱拔出摩擦过程的影响,并分析了缝纫泡沫夹芯复合材料的破坏模式。分析了缝线粗细的变化对试件破坏过程中关键的力、位移等参数及能量吸收性能的影响。研究了由于成型工艺所导致的缺胶现象对缝纫泡沫夹芯复合材料性能的影响。结果表明:缝纫泡沫夹芯复合材料的能量吸收性能、关键位移参数及最大载荷都随着缝线变粗而增大。但是缝纫泡沫夹芯复合材料的破坏模式对其也有一定的影响,导致了变化趋势的波动;缺胶缝纫泡沫夹芯复合材料由于缺陷的存在,最大破坏载荷和能量吸收性能均有所下降。  相似文献   

16.
对T300/QY8911复合材料层合板进行了低速冲击试验研究及数值仿真模拟。通过自由落体装置对层板进行冲击,并使用超声C扫描技术检测了层板冲击后的损伤状态,获得了不同能量下层板内部的损伤面积。建立了用于预测复合材料层合板在低速冲击作用下损伤演化的3D有限元模型,模型包含了用于模拟分层损伤的界面元和用于模拟纤维断裂、纤维挤压、基体开裂、基体挤裂等面内损伤形式的3D实体单元。该模型考虑了面内基体损伤对层间强度的影响。本文中的数值仿真结果和试验结果的对比验证了模型的合理性和有效性,文中还分析了影响低速冲击后层板内部分层面积的主要因素。  相似文献   

17.
提出了一种由齿板-玻璃纤维(TP-GF)混合面板和聚氨酯(PU)泡沫芯材组成的新型TP-GF/PU泡沫夹层梁,结构中金属板通过齿钉压入GF与内部芯材连接,该夹层梁采用真空导入模压工艺制作。通过低速冲击试验,研究了不同冲击能量、纤维厚度和泡沫密度下TP-GF/PU泡沫夹层梁的冲击响应和损伤模式,并与普通的夹层梁进行了对比分析;通过双悬臂梁试验研究了混合夹层梁的界面性能,计算了夹层梁的应变能释放率。结果表明:在22 J、33 J、44 J能量冲击下,泡沫芯材密度为150 kg/m3的TP-GF/PU泡沫夹层梁的最大接触力较普通夹层梁分别提高了31.2%、48.6%、33.3%,冲击能量吸收分别增加了17.2%、11.3%、15.5%;随着冲击能量、面板纤维层数及芯材密度的增加,TP-GF/PU泡沫夹层梁最大接触力增大,密度较低的TP-GF/PU泡沫夹层梁损伤形式主要为面板的局部弯曲,而芯材密度较高的TP-GF/PU泡沫夹层梁则以穿透损伤为主;增加泡沫芯材密度和面板纤维厚度能够提高TP-GF/PU泡沫夹层梁的抗冲击性能,随着芯材密度的增大TP-GF/PU泡沫夹层梁的应变能释放率峰值越高,界面性能越好。   相似文献   

18.
利用VARTM制备技术制备缝合/未缝合泡沫夹芯材料,分别在4组不同冲击能量下进行冲击试验及冲击后压缩试验,利用超声c检测技术对冲击后纤维面板内部的不可见损伤进行探测,发现缝合树脂柱的加入可以有效提高复合结构的抗冲击性能,其中冲击最大载荷的提升幅度达到20%~50%,此时,通过超声c检测发现纤维面板内部已经发生了较多的基体开裂,但分层破坏及纤维断裂情况有明显的减少,另外冲击后剩余压缩强度的提高也达到了35%~40%,同时发现相较于15 mm×15 mm的缝合密度,10 mm×10 mm的缝合密度具有更好的抗冲击性能。  相似文献   

19.
鉴于泡沫铝材料优异的吸能特性和三明治型组合构件在强度、刚度上的优势,针对分层结构为钢板-泡沫铝芯层-钢板的100 mm厚抗爆组合板进行了装药量为1.0 kg TNT的接触爆炸试验,考察了组合板在接触爆炸条件下的变形及破坏情况,并对组合板的变形破坏过程进行了理论分析和数值模拟。研究表明,组合板承受接触爆炸荷载时,主要通过局部压缩变形和整体弯曲变形吸收耗散能量,上下面板与芯层间易发生剥离现象。钢板相同时适当增大泡沫铝芯层厚度,泡沫铝芯层相同时增加钢板厚度,均可减小组合板承受接触爆炸冲击荷载时产生的变形破坏,提高其抗爆性能。  相似文献   

20.
目的 为掌握碳纤维复合材料板在低速冲击载荷作用下的损伤规律,延缓失效破坏,对其冲击损伤的应力状态进行研究。方法 基于ABAQUS平台,建立碳纤维复合材料层合板低速冲击有限元模型,采用Hashin失效准则和VUMAT用户子程序,对碳纤维复合材料层合板的冲击过程进行数值模拟,同时考虑层合板层内与层间失效,以此来研究低速冲击条件下复合材料的损伤机理,分析冲击损伤过程中的应力变化趋势,讨论应力的分布状态。重点研究铺层角度及铺层距离冲头远近对应力的影响。结果 不同角度铺层的应力传播轨迹均沿着纤维方向和垂直于纤维方向同时扩展,应力均先增加至极限值而后迅速下降;铺层角度越大,板料的承载能力越弱,0°铺层的极限应力为1 432 MPa,而90°铺层的极限应力降至1 206 MPa;离冲头越远的铺层应力越小,达到峰值的时间更早且率先下降,说明远离冲头的铺层更早发生失效。结论 揭示了碳纤维层合板在低速冲击载荷作用下的应力状态及其对损伤的影响规律,能够为复合材料层合板零件设计提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号