首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The wettabilities of molten metals on ceramics are poor normally. In order to improve the wettability, all existing ceramic brazing methods introduce a compound transition layer formed by the reaction of active metal and ceramic. The transition layer between brazing seam and ceramic however creates negative effect on the properties of brazing joints. Although Al is the scarce metal which can wet some ceramics such as AIN and Al2O without reaction, the difficulty of removing oxide layer on surface prevents it being ceramic brazing filler. This work proposed a kind of coated Al foil filler able to remove its own Al2O3 film and an elevating temperature brazing process to enhance Al/AIN joint strength. Removing Al2O3. film effect of vapor deposited Ni/Al double layer film on Al foil and the effect of brazing temperature on improving joint strength were studied. The results showed that due to buried by Ni/Al double layer film, Al2O3 film on Al foil original surface broken and was swept in Al-1%Ni (atomic fraction) alloy liquid during heating and melting process. As a result, the direct brazing of Al to AIN without interface reaction transition layer was realized. The joint strength was significantly enhanced by elevating brazing temperature. When brazing at 680 degrees C, the joint fractured along the interface between Al seam and AIN and the sheer strength was 79 MPa because of Al liquid not wetting AIN. With the elevating of brazing temperature, the wettability and interface strength of Al/AIN improved. The fracture gradually transferred to brazing seam from interface. The joint strength increased and reached to the maximum value of 146 MPa at 840 degrees C.  相似文献   

2.
陈佳  郭敏  杨敏  刘林  张军 《金属学报》2023,(9):1209-1220
以γ’相强化的Co-Al-W高温合金(Co-9Al-xW,x=8、9、10,原子分数,%)为研究对象,耦合CALPHAD和晶体塑性本构关系,建立了高温加载时微观组织演化的三元弹塑性相场模型,考察了W含量对蠕变过程中γ’相演化行为和蠕变性能的影响。结果表明,随W含量增加,γ’相体积分数增加,γ基体塑性变形降低,筏化形成并提前,导致蠕变性能提高。不变矩分析表明,9W和10W合金中筏组织形成是出现稳态蠕变阶段的主要原因。应力/应变分析表明,高W合金γ基体中较大的错配应力减小了塑性变形。  相似文献   

3.
Solidification structures are the interaction links between the alloy components and their mechanical properties. Scientifically comprehending about the formation mechanisms, dominant factors and control methods in alloy solidification has a significant effect on the structure control and optimization. Dendritic structure is the most frequently observed solidification microstructure of alloys and controlled by heat, solute, melt flow, capillary and many other factors. Modelling and simulating can accurately quantify various phenomena and evolution rules in the process of solidification, thus play an increasingly important role in the design, preparation, processing and performance optimization of alloy materials. Over the past two decades, remarkable progress has been made and various models have been proposed in microstructure simulation during alloy solidification process, such as deterministic method, phase field (PF), Monte Carlo (MC) and cellular automaton (CA). With the advantages of clear physical meaning, easily programming and high calculation efficiency, CA method has been widely applied in the study of solidification structure simulation and exhibits great advantages. Considering the current development level of computer hardware, numerical model and calculation method, microstructure simulation of large components mainly adopts macro-microscopic coupling calculation method, such as CA-FD/FE model. The heat transfer and other multi-physical fields are calculated at the level of coarse mesh, where-as nucleation and dendritic growth are simulated at a much finer grid level. This paper reviews the main models and development of CA method used for nucleation simulation. The key aspects in the simulation of dendritic growth including mean solid-interface interface curvature, growth kinetics and the algorithm for eliminating "pseudo anisotropy" are discussed. Based on this, the development and application status of macro-micro coupling model during casting, directional solidification and other manufacturing fields are summarized. Finally, the existing problems and future tendency for simulation of solidification structures are analyzed.  相似文献   

4.
High-temperature permanent magnets have an important application in the aerospace and other high-tech fields, among which 2:17-type SmCo magnets have become the first choice for high-temperature permanent magnets due to the strong magnetic anisotropy and high Curie temperature. Although there are studies on the effect of Fe on the remanence and coercivity, the role that Fe plays on coercivity mechanism of SmCo magnets is still unclear. In this work, Sm(CobalFexCu0.08-0.10Zr0.03-0.033) z (x= 0.10-0.16, z=6.90 and 7.40) magnets are prepared and the magnetic properties under different temperatures are investigated. The magnets with an intrinsic coercivity of 603.99 kA/m and a maximum energy product of 87.30 kJ/m(3) at 500 degrees C. are obtained. It is revealed that at room temperature the coercivity of the magnets increases with increasing Fe content, however, at 500 degrees C. the coercivity shows an opposite dependency on Fe content. Moreover, the effect of Fe on coercivity is more obvious at low z value. The phase structure and composition analyses were characterized by XRD and TEM. The results show that with the increase of Fe content, the size of the 2: 17R cell phase increases, the volume ratio of cell boundary 1: 5H phase decreases, and furthermore, both Fe content in the 2: 17R phase and Cu content in the 1: 5H phase increase. The variations of Fe and Cu contents in both phases lead to the change of the domain wall energy difference. With the increase of Cu content of 1:5H phase, the domain wall energy of 1: 5H phase (gamma(1:6)) drops faster at room temperature, the coercivity is determined by gamma(2:17)-gamma(1:5), so the coercivity increases with increasing Fe content. While at 500 degrees C, due to gamma(1:6) at its Curie temperature, the coercivity is mainly determined by the domain wall energy of 2: 17R phase (gamma(1:17)), which decreases with increasing Fe content. The increase of Fe content at the low z value results in a smaller growth of cell size, which leads to a more significant change in coercivity.  相似文献   

5.
The process of production and working environment of heat exchangers call for materials with good elevated temperature properties. However, the previous investigations were mainly focused on their room temperature properties. The relationship between microalloying and high temperature properties, especially creep properties of Al-Mn-based alloys are barely discussed. In order to improve the industrial applications of Al-Mn-based alloys, the effect of Mg, Ni and Zr additions and annealing process on the microstructure and high temperature properties of Al-Mn-based alloys were studied in this work. The investigated alloys were treated in two ways, first one is cold-rolling and heat treatment at 873 K for 10 min, and the second one is cold-rolling, heat treatment at 623 K for 1 h and 873 K for 10 min. The results indicate that annealing process has remarkable effect on the grain shape, fine equiaxed crystal grains are obtained in the former, while stable elongated grains are obtained for precipitation precedes recrystallization at 623 K in the latter. With Mg addition, more AlMnSi phase precipitated during annealing. The addition of Zr and Ni increases the type and amount of heat resistant compounds, precipitate Al3Zr and AlMnSiNi, which are beneficial to improving high temperature properties of Al-Mn alloy. Al-Mn-0.3Mg-0.2Ni alloy has the best elevated temperature properties, and the tensile strength of it is 102 MPa (50 MPa higher than Al-Mn alloy) at 523 K. And the steady-creep rate is strongly decreased to 3.93x10(-8) s(-1), two orders of magnitude smaller than Al-Mn alloy at the temperature of 523 K under the stress of 40 MPa. With dispersoids complicated or increased, the movement of dislocations are pinned strongly, which are contribute to improving the creep properties of Al-Mn alloy for the creep is mainly controlled by dislocation climb.  相似文献   

6.
To meet the requirements of the long fatigue life and high reliability of the key components of the aeroengine as well as solve the challenges of"structure control"and"performance control"based on the fact that plastic deformation can effectively eliminate internal stress and close metallurgical defects generated by the thermal effect, a laser integrated additive manufacturing technology with alternately thermal/mechanical effects is developed. In this study, Ti6Al4V alloy was chosen as the research object. The distributions of residual stress and metallurgical defects and the microstructural evolution of the formed components were systematically studied. The effects of surface laser shock peening (LSP) and interlayer LSP without coating (LSPwC) treatments on mechanical properties were investigated using a tensile test. The results showed that after LSP, tensile residual stress was transformed into compressive residual stress. Additionally, laser shock waves could effectively improve the metallurgical defects in selective laser melting (SLM)-formed components. Moreover, high-density dislocation structures and numerous twins in two directions were produced in coarse alpha' martensite by laser shock waves, which jointly promoted the grain refinement of a' martensite. The ultimate tensile strength and elongation of Ti6Al4V fabricated by the laser integrated additive manufacturing technology with alternately thermal/mechanical effects reached 1543 MPa and 15.53%, which are 46.5% and 91.5% higher than those of the SLM-formed components, respectively, yielding a good combination of strength and ductility.  相似文献   

7.
Sheets of aluminum 6061 alloy were welded using bypass-current double-sided arc welding with Al–Si filler wire to investigate the effect of Al–Si intermetallic compounds on the microstructure, microhardness and corrosion behavior of weld joint. Experimental results indicated that the Al_(4.5)FeSi phase in the topside of the weld joint was finer than that in the backside and newly formed phase of Al_(0.5)Fe_3Si_(0.5)was observed in the backside. The formation of reinforcing phases of Al–Fe–Si in the weld improved the microhardness of the weld by about 18%. The corrosion resistance of the weld zone was greater than that of the base metal, while the corrosion current displayed opposite, and the corrosion resistance of the weld region was better than that of the base metal.  相似文献   

8.
Laser welding–brazing of 6061-T6 aluminum alloy to DP590 dual-phase steel with Al-Si12 flux-cored filler wire was performed. The microstructure at the brazing interface was characterized. Fracture behavior was observed and analyzed by in situ scanning electron microscope. The microstructure of the brazing interface showed that inhomogeneous intermetallic compounds formed along the thickness direction, which had a great influence on the crack initiation and propagation. In the top region, the reaction layer at the interface consisted of scattered needle-like Fe(Al,Si)3 and serration-shaped Fe1.8Al7.2Si. In the middle region, the compound at the interface was only serration-shaped Fe1.8Al7.2Si. In the bottom region, the interface was composed of lamellar-shaped Fe1.8Al7.2Si. The cracks were first detected in the bottom region and propagated from bottom to top along the interface. At the bottom region, the crack initiated and propagated along the Fe1.8Al7.2Si/weld seam interface during the in situ tensile test. When the crack propagated into the middle region, a deflection of crack propagation appeared. The crack first propagated along the steel/Fe1.8Al7.2Si interface and then moved along the weld seam until the failure of the joint. The tensile strength of the joint was 146.5 MPa. Some micro-cracks were detected at Fe(Al,Si)3 and the interface between the steel substrate and Fe(Al,Si)3 in the top region while the interface was still connected.  相似文献   

9.
42CrMo steel was widely used in many industry fields for its excellent hardenability and high temperature strength. Many transmission mechanisms and fasteners, such as roller and heat-resistant gear, are made of this steel. However, the ductility of 42CrMo steel is relatively low after quenching and tempering. During high tempering Mo riched carbides at grain boundary and undecomposable martensite at low tempering are the main reasons for poor ductility of 42CrMo steel. Grain refinement can enhance both strength and ductility significantly, but traditional refinement technology will cause intergranular oxidation so that strengthening effect was weak. Although thermomechanical treatment can achieve dynamic recrystallization, its refinement effect is unstable. Elecropulsing treatment, which makes significant change in microstructure and properties of metals, has been applied in many fields such as, modification of solidified microstructure of liquid metal, healing of fatigue crack, nanocrystallization of amorphous materials and so on. Moreover, this process can produce superior mechanical properties in metals. In order to improve the mechanical properties of 42CrMo steel better, high-energy and instantaneous electropulsing treatment was applied. In this contribution, 42CrMo steel was subjected to traditional and electropulsing treatment individually. It was found that EPQ treatment (480 ms electropulsing treatment, water cooled) results in finer grain, promoting the formation of retained austenite and twin martensite; EPT treatment (180 ms electropulsing treatment, air cooled) can stabilize retained austenite in EPQ specimen and induce multiphase structure. Mechanical properties results indicate that strength-ductility balance of EPQ and EPQ+EPT specimen are 32% and 13.9% higher than that of TQ (traditional quenched) and EPQ+TT (traditional tempered) specimen respectively.  相似文献   

10.
With the rapid development of computer technology, the roles of computer numerical simulation technology in materials are more and more prominent. Computer numerical simulation technology, real experimental observation and theoretical model analysis are the same important and are known as three great scientific research methods since the 20th century. In this paper, several important computational numerical simulation methods are briefly compared, firstly, in the spatial characteristic resolution scale and the characteristic time scale, for example, for molecular dynamics (MD), traditional phase field (TPF), and phase field crystal (PFC) method. For simulation of microstructure evolution in nano-scale, the PFC method is of the advantage on the characteristic time scale. Then, the PFC model, and its physical and mathematical basises for establishment, as well as the special feature of the method, are introduced. Next, the development of the PFC models are presented, including the PFC model of binary and multi-element alloys, of gas-liquid-solid three systems, of two-mode and multimode systems, as well as the key technology and the main procedure of the numerical calculation of the dynamic equation solution. After that, combining with the research works of the authors' group in the microstructure evolution of materials, several examples of important aspects of application of the PFC model are presented, including the nanostructure of defects of materials, dendritic growth and heterogenous epitxial growth, premelting under deformation at high temperature and dynamic recovery, extension and bifurcation of cracks on nanoscale, matalllic glass transition, defect structures of graphene, voids formation of electromigration in metal interconnects, microstructure in multiferroic composite matrials, and the formation of the structure of the metal foams. Finally, a summary is given and the development direction and future emphasis application and new fields of the PFC model are pointed out.  相似文献   

11.
Magnesium alloys, with good biocompatibility and mechanical-compatibility, can be developed as next generation promising biomaterials. This paper summerizes the principle and the cutting-edge advances of alloying of magnesium alloys as degradable biomaterials. The effects of alloy elements on the material and biological properties of magnesium alloys are analyzed. The focus is laid on the influence of microstructure (grain size, secondary phase or intermetallic compound, long-period stacking ordered (LPSO) phase and quasi-crystal phase), heat treatment and surface oxide film on degradation and their critical progress on corrosion morphology and mechanism. Several outlooks on bio-magnesium alloys are proposed.  相似文献   

12.
The crises of resource shortage have prompted ocean exploitation to spring up all over the world. Some crucial frictional components of marine equipment have to be directly faced with the conjoint action of wear and corrosion. Transition metal nitrides or carbides hard coatings have been widely used to improve tribological performance in various applications. However, the poor toughness, wear and corrosion resistance of coatings cannot meet the harsher marine environment, which needs to obtain multi-functional hard coatings providing complex properties. The nanocomposite structure coatings containing nanocrystalline phase embedded in an amorphous matrix allow tailoring their properties to desired value by designing chemical composition and nanostructure. In this work, V-Al-C and V-Al-C-N coatings were deposited on silicon and high speed steel (HSS) substrates by magnetron sputtering. The crystal microstructure, chemical composition, surface morphology, cross-sectional structure, mechanical property and friction behavior of the coatings under different contact conditions (air, distilled water and artificial seawater) were studied by XRD, XPS, SEM, nano-indentation and ball-on-disc tribometer. The results showed that the V-Al-C coating displayed columnar structure with coarse grain. When the nitrogen was incorporated, the coating structure evolved into nanocomposite structure composed of nanocrystallite and amorphous carbon. The hardness increased from (14 +/- 0.48) GPa to (24.5 +/- 0.8) GPa, and the toughness was significantly improved (H/E>0.1). In air condition, the friction coefficient decreased from 0.70 to 0.42, owing to the synergy interaction between V2O5 and amorphous carbon during sliding. The friction coefficients of the both coatings in distilled water and artificial seawater were lower than those in air owing to the boundary lubrication forming lubricative film by absorbed water. The friction coefficient in seawater was lower than those in distilled water, resulting from the formation of Mg(OH)(2) and CaCO3 during sliding. However, the wear rates of the both coatings in artificial seawater were larger than that in distilled water, which demonstrated a synergism between corrosion and wear in artificial water. The V-Al-C coating was all worn out under different contact conditions owing to severe abrasive wear, while the V-Al-C-N coating showed better wear resistance, with a wear rate of 3.0x10(-16) m(3)/(N center dot m) in air and 1.4x10(-15) m(3)/(N center dot m) in artificial water, respectively.  相似文献   

13.
Marine engineering steel is the key material for the construction of major marine infrastructure projects. Due to the harsh environment in the deep sea, the mechanical properties such as strength, low temperature toughness and so on of the marine steel are required to be higher. In this work, the weldability of a Fe-Cr-Ni-Mo high-strength steel was studied, and the microstructure and impact toughness of the steel after welding thermal cycling at different peak temperatures were analyzed. The results show that the average impact toughness of characteristic heat affected zone under different temperatures increases first and then decreases with the increase of peak temperature (T-p). The microstructures of coarse grain heat-affected zone (CGHAZ, T-P=1320 degrees C) and fine grain heat-affected zone (FGHAZ, T-p= 1020 degrees C) are quenched martensite. Because of the coarse grain size, the impact toughness of CGHAZ is poor, which is lower than that of FGHAZ. The microstructure of inter-critical heat-affected zone (ICHAZ, T-p =830 degrees C and T-p =760 degrees C) is composed of quenched martensite and tempered martensite. Due to the randomness of the proportion of the interfaces between the mixed microstructures near the V-notch, the impact energy values of ICHAZ fluctuates greatly. The homogeneous fine grain structure in ICHAZ (T-p= 830 degrees C) has a crack arrest effect during the impact deformation, which makes the characteristic zone have the best impact toughness. Although the grain size in ICHAZ (T-P=760 degrees C) is also fine, the existence of the ultra-fine grain zones (the grain size in which is only 1 similar to 2 mu m) benefits the formation of secondary voids under the impact load. The undissolved M2C and MC precipitations in matrix promote the connecting of secondary voids and then form the secondary cracks. As a result, the impact toughness of the characteristic zone is poor, and becomes the weak region of HAZ.  相似文献   

14.
首次采用Al-5.6Si-25.2Ge钎料对Cu/Al异种金属进行了炉中钎焊,分别从钎料的熔化特性、铺展润湿性、Cu侧界面组织以及钎焊接头强度等方面进行了系统研究,并与Zn-22Al钎料钎焊结果进行对比。结果表明,Al-5.6Si-25.2Ge钎料具有较低的熔化温度(约541℃),同时在Cu、Al母材上均具有良好的铺展润湿性。Al-5.6Si-25.2Ge/Cu界面由CuAl_2/CuAl/Cu_3Al_2三层化合物组成,其中CuAl和Cu_3Al_2呈层状,厚度较薄,仅为1~2 mm;CuAl_2呈胞状,平均厚度约为3 mm。Zn-22Al/Cu界面结构为CuAl_2/CuAl/Cu_9Al_4,其中CuAl_2层平均厚度高达15 mm。接头抗剪切强度测试结果表明,Zn-22Al钎料钎焊Cu/Al接头抗剪切强度仅为42.7 MPa,而Al-5.6Si-25.2Ge钎料钎焊Cu/Al接头具有更高的抗剪切强度,为53.4 MPa。  相似文献   

15.
Al–Cu–Ni alloys are of scientific and technological interest due to high strength/high temperature applications, based on the reinforcement originated from the interaction between the Al-rich phase and intermetallic composites. The nature, morphology, size, volume fraction and dispersion of IMCs particles throughout the Al-rich matrix are important factors determining the resulting mechanical and chemical properties. The present work aims to evaluate the effect of the addition of 1wt%Ni into Al–5wt%Cu and Al–15wt%Cu alloys on the solidification rate, macrosegregation, microstructure features and the interrelations of such characteristics on tensile and corrosion properties. A directional solidification technique is used permitting a wide range of microstructural scales to be examined. Experimental growth laws relating the primary and secondary dendritic spacings to growth rate and solidification cooling rate are proposed, and Hall–Petch type equations are derived relating the ultimate tensile strength and elongation to the primary dendritic spacing. Considering a compromise between ultimate tensile strength and corrosion resistance of the examined alloys samples from both alloys castings it is shown that the samples having more refined microstructures are associated with the highest values of such properties.  相似文献   

16.
The effects of tempering temperature on microstructure and mechanical properties of steel 26CrMo were studied based on mechanical property tests and microstructure observation. The results show that a phase matrix gradually occurs recovery and recrystallization with increasing temperature during 540 similar to 690 degrees C temper process, martensite morphology fades away gradually, flake or rocklike carbides separate out along the martensite boundaries, and then change into granulated dispersed distribution, at 690 degrees C tempering carbides happen aggregation and growth on grain boundaries. With tempering temperature increasing, the strength of 26CrMo steel is gradually reducing, plasticity and toughness are gradually increasing. The tensile property and impact energy can meet all different grade drill pipe requirements in API 5DP standard with different tempering conditions. The total impact energy, crack initiation energy and crack propagation energy of 26CrMo steel are gradually increasing with the tempering temperature rising, the crack propagation energy is three times of crack initiation energy which shows great anti-crack propagation capability, but their ratio has no obvious change. The change of impact property is closely related to the strength and plasticity change, impact toughness stand or fall depends on high or low plasticity.  相似文献   

17.
Dissimilar joints of copper to aluminium were produced by high power ultrasonic welding (USW). The interfacial reaction between copper and 6061 aluminium alloy as a function of welding time was studied. The intermetallic compound (IMC) layer is mainly composed of CuAl2 and Cu9Al4. The thickness of the IMC layer increases with the welding time. For a relatively long welding time (0·7 s) in USW, the dendritic solidification microstructure was observed in local regions, owing to the occurrence of the eutectic reaction, α-Al+θ→L, in the welding process. The lap shear load (or strength) of the joints first increases and then decreases with increasing welding time, and the failure of the joints occurred dominantly at the interface. This is mainly attributed to the development of IMC layer at the interface.  相似文献   

18.
The microstructures and corrosion behaviors of AA2198–T851 alloy and weld were analyzed under corrosive conditions.Weld was formed using an innovative fiber laser welding process with AA2319 Al–Cu filler wire. The metallurgic morphology and distribution of the chemical compositions were determined using imaging techniques such as optical micrograph, scanning electron micrograph, high-resolution transmission electron microscopy, energy-dispersive X-ray spectrometry and X-ray diffraction. Corrosion was evaluated using an immersion test and electrochemical impedance spectroscopy in 3.5% NaCl solution at room temperature. Results indicate that the parent alloy suffered from pitting corrosion during the initial 4-h immersion which was caused by the inhomogeneous distribution of its chemical components and the different intermetallics formed during the rolling process. The weld experienced dendritic boundary corrosion under the same conditions due to the addition of the Al–Cu filler and rapid solidification during laser welding, which led to the precipitates Cu enrichment along the grain boundary. When a welding joint was immersed in the solution for 5 days, a big crack was observed across the center of the weld. In comparison, there was good corrosion resistance in the heataffected zone with a compact protective film.  相似文献   

19.
采用超声振动辅助铸造法制备Al-Cr/Al复合材料。利用XRD对复合材料进行物相分析,用SEM观察增强体颗粒大小、形貌以及分布,并研究了复合材料的阻尼性和高温氧化性。结果表明:Al和Cr化学反应生成Al_(0.983)Cr_(0.017)、Al_5Cr、ε-Al_8Cr_5、η-AlCr_2等金属间化合物,这些化合物相互扩散,形成均匀的混合增强相;超声波的声空化、声流等效应使得增强颗粒呈不规则多边形,且粒径较小,分布均匀,与基体结合良好,界面清洁,无气孔;在本征阻尼、界面阻尼及位错阻尼等机制的共同作用下,复合材料的阻尼性得到了明显的提高,并随着Cr含量增加阻尼性增强,其内耗值均大于0.01;同时,高温氧化时复合材料的表面生成了一层致密的抗高温氧化腐蚀Al2O3薄膜。  相似文献   

20.
针对激光熔化沉积冶金组织与缺陷,借鉴激光摆动焊接技术,提出一种激光摆动送粉增材制造TC4钛合金工艺,借助激光原位摆动改变熔池运动轨迹进而影响温度梯度和凝固速率,改善增材制造钛合金的微观组织。利用OM、SEM、EBSD和Vickers硬度计研究了激光摆动送粉增材制造工艺对TC4钛合金微观组织演变及力学性能的影响。结果表明,无摆动激光熔化沉积实验的最佳工艺参数为:激光功率1000 W,扫描速率8 mm/s,送粉速率6.92 g/min;直线型激光摆动的最佳工艺参数为:摆动频率200 Hz,摆动幅度1.5 mm。直线型激光摆动对熔池形貌改善显著,气孔和裂纹等缺陷较少,柱状晶数量和尺寸均有所减小,并且晶粒出现了等轴化的现象。相比无摆动样品,激光摆动后Ti-6Al-4V合金单道区域平均晶粒尺寸从5.20μm减小到4.37μm;硬度从418.00 HV提升到428.75 HV。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号