首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
通过挤出注塑的方法制备了尼龙6(PA6)/蒙脱土插层复合材料,并考察了材料的阻燃性能和力学性能。结果表明,红磷加入PA6/OMMT复合材料后,无熔滴现象并且阻燃级别达到FH-1;当有机蒙脱土用量为质量分数5%~7%时,该复合材料的综合性能较好。  相似文献   

2.
利用蒙脱土(MMT)特殊的片层结构,采用挤出工艺、熔融插层法制备了乙烯醋酸乙烯脂/蒙脱土(EVA/MMT)和乙烯醋酸乙烯脂/有机蒙脱土(EVA/OMMT)纳米复合材料,用锥形量热仪测试并分析了材料的燃烧性能。结果表明,添加OMMT的复合材料具有阻燃作用;复合材料中蒙脱土片层的(横、纵)取向影响材料的阻燃性;横向取向的EVA/OMMT复合材料有更低的热释放速率和质量损失速率,具有较好的阻燃性。通过扫描电镜(SEM)表征不同取向材料燃烧后炭渣的形貌,表明形成的炭层也为横、纵取向,解释了插层复合材料的横、纵取向对材料阻燃性的影响。  相似文献   

3.
HIPS/OMMT复合材料在不同燃烧模式下的阻燃特性   总被引:1,自引:0,他引:1  
采用熔融插层法制备了高抗冲聚苯乙烯/有机蒙脱土(HIPS/OMMT)复合材料,分别用锥形量热仪、氧指数和UL-94 3种方法测试表征材料的阻燃特性。结果表明,锥形量热仪试验表征材料阻燃特性,得到有机蒙脱土对材料阻燃性较好,而在氧指数法和UL-94测试方法下有机蒙脱土对材料阻燃性较差。分析表明,不同测试方法所对应的燃烧模式不同,由于不同燃烧模式的影响,材料的阻燃机理发生不同作用,导致材料阻燃特性表征结果不同。根据插层复合材料的阻燃机理,结合不同燃烧模式下炭渣的热失重分析,讨论了材料的特殊结构与燃烧条件的相互作用,解释了表征结果差别与燃烧条件的关系。  相似文献   

4.
针对目前无机阻燃剂对Nylon6阻燃效果差的研究现状,考察了滑石粉、MCA、有机蒙脱土含量对Nylon6复合材料力学性能和阻燃性能的影响.研究结果表明:随着三种阻燃剂用量的增加,Nylon6拉伸强度都有不同程度的增加,其中添加MCA的拉伸强度增加最明显,从纯Nylon6的78.13 MPa增加到90.65 MPa,增加了16%;随着阻燃剂用量的增加,Nylon6冲击强度和熔融指数都有下降;当有机蒙脱土含量为10%时,Nylon6复合材料的氧指数由20.71升高到27.89,增加了35%,继续增加有机蒙脱土用量,氧指数增加不明显.  相似文献   

5.
有机蒙脱土的结构表征及增韧环氧树脂研究   总被引:1,自引:0,他引:1  
以十六烷基三甲基溴化铵插层制备了有机蒙脱士,通过FTIR、XRD、TGDSC表征了其有机改性效果.将上述有机土以不同含量添加到环氧树脂中,考察了复合材料的力学性能.研究发现,添加5%有机蒙脱土可以使环氧树脂的冲击强度提高155.3%,断裂强度提高45.5%.利用SEM和AFM,对有机蒙脱土增韧环氧树脂复合材料断口进行了微观研究.  相似文献   

6.
采用阳离子交换的方法对蒙脱土进行了有机化改性,并制备了环氧树脂/蒙脱土纳米复合材料.用FT-IR和XRD研究了环氧树脂/蒙脱土纳米复合材料的结构,并测试了纳米复合材料的性能.实验结果表明,改性使蒙脱土层间距变大,纳米复合材料的力学性能与纯环氧树脂相比提高了50%.  相似文献   

7.
根据蒙脱土(MMT)特殊的片层结构,采用熔融插层法制备了HIPS/MMT及HIPS/OMMT复合材料,并用锥形量热仪对材料的燃烧性能进行测试。结果表明,材料中蒙脱土片层的取向影响材料的阻燃性;与竖直取向的HIPS/OMMT复合材料相比,水平取向的HIPS/OMMT复合材料有更低的热释放速率和质量损失速率,具有较高的阻燃性。用扫描电镜表征了不同取向材料燃烧后炭层的形貌,表明形成的炭层也具有横、竖取向。此现象解释了插层复合材料的取向影响材料的阻燃性,为聚合物/层状硅酸盐纳米复合材料阻燃机理的研究提供了依据。  相似文献   

8.
分别通过水解法和非水解法制备了硅烷偶联剂KH-560改性蒙脱土,并合成了酚醛树脂/改性蒙脱土纳米复合材料。采用傅里叶红外光谱(FTIR)、X射线衍射(XRD)对蒙脱土结构进行了表征,通过透射电镜(TEM)和热重分析(TG)研究了酚醛树脂/有机蒙脱土纳米复合材料的结构和热性能。TEM测试发现非水解法改性蒙脱土可与酚醛树脂形成剥离纳米结构,而水解法改性蒙脱土与酚醛树脂形成了剥离和插层的复合结构;TG分析显示2种改性蒙脱土均可提高酚醛树脂的热性能。  相似文献   

9.
PMMA/蒙脱土纳米复合材料的制备及其阻燃性能   总被引:7,自引:0,他引:7  
通过本体聚合法制备了聚甲基丙烯酸甲酯 /蒙脱土纳米复合材料。 XRD测试结果证明已经形成剥离型纳米复合材料 ,热失重及氧指数的测定证明蒙脱土的加入提高了PMMA的热性能及阻燃性能  相似文献   

10.
为减少阻燃聚酯在高温燃烧过程中形成熔滴物而造成的二次火灾,提高阻燃聚酯的抗熔滴性能,选用有机蒙脱土(Organic montmorillonite, OMMT)与阻燃聚酯经熔融共混,制备阻燃聚酯/OMMT复合材料。采用热重分析、临界氧指数和垂直燃烧测试法分别对阻燃聚酯/OMMT的热稳定性、阻燃性能及抗熔滴性进行测试,并采用电镜及能谱仪对试样的燃烧产物进行微观形貌分析及元素组成和含量测定。结果表明:当阻燃聚酯/OMMT复合材料中OMMT质量分数为9%时,该复合材料的起始分解温度为417.07℃,相较阻燃聚酯提高74.83℃,残炭率达到最大为24.41%,热稳定性能提升;随OMMT质量分数的增加,该复合材料的阻燃性能与抗熔滴性增强,当OMMT质量分数为9%时,其LOI为34.4%,垂直燃烧级别为V-0,熔滴数为5.25滴,相比阻燃聚酯减少了52.3%,燃烧产物表面存在致密稳定耐热的炭层结构。该研究结果可为阻燃聚酯的抗熔滴改性提供参考。  相似文献   

11.
以分子筛MCM-41作为协效剂,采用聚磷酸铵(APP)、季戊四醇(PER)和三聚氰胺(MEL)复配阻燃剂,用于聚丙烯(PP)的阻燃.研究添加分子筛MCM-41对PP阻燃性能、力学性能和热性能的影响.结果表明:添加少量分子筛MCM-41即可显著提高PP的阻燃性能;当分子筛的添加量为1%(质量分数)时,阻燃PP的氧指数为32.7,比纯PP提高了92.35%.TG、DMA和SEM观察结果表明:添加少量分子筛MCM-41可以催化APP/PER/MEL间的酯化反应,促进体系成炭,形成更紧密的炭层,从而提高材料的阻燃性能.  相似文献   

12.
采用熔融法制备了剑麻纤维(SF)/聚丙烯(PP)木塑复合材料,研究了复合材料的力学性能、热性能、晶态结构和微观结构。结果表明:SF对PP有良好的增韧效果,当添加20%SF时木塑复合材料的冲击强度可达21.99 kJ/m2,SF在PP结晶过程中起到结晶成核剂作用,提高了PP的结晶速率和结晶度。SF/PP木塑复合材料的热稳定性比纯PP好,复合材料中PP的晶态结构仍以典型的α晶型为主,SEM结果表明SF与PP间有较好的界面粘结性。  相似文献   

13.
氧化锌与膨胀型阻燃剂对聚丙烯的协效阻燃   总被引:1,自引:0,他引:1  
采用磷酸、季戊四醇和三聚氰胺为原料合成了一种新型膨胀型阻燃剂(IFR)。并以IFR为阻燃剂,氧化锌(ZnO)为协效阻燃剂,聚丙烯(PP)为基体树脂制备了膨胀型阻燃PP复合材料,重点研究ZnO与IFR之间的协效阻燃作用。采用氧指数测定仪、UL-94测定仪和锥形量热仪等手段研究阻燃PP复合材料的燃烧性能,用动态傅里叶变换红外光谱(FTIR)研究阻燃PP复合材料在不同温度下凝聚相的结构变化,初步揭示其热降解特性。实验结果表明:ZnO与IFR之间存在明显的协效阻燃效果;复合材料在240~330℃时,结构变化最剧烈;ZnO添加质量分数为1.6%时,炭层完整性最好,热释放速率峰值最低,降低幅度可达80%,UL-94为V-0级;ZnO添加质量分数为3.2%时,氧指数(LOI)最大为25.6%,UL-94为V-0级。  相似文献   

14.
采用带有高活性端基的无卤膨胀型阻燃剂(PSPHD)对海泡石纤维(SEP)进行接枝改性,制备了阻燃化海泡石纤维(PSPHD-SEP);通过熔融共混制备了低密度聚乙烯(LDPE)/海泡石纤维阻燃复合材料;通过拉伸试验和冲击试验对LDPE/SEP,LDPE/PSPHD-SEP复合材料进行了力学性能分析;通过氧指数(LOI)以及垂直燃烧(UL-94)对复合材料的阻燃性能进行了研究;利用扫描电镜(SEM)、漫反射-傅里叶变换红外光谱仪(DR-FTIR)对燃烧后的炭层结构和组成进行了表征和分析。结果表明:两组复合材料的拉伸强度和冲击强度随海泡石量的增加呈现先增大后减小的趋势,且在相同添加量条件下,LDPE/PSPHD-SEP体系的拉伸强度和冲击强度更高。阻燃化改性海泡石纤维(PSPHD-SEP)提高了复合材料的阻燃性能,在与聚磷酸铵(APP)、季戊四醇(PER)的复配体系中,当阻燃化改性海泡石纤维添加量达到5%时,复合材料的氧指数达到26.8,垂直燃烧测试达到V-0级。PSPHD促进了炭层与海泡石纤维的交联,形成更加致密的炭层,大幅提高了复合材料燃烧后的残炭量。  相似文献   

15.
超支化聚膦酸酯改性环氧树脂的研究   总被引:2,自引:0,他引:2  
以苯膦酰二氯(BPOD)为A2单体,三羟甲基丙烷(TMP)为B3单体,采用熔融缩聚法合成了超支化聚膦酸酯.利用动态力学热分析(DMA)、热失重分析(TGA)对环氧树脂固化体系的热性能进行了表征,研究了超支化聚膦酸酯的用量对环氧树脂固化体系的力学性能和阻燃性的影响.结果表明:加入15%的超支化聚膦酸酯,环氧树脂固化体系的拉伸强度和冲击强度分别提高了11.26%和306%,氧指数从22提高到33,说明超支化聚膦酸酯具有良好的阻燃性.  相似文献   

16.
采用傅里叶变换红外光谱(FTIR)研究了双酚A型氰酸酯(BADCy)/双酚A型环氧树脂(E-51)体系的共固化机理,通过热重分析(TGA)和扫描电子显微镜(SEM)分析了复合材料的耐热性能、断面形态,并测试了材料的冲击强度和介电性能。结果表明E-51的加入对BADCy/E-51体系固化反应有促进作用,并能显著改善材料的韧性和冲击性能。当E-51含量为30%(质量分数)时,材料的冲击强度可达14.38 kJ/m2,且复合材料仍能保持良好的热稳定性和介电性能。  相似文献   

17.
采用异丙基三(二辛基焦磷酸酰氧基)钛酸酯(NDZ-201)偶联剂和3-氨丙基三乙氧基硅烷(KH-550)偶联剂对碳酸钙和滑石粉无机纳米填料进行表面改性处理,然后与聚苯乙烯-聚乙烯-聚丁烯-聚苯乙烯(SEBS)和聚丙烯(PP)在双螺杆挤出机上进行共混制备SEBS/PP/填料复合材料,研究偶联剂及其改性填料对SEBS/PP复合材料的力学性能、加工行为、微观结构和热性能的影响. 实验结果表明,NDZ-201与KH-550复配改性的填料在复合材料中分散均匀,形成的相界面模糊,有效提高了复合材料的拉伸强度、断裂伸长率、300%定伸强度和邵氏A硬度. 少量的改性滑石粉会在复合体系中比较均匀地分散,起到增强作用;当其用量较多时,会不均匀地分散在SEBS/PP基体中,不同程度地发生附聚或粉聚的现象,导致材料某些性能下降. 随着改性滑石粉用量的增加,复合材料的热稳定性提高,当滑石粉的用量为15 g时,复合材料的分解温度提高了10 ℃.  相似文献   

18.
以六氯环三磷腈(HCCTP)、苯酚、碳酸钾为原料,四正丁基溴化铵(TBAB)为相转移催化剂,氯苯为溶剂,合成了六苯氧基环三磷腈(HPCTP).采用红外光谱技术对产物进行了表征,并将HPCTP首次应用于聚丙烯/聚烯烃弹性体/滑石粉复合体系,制备了无卤阻燃的聚丙烯改性塑料.结果表明,HPTCP对复合体系具有较好的阻燃作用.复合体系的缺口冲击强度和断裂伸长率随着阻燃剂用量的增加而下降,弯曲强度随着阻燃剂含量的增加而增加,拉伸强度随着阻燃剂含量的增加而先增后降.当HPCTP的质量分数为10%时,阻燃聚丙烯/聚烯烃弹性体/滑石粉复合体系的氧指数达到25.6%,冲击强度为15.1kJ/m2,弯曲强度为34.2MPa,拉伸强度为23.9MPa,断裂伸长率为59.1%,该材料的综合性能最佳.  相似文献   

19.
通过热失重(TGA)测试,研究了不同阻燃剂改性PP的热分解动力学,结果表明阻燃剂APP、MQ树脂的介入能不同程度提高了改性PP的分解活化能,其中APP改性PP活化能可达500 kJ.mol-1,说明阻燃性能的提高可能归因于无卤阻燃剂促成了改性PP分解活化能的提高。  相似文献   

20.
The synthesis of reaction flame retarding untarding unsaturted polyester resin and the flame retarding mechanism are imvestingated.By taking the synthesis flame retarding unsaturated polyester resin as a base material ,glass fibers as reinforced material ,unvder the condition of adding graphite of carbon black respectively ,the composites were manufactured.The flame retarding and antistaic properies are also studied .In the experiment,bromide-bearing flme retrading rsein deomposed under a high temperature,Compound HBr was set out and rearded or stopped the flame,High concentraino of HBr gas wall was fomed between gas and solid phrases ,which decreased flame,The results show that antisiatic property of carbon black is higher than hat of graphite.Adding a threshed value of 1% carbon black into composite ,the antisatic property is at its highest value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号