首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以野生小球藻生物柴油(Chlorella Biodiesel Fuel,CBF)-柴油作为混合燃料,利用186FA柴油机进行台架试验。在CBF的掺混比例分别为0%,3%,5%(B0,B3,B5)时,对柴油机的动力性、燃料燃用的经济性和燃烧及排放特性进行了比较分析。试验分析表明:柴油机燃用混合燃料时,与燃用纯柴油相比,随着CBF掺混比例的增加,其扭矩和功率略有下降,最大降幅均为4%;柴油机的油耗率和能耗率略有上升,且在高、中负荷时更为明显;柴油机的缸内压力、放热率峰值稍有减小,而压力升高率峰值稍有增大,缸内压力峰值最大降幅为3.4%,放热率峰值最大降幅为12.8%,压力升高率峰值最大增幅为13.7%;柴油机滞燃期缩短了0.5~1.0°CA、燃烧持续期延长了1.0~2.0°CA,缸内压力、压力升高率和放热率峰值的出现时刻均提前了1.0~2.0°CA,燃烧速度加快;HC,CO和碳烟的排放均有所降低,而NOX的排放逐渐增多,全负荷时HC和碳烟排放的最大降幅分别为14.1%和31.7%,NOX排放的最大增幅为9.7%,CO排放的降幅为6%~12%。  相似文献   

2.
In the current investigation, the enrichment of hydrogen with the honge biodiesel blend and diesel is used in a compression ignition engine. The biodiesel is derived from the honge oil and mixed with diesel fuel by 20% (v/v). Thereafter, hydrogen at different volume flow rates (10 and 13 lpm) is introduced into the intake manifold. The outcomes by enrichment of hydrogen on the performance, combustion and emission characteristics are investigated by examining the brake thermal efficiency, fuel consumption, HC, CO, CO2, NOₓ emissions, in-cylinder pressure, combustion duration, and rate of heat release. The engine fuelled with honge biodiesel blend is found to enhance the thermal efficiency, combustion characteristics. Compare to diesel, the BTE increased by 2.2% and 6% less fuel consumption for the HB20 + 13H2 blend. Further, reduction in the emission of exhausts gases like CO and HC by 21% and 24%, respectively, are obtained. This is due to carbon-free structure in hydrogen. Moreover, due to high pressure in the cylinder, there is a slight increase in oxides of nitrogen emission compare to diesel. The combustion characteristics such as rate of heat release, combustion duration, and maximum 2rate of pressure rise and in-cylinder pressure are high due to hydrogen.  相似文献   

3.
The present work aims to investigate numerically the effect of LPG blending on the characteristics of diesel engines subjected to variable compression ratio, injection timing, and engine speed. Three blends of LPG are used, which are 10% LPG + 90% diesel, 20% LPG + 80% diesel, and 30% LPG + 70% diesel. The numerical investigation is carried out using the simulation software Diesel-RK. Increasing the percentage of LPG in diesel starts combustion early where the lowest delay period is recorded for a blend of 30% LPG + 70% diesel 6.36 deg. The combustion pressure and heat release are decreased due to the difference in the heating values of blended fuels. Although the peak energy release for diesel is 0.05458 (1/deg.) at 375 deg. BTDC, it was 0.0542, 0.05424, and 0.0537 (1/deg.) at 375 deg. BTDC for 10%, 20%, 30% LPG, respectively. Diesel with 30% LPG has a higher spray penetration followed by 20% LPG then 10% LPG and diesel come last. The diesel with 10% LPG gives a 5.35% reduction in NOx, while diesel with 20% and 30% LPG emit less NOx emission by 9.05% and 16.5%, respectively. Increasing the percentage of LPG in diesel yields to reduce soot concentration because LPG has lower carbon to hydrogen ratio. The lowest ability to emit smoke is detected for fuel with 30% LPG where a 7.4% reduction is obtained. It is worth noting that blending LPG with diesel can fight the trade-off relation between Soot-NOx as a reduction in both of them is obtained. Based on the results obtained, the blending ratio is 30% LPG. The obtained results are validated with the results of other researchers.  相似文献   

4.
The mathematical models to predict pressure, net heat release rate, mean gas temperature, and brake thermal efficiency for dual fuel diesel engine operated on hydrogen, LPG and mixture of LPG and hydrogen as secondary fuels are developed. In these models emphasis have been given on spray mixing characteristics, flame propagation, equilibrium combustion products and in-cylinder processes, which were computed using empirical equations and compared with experimental results. This combustion model predicts results which are in close agreement with the results of experiments conducted on a multi cylinder turbocharged, intercooled gen-set diesel engine. The predictions are also in close agreement with the results on single cylinder diesel engine obtained by other researchers. A reasonable agreement between the predicted and experimental results reveals that the presented model gives quantitatively and qualitatively realistic prediction of in-cylinder processes and engine performances during combustion.  相似文献   

5.
Environmental benefits are one of the main motivations encouraging the use of natural gas as fuel for internal combustion engines. In addition to the better impact on pollution, natural gas is available in many areas. In this context, the present work investigates the effect of hydrogen addition to natural gas in dual fuel mode, on combustion characteristics improvement, in relation with engine performance. Various hydrogen fractions (10, 20 and 30 by v%) are examined. Results showed that natural gas enrichment with hydrogen leads in general to an improved gaseous fuel combustion, which corresponds to an enhanced heat release rate during gaseous fuel premixed phase, resulting in an increase in the in-cylinder peak pressure, especially at high engine load (4.1 bar at 70% load). The highest cumulative and rate of heat release correspond to 10% Hydrogen addition. The combustion duration of gaseous fuel combustion phase is reduced for all hydrogen blends. Moreover, this technique resulted in better combustion stability. For all hydrogen test blends, COVIMEP does not exceed 10%. However, no major effect on combustion noise was noticed and the ignition delay was not affected significantly. Regarding performance, an important improvement in energy conversion was obtained with almost all hydrogen blends as a result of improved gaseous fuel combustion. A maximum thermal efficiency of 32.5%, almost similar to the one under diesel operation, and a minimum fuel consumption of 236 g/kWh, are achieved with 10% hydrogen enrichment at 70% engine load.  相似文献   

6.
This paper investigated the effect of hydrogen (H2) addition on the combustion process of a heavy-duty diesel engine. The addition of a small amount of H2 was shown to have a mild effect on the cylinder pressure and combustion process. When operated at high load, the addition of a relatively large amount of H2 substantially increased the peak cylinder pressure and the peak heat release rate. Compared to the two-stage combustion process of diesel engines, a featured three-stage combustion process of the H2–diesel dual fuel engine was observed. The extremely high peak heat release rate represented a combination of diesel diffusion combustion and the premixed combustion of H2 consumed by multiple turbulent flames, which substantially enhanced the combustion process of H2–diesel dual fuel engine. However, the addition of a relatively large amount of H2 at low load did not change the two-stage heat release process pattern. The premixed combustion was dramatically inhibited while the diffusion combustion was slightly enhanced and elongated. The substantially reduced peak cylinder pressure at low load was due to the deteriorated premixed combustion.  相似文献   

7.
在一台YTR3105直喷式柴油机上进行了小比例甲醇-柴油混合燃料发动机的燃烧及排放特性试验研究。结果表明:在相同的平均有效压力和转速下,随着甲醇含量的增加,燃料着火延迟相应增大,使得燃烧过程向上止点后移动。混合燃料的滞燃期比柴油长,预混燃烧放热率峰值增大,燃烧持续期缩短,缸内最大爆发压力和压力升高率增加。与纯柴油相比,甲醇-柴油混合燃料HC排放有所升高,但NOx和碳烟排放降低。大负荷时,CO排放显著下降。  相似文献   

8.
The distinctive properties of hydrogen have initiated considerable applied research related to the internal combustion engine. Recently, it has been reported that NOx emissions were reduced by using hydrogen in a diesel engine at low temperature and heavy EGR conditions. As the continuing study, cylinder pressure was also investigated to determine the combustion characteristics and their relationship to NOx emissions. The test engine was operated at constant speed and fixed diesel fuel injection rate (1500 rpm, 2.5 kg/h). Diesel fuel was injected in a split pattern into a 2-L diesel engine. The cylinder pressure was measured for different hydrogen flow rates and EGR ratios. The intake manifold temperature was controlled to be the same to avoid the gas intake temperature variations under the widely differing levels (2%-31%) of EGR. The measured cylinder pressure was analyzed for characteristic combustion values, such as mass burn fraction and combustion duration.The rising crank angle of the heat release rate was unaffected by the presence of hydrogen. However, supplying hydrogen extended the main combustion duration. This longer main combustion duration was particularly noticeable at the heavy EGR condition. It correlated well with the reduced NOx emissions.  相似文献   

9.
The increased focus on alternative fuels research in the recent years are mainly driven by escalating crude oil prices, stringent emission norms and the concern on clean environment. The processed form of vegetable oil (biodiesel) has emerged as a potential substitute for diesel fuel on account of its renewable source and lesser emissions. The experimental work reported here has been carried out on a turbocharged, direct injection, multi-cylinder truck diesel engine fitted with mechanical distributor type fuel injection pump using biodiesel-methanol blend and neat karanji oil derived biodiesel under constant speed and varying load conditions without altering injection timings. The results of the experimental investigation indicate that the ignition delay for biodiesel-methanol blend is slightly higher as compared to neat biodiesel and the maximum increase is limited to 1 deg. CA. The maximum rate of pressure rise follow a trend of the ignition delay variations at these operating conditions. However, the peak cylinder pressure and peak energy release rate decreases for biodiesel-methanol blend. In general, a delayed start of combustion and lower combustion duration are observed for biodiesel-methanol blend compared to neat biodiesel fuel. A maximum thermal efficiency increase of 4.2% due to 10% methanol addition in the biodiesel is seen at 80% load and 16.67 s−1 engine speed. The unburnt hydrocarbon and carbon monoxide emissions are slightly higher for the methanol blend compared to neat biodiesel at low load conditions whereas at higher load conditions unburnt hydrocarbon emissions are comparable for the two fuels and carbon monoxide emissions decrease significantly for the methanol blend. A significant reduction in nitric oxide and smoke emissions are observed with the biodiesel-methanol blend investigated.  相似文献   

10.
In order to alleviate the contradictions of increasingly prominent environmental pollution, greenhouse gas emissions and oil resource security issues, the search for renewable and clean alternative energy sources is getting more and more attention. Hydrogen energy is known as a future energy source because of its safety, reliability, wide range of resources and non-polluting products. Hydrogen internal combustion engine combines the technical advantages of traditional internal combustion engines and has comprehensive comparative advantages in terms of manufacturing cost, fuel adaptability and reliability. It is one of the practical ways to realize hydrogen energy utilization. In this paper, the combustion characteristics and NOx emission of a turbocharged hydrogen engine were investigated using the test data. The results showed the combustion duration (the crank angle of 10%–90% fuel burned) at 1500 rpm and 2000 rpm was equal and the combustion duration is much bigger than the other loads when the BMEP is 0.27 MPa. The reason is the effect of the turbocharger on the gas exchange process, which will influence the combustion process. The cylinder pressure and pressure rise rate were also investigated and the peak pressure rise rate was lower than 0.25 MPa/°CA at all working conditions. Moreover, the NOx emission changed from 300 ppm to 1200 ppm with engine speed increasing and the maximum value can reach to 7000 ppm when the equivalence ratio is 0.88 at 2500 rpm, maximum brake torque. The NOx emission shows different changing tendencies with different working conditions. Finally, these conclusions can be used to develop controlling strategies to solve the contradictions among power, brake thermal efficiency and NOx emission for the turbocharged hydrogen internal combustion engines.  相似文献   

11.
二甲基醚(DME)燃烧特性研究   总被引:22,自引:3,他引:19  
作者在定容燃烧弹上用火焰直接成像法研究二甲基醚 (DME)燃烧过程 ,研究了 DME的滞燃期和火焰传播特性以及不同环境温度和压力对燃烧过程的影响。研究结果表明 ,DME的滞燃期比柴油短 ,燃烧室内的温度和压力升高时 ,滞燃期缩短 ;DME的着火位置靠近喷嘴一侧 ,柴油与 DME的体积相同时 ,DME的燃烧持续期比柴油短 ;DME的燃烧火焰亮度比柴油小 ,表明 DME的燃烧温度比柴油低。燃烧后期 ,燃用 DME时 ,喷嘴有明显的泄漏现象。此外 ,作者在单缸直喷式柴油机上进行了燃用 DME的燃烧特性试验研究 ,研究结果表明 ,DME的预混合燃烧放热率比柴油低 ,缸内最大爆发压力和最大压力升高率比柴油低。由于喷油持续期延长 ,DME的燃烧持续期比柴油长 ,在上止点后 80° CA出现一个较大的放热峰值。  相似文献   

12.
生物制气-柴油双燃料发动机放热规律试验研究   总被引:3,自引:0,他引:3  
采用气化炉热解气化各种农林废弃的生物质,产生可燃生物制气,用作为以柴油引燃的双燃料发动机的主要燃料。测量生物制气-柴油双燃料发动机气缸压力,计算分析放热规律。双燃料发动机与燃用纯柴油时的发动机相比,燃烧始点延迟,最大燃烧压力降低,最大放热率和排气温度增加,后燃较严重。负荷增大时,双燃料发动机燃烧始点提前,最大燃烧放热率增高,最高燃烧温度升高,后燃较严重。供油提前角提前时,后燃减小,燃烧过程明显改善。  相似文献   

13.
The aim of this study is to investigate the effects of hydrogen addition on RCCI combustion of an engine running on landfill gas and diesel oil. A single cylinder heavy– duty diesel engine is set in operation at 9.4 bar IMEP. A certain amount of diesel fuel per cycle is fed into the engine and hydrogen is added to landfill gas while keeping fixed fuel energy content. The developed simulation results confirm that hydrogen addition which is the most environmental friendly fuel causes the fuel consumption per any cycle to reduce. Also, the peak pressure is increased while the engine load is reduced up to 4%. Landfill gas which is enriched with hydrogen improves the rate of methane dissociation and reduces the combustion duration at the same time the engine operation would not be exposed to diesel knock. Moreover, hydrogen addition to landfill gas would reduce engine emissions considerably.  相似文献   

14.
The objective of the present work is to analyze the combustion characteristics of crude rice bran oil methyl ester (CRBME) blend (20% of CRBME with 80% no.2 diesel on volume basis) as a fuel in a stationary small duty direct injection (DI) compression ignition (CI) engine. When operating with CRBME blend the cylinder pressure was comparable to that of diesel. It was observed that the delay period and the maximum rate of pressure rise for CRBME blend were lower than those of diesel. The occurrence of maximum heat release rate advanced for CRBME blend with lesser magnitude when compared to diesel. CRBME blend requires more crank angle duration to release 50% & 90% of heat when compared with diesel. The brake specific fuel consumption of CRBME blend was found to be only marginally different from that of the diesel and its hourly fuel cost was higher than that of diesel. CRBME blend has lower smoke intensity and higher NOx emission than those of diesel. Since the measured parameters for CRBME blend differs only by a smaller magnitude, when compared with diesel, this investigation ensures the suitability of CRBME blend as fuel for CI engines with higher fuel cost.  相似文献   

15.
This paper focuses on optimizing the hydrogen TMI (timed manifold injection) system through valve lift law and hydrogen injection parameters (pressure, injection inclination and timing) in order to prevent backfire phenomena and improve the volumetric efficiency and mixture formation quality of a dual fuel diesel engine operating at high load and high hydrogen energy share. This was achieved through a numerical simulation using CFD code ANSYS Fluent, developed for a single cylinder hydrogen-diesel dual fuel engine, at constant engine speed of 1500 rpm, 90% of load and 42.5% hydrogen energy share. The developed tool was validated using experimental data. As a results, the operating conditions of maximum valve lift = 10.60 mm and inlet valve closing = 30 °CA ABDC (MVL10 IVC30) prevent the engine from backfire and pre-ignition, and ensure a high volumetric efficiency. Moreover, a hydrogen start of injection of 60 °CA ATDC (HSOI60) is appropriate to provide a pre-cooling effect and thus, reduce the pre-ignition sources and helps to quench any hot residual combustion products. While, the hydrogen injection pressure of 2.7 bar and an inclination of 60°, stimulate a better quality of hydrogen-air mixture. Afterwards, a comparison between combustion characteristics of the optimized hydrogen-diesel dual fuel mode and the baseline (diesel mode) was conducted. The result was, under dual fuel mode there is an increase in combustion characteristics and NOx emissions as well as a decrease in CO2 emissions. For further improvement of dual fuel mode, retarding diesel start of injection (DSOI) strategy was used.  相似文献   

16.
杨凯  张志谋  程江华  刘胜  张慧龑  石磊 《柴油机》2020,42(4):1-4, 14
基于SC7H涡轮增压柴油机试验台架,开展了变海拔典型工况下的稳态试验,研究了最大扭矩点(1 400 r/min)和标定转速点(2 300 r/min)分别在循环喷油量25 mg和75 mg工况下,缸内压力、燃烧放热率和燃烧特征参数随海拔的变化规律。研究结果显示:随着海拔的升高,各工况下的最高燃烧压力均呈现下降趋势,最高燃烧压力相位、燃烧始点和燃烧重心推迟,燃烧持续期延长,且低负荷工况受海拔的影响更明显;当海拔升高时,最大压力升高率和最大瞬时放热率在低负荷工况下随之上升,而在高负荷工况下呈下降趋势。  相似文献   

17.
The present study highlights the influence of fuel injection pressure (FIP) and fuel injection timing (FIT) of Jatropha biodiesel as pilot fuel on the performance, combustion and emission of a hydrogen dual fuel engine. The hydrogen flow rates used in this study are 5lit/min, 7lit/min, and 9lit/min. The pilot fuel is injected at three FIPs (500, 1000, and 1500 bar) and at three FITs (5°, 11°, and 17?bTDC). The results showed an increase in brake thermal efficiency (Bth)from 25.02% for base diesel operation to 32.15% for hydrogen-biodiesel dual fuel operation with 9lit/min flow rate at a FIP of 1500 bar and a FITof17?bTDC. The cylinder pressure and heat release rate (HRR) are also found to be higher for higher FIPs. Advancement in FIT is found to promote superior HRR for hydrogen dual fuel operations. The unburned hydrocarbon (UHC) and soot emissions are found to reduce by 59.52% and 46.15%, respectively, for hydrogen dual fuel operation with 9lit/min flow rate at a FIP of 1500 bar and a FIT of 11?bTDC. However, it is also observed that the oxides of nitrogen (NOX) emissions are increased by 20.61% with 9lit/min hydrogen flow rate at a FIP of 1500 bar and a FIT of 17?bTDC. Thus, this study has shown the potential of higher FIP and FIT in improving the performance, combustion and emission of a hydrogen dual fuel engine with Jatropha biodiesel as pilot fuel.  相似文献   

18.
Fuel opening injection pressure and injection timing are important injection parameters, and they have a significant influence on engine combustion, performance, and emissions. The focus of this work is to improve the performance and emissions of single-cylinder diesel engines by using injection parameters in engines running with rice bran biodiesel 10% blend (RB10+H₂) and 20% blend (RB20+H₂) with a fixed hydrogen flow rate of 7 lpm. In addition, hydrogen and biodiesel are excellent alternatives to conventional fuels, which can reduce energy consumption and strict emission standards. The investigation is conducted for three different opening injection pressure of 220, 240, 260 bar, and four different injection timings of 20°, 22°, 24°, and 26° bTDC. Results indicate that the sample ‘RB10+H₂’ provides 3.32% higher BTE and reduces the fuel consumption by 13% as diesel fuel. The blend RB10+H₂ attributes a maximum cylinder pressure of 68.7 bar and a peak HRR value of 49 J/ºCA. Further, compared to diesel, RB10+H₂ blend emits lower CO, HC, and smoke opacity by 17%, 22%, and 16%, respectively. However, an almost 12% increase of nitrogen oxides for the RB10+H₂ blend is observed. However, with advanced injection timing and higher opening injection pressure, NOx emissions is slightly increased.  相似文献   

19.
柴油机燃用柴油/甲醇混合燃料时的燃烧特性研究   总被引:18,自引:3,他引:18  
通过添加助溶剂形成一种稳定的柴油/甲醇混合燃料,并开展了柴油机燃用此混合燃料的燃烧特性研究。研究结果表明:随着混合燃料中甲醇含量的增加,预混燃烧阶段的放热率增加,扩散燃烧时间缩短。滞燃期随甲醇含量的增加而增加,此现象在低负荷和高转速下更为明显。甲醇含量对快燃期长短影响较小,总燃烧期随甲醇含量的增加而缩短。低转速下放热率曲线中心随甲醇含量的增加而移近上止点,最大压力升高率和最高放热率随甲醇含量的增加而增加。高转速高负荷下放热率曲线中心随甲醇含量的增加而移近上止点,高转速低负荷下放热率曲线中心随甲醇含量的增加偏离上止点;高转速下最大压力升高率和最高放热率随甲醇含量的增加而增加,而进一步增加甲醇含量反而使最大压力升高率和最高放热率降低。当混合燃料中含氧量小于6%时,缸内最高压力随甲醇含量的增加而增加;进一步增加含氧量时缸内最高压力保持不变或略有降低。缸内最高平均气体温度基本上不随甲醇含量而变化。  相似文献   

20.
The current study addresses engine specification and second thermodynamic law analysis of the CI diesel engine fueled with hydrogen, DME, and diesel at six engine speeds. The 3-D simulation was first carried out and then the results were exploited to calculate availability through a developed in-house code. Availability analysis was performed separately for chemical and thermo-mechanical availability to highlight each fuel'0s capacity in chemical and mechanical efficiency delivery. The results indicate that hydrogen fuel prevails in chemical and thermo-mechanical availability, indicated power, and mean effective in-cylinder pressure under all crank angle and engine speeds. Temperature distribution has more extensive and intensified region developed across the cylinder, although hydrogen demonstrated the lowest ISFC (indicated specific fuel consumption) value. With regard to engine speed, 2000 rpm shows overall better IP (indicated power), IMEP (indicated mean effective pressure), chemical and thermo-mechanical availability, irrespective of fuel type. The mean irreversibility rate for PMC (pre-mixed combustion) and MCC (mixing controlled combustion) combustion phase shows a different trend. Furthermore, hydrogen fueled engine demonstrates the highest temperature distribution of 2736 K and the wall heat flux to the amount of 29160 W. The variance of chemical availability for Hydrogen from 1500 to 4000 rpm decreases by crank-angle evolution from 43.3% to 10.1% corresponding to 10–40°CA after top dead center.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号