首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mg2NiH4, with fast sorption kinetics, is considered to be a promising hydrogen storage material. However, its hydrogen desorption enthalpy is too high for practical applications. In this paper, first-principles calculations based on density functional theory (DFT) were performed to systematically study the effects of Al doping on dehydrogenation properties of Mg2NiH4, and the underlying dehydrogenation mechanism was investigated. The energetic calculations reveal that partial component substitution of Mg by Al results in a stabilization of the alloy Mg2Ni and a destabilization of the hydride Mg2NiH4, which significantly alters the hydrogen desorption enthalpy ΔHdes for the reaction Mg2NiH4 → Mg2Ni + 2H2. A desirable enthalpy value of ∼0.4 eV/H2 for application can be obtained for a doping level of x ≥ 0.35 in Mg2−xAlxNi alloy. The stability calculations by considering possible decompositions indicate that the Al-doped Mg2Ni and Mg2NiH4 exhibit thermodynamically unstable with respect to phase segregation, which explains well the experimental results that these doped materials are multiphase systems. The dehydrogenation reaction of Al-doped Mg2NiH4 is energetically favorable to perform from a metastable hydrogenated state to a multiphase dehydrogenated state composed of Mg2Ni and Mg3AlNi2 as well as NiAl intermetallics. Further analysis of density of states (DOS) suggests the improving of dehydrogenation properties of Al-doped Mg2NiH4 can be attributed to the weakened Mg-Ni and Ni-H interactions and the decreasing bonding electrons number below Fermi level. The mechanistic understanding gained from this study can be applied to the selection and optimization of dopants for designing better hydrogen storage materials.  相似文献   

2.
3.
4.
In this work, ageing of Mg/Mg2Ni mixtures was investigated. It was observed that hydrogen desorption kinetics from hydrided Mg/Mg2Ni was improved considerably after ageing at room temperature for several days. The ageing was interpreted in terms of phase changes. Even after almost complete hydridation, besides two main phases – MgH2 and Mg2NiH4 – a certain amount of Mg2NiH0.3 was always present. Similar as Mg2NiH4 phase, Mg2NiH0.3 islands were located on the surface of MgH2 grains. Mg2NiH0.3 transformed into Mg2NiH4 at the expense of hydrogen from an adjoining MgH2 grain. In such a way, a clean double layer (Mg)–Mg2NiH4 was formed, acting as a gate for easy hydrogen desorption from MgH2. It was found that the Mg2NiH4 phase was slightly enriched on non-twinned modification LT1 during the ageing. As a result, both the creation of (Mg)–Mg2NiH4 desorption bridges and enrichment of Mg2NiH4 on LT1 during the ageing facilitated onset of rapid hydrogen desorption.  相似文献   

5.
In the present work we investigate the hydrogen sorption properties of composites in the MgH2–Ni, MgH2–Ni–LiH and MgH2–Ni–LiBH4 systems and analyze why Ni addition improve hydrogen sorption rates while LiBH4 enhance the hydrogen storage capacity. Although all composites with Ni addition showed significantly improved hydrogen storage kinetics compared with the pure MgH2, the fastest hydrogen sorption kinetics is obtained for Ni-doped MgH2. The formation of Mg2Ni/Mg2NiH4 in Ni-doped MgH2 composite and its microstructure allows to uptake 5.0 wt% of hydrogen in 25 s and to release it in 8 min at 275 °C. In the MgH2–Ni–LiBH4 composite, decomposition of LiBH4 occurs during the first dehydriding leading to the formation of diborane, which has a Ni catalyst poison effect via the formation of a passivating boron layer. A combination of FTIR, XRD and volumetric measurements demonstrate that the formation of MgNi3B2 in the MgH2–Ni–LiBH4 composite happens in the subsequent hydriding cycle from the reaction between Mg2Ni/Mg2NiH4 and B. Activation energy analysis demonstrates that the presence of Ni particles has a catalytic effect in MgH2–Ni and MgH2–Ni–LiH systems, but it is practically nullified by the addition of LiBH4. The beneficial role of LiBH4 on the hydrogen storage capacity of the MgH2–Ni–LiBH4 composite is discussed.  相似文献   

6.
The effect of Ni-substitution on the structure and hydrogen storage properties of Mg2Cu1−xNix (x = 0, 0.2, 0.4, 0.6, 0.8, 1) alloys prepared by a method combining electric resistance melting with isothermal evaporation casting process (IECP) has been studied. The X-ray single-crystal diffraction analysis results showed that the cell volume decreases with increasing Ni concentration, and crystal structure transforms Mg2Cu with face-centered orthorhombic into Ni-containing alloys with hexagonal structure. The Ni-substitution effects on the hydriding reaction indicated that absorption kinetics and hydrogen storage capacity increase in proportion to the concentration of the substitutional Ni. The activated Mg2Cu and Mg2Ni alloys absorbed 2.54 and 3.58 wt% H, respectively, at 573 K under 50 bar H2. After a combined high temperature and pressure activation cycle, the charged samples were composed of MgH2, MgCu2 and Mg2NiH4 while the discharged samples contained ternary alloys of Mg–Cu–Ni system with the helpful effect of rising the desorption plateau pressures compared with binary Mg–Cu and Mg–Ni alloys. With increasing nickel content, the effect of Ni is actually effective in MgH2 and Mg2NiH4 destabilization, leading to a decrease of the desorption temperature of these two phases.  相似文献   

7.
Two composite hydrogen storage materials based on Mg2FeH6 were investigated for the first time. The Mg2FeH6–LiBH4 composite of molar ratio 1:5 showed a hydrogen desorption capacity of 5.6 wt.% at 370 °C, and could be rehydrogenated to 3.6 wt.% with the formation of MgH2, as the material was heated to 445 °C and held at this temperature. The Mg2FeH6–LiNH2 composite of 3:10 molar ratio exhibited a hydrogen desorption capacity of 4.3 wt.% and released hydrogen at 100 °C lower then the Mg2FeH6–LiBH4 composite, but this mixture could not be rehydrogenated. Compared to neat Mg2FeH6, both composites show enhanced hydrogen storage properties in terms of desorption kinetics and capacity at these low temperatures. In particular, Mg2FeH6–LiNH2 exhibits a much lower desorption temperature than neat Mg2FeH6, but only Mg2FeH6–LiBH4 re-absorbs hydrogen.  相似文献   

8.
The Mg2NiH4 complex hydrides were synthesized by high-energy ball milling (HEBM) MgH2 + Ni mixtures. Multi-walled carbon nanotubes (MWCNTs) or TiF3 as catalysts were added and the catalytic-dehydrogenation behaviors were investigated. All prepared samples are characterized by X-ray diffraction (XRD) spectroscopy, scanning electron microscope (SEM) and differential scanning calorimetry (DSC) to acquire information of microstructure, phase compositions, surface and dehydrogenation properties. The results indicate that the method of adding catalysts by HEBM is reasonable and the hydrogen desorption property of Mg2NiH4 is improved by catalysts. It is worth noting that the dehydrogenation temperature (TD) and the activation energy (Ea) of Mg2NiH4 catalyzed by MWCNTs coupling with TiF3 are reduced to 230 °C (243.6 °C of Mg2NiH4) and 53.24 kJ/mol (90.13 kJ/mol of Mg2NiH4), respectively. The addition of proper catalysts is proved to be an effective strategy to decrease TD and Ea of Mg2NiH4 hydrides.  相似文献   

9.
A ternary Mg2NiH4 hydride was synthesized using method that relies on a relatively short mechanical milling time (one hour) of a 2:1 MgH2–Ni powder mixture followed by sintering at a sufficiently high hydrogen pressure (>85 bar) and temperature (>400 °C). The ternary hydride forms in less than 2.5 h (including the milling time) with a yield of ∼90% as a mixture of two polymorphic forms. The mechanisms of formation and decomposition of ternary Mg2NiH4 under different hydrogen pressures were studied in detail using an in situ synchrotron radiation powder X-ray diffraction (SR-PXD) and high pressure DSC. The obtained experimental results are supported by morphological and microstructural investigations performed using SEM and high resolution STEM. Additionally, effects occurring during the desorption reaction were studied using DSC coupled with mass spectrometry.  相似文献   

10.
Magnesium nickel hydrides (Mg2NiH4) are the prospective candidates for hydrogen storage and switchable mirror. The hydrides exist in two typical crystallographic forms, the low temperature (LT) phase in monoclinic structure, and the high temperature (HT) phase in cubic structure. LT has two modifications–untwinned (LT1) and microtwinned (LT2) structures. The electronic structures of the three polymorphs of Mg2NiH4 are investigated using ab initio calculations based on density functional theory. The calculated band gaps of LT1 and HT are in reasonable agreement with experimental observations and other theoretical predications, while the calculated band gap of LT2 is slightly lower than those of LT1 and HT. Electronic-structure analysis shows that strong interactions exist between Ni and H, whereas the interactions between Mg and H are negligible. The strong ionic character between Mg and NiH4 complex can be viewed as the origin of the semiconducting ground-state.  相似文献   

11.
Nonmetal atoms (B, C and Si) are designed to add into Mg2Ni hydrogen storage alloy and its hydride. First-principles density-functional theory calculations have been performed to investigate their crystal structures, electronic and thermodynamic properties. The calculation results present that nonmetal additions in Mg2NiH4 show more effective destabilization than metal additions. Especially for B and C, the decreases of formation enthalpies of Mg2NiH4 reach 0.19 and 0.21 eV/atom. The NiH4 structure near B or C in Mg2NiH4 hydride becomes the tripod-like NiH3 structure. The results show that the thermodynamic stabilities of Mg2Ni and Mg2NiH4 exhibit a nearly linear decrease with the increasing content of nonmetal atoms. The calculated dehydrogenation energies are 59.39, 58.12, 55.84 and 55.30 kJ/mol H2 for Mg2NiH4, Mg2NiB0.5H4, Mg2NiC0.5H4 and Mg2NiSi0.5H4, respectively. It is found that the addition of nonmetal atoms favors the dehydrogenation reaction for Mg2Ni hydrogen storage material. In addition, the effects of nonmetals to the heat capacities and vibrational entropies of Mg2Ni and Mg2NiH4 are also analyzed.  相似文献   

12.
The structures and properties of hydrogen storage alloy Mg2Ni, of aluminum and silver substituted alloys Mg2−xMxNi (M = Al and Ag, x = 0.16667), and of their hydrides Mg2NiH4, Mg2−xMxNiH4 (M = Al and Ag, x = 0.125) have been calculated from first-principles. Results show that the primitive cell sizes of the intermetallic alloys and hydrides were reduced by substitution of Mg with Al or Ag. Also, the interaction of Ni–Ni was weakened by the substitution. A strong covalent interaction between H and Ni atoms forms tetrahedral NiH4 units in Mg2NiH4. The NiH4 unit near the Al/Ag atom became tripod-like NiH3 in Mg2−xMxNiH4 (M = Al, Ag), indicating that the hydrogen storage capacity was decreased by the substitution. The calculated enthalpies of hydrogenation for Mg2Ni, Mg2−xAlxNi and Mg2−xAgxNi are −65.14, −51.56 and −53.63 kJ/mol H2, respectively, implying that the substitution destabilizes the hydrides. Therefore, the substitution is an effective technique for improving the thermodynamic behavior of hydrogenation/dehydrogenation in magnesium-based hydrogen storage materials.  相似文献   

13.
Magnesium-based hydrogen storage materials (MgH2) are promising hydrogen carrier due to the high gravimetric hydrogen density; however, the undesirable thermodynamic stability and slow kinetics restrict its utilization. In this work, we assist the de/hydrogenation of MgH2 via in situ formed additives from the conversion of an MgNi2 alloy upon de/hydrogenation. The MgH2–16.7 wt%MgNi2 composite was synthesized by ball milling of Mg powder and MgNi2 alloy followed by a hydrogen combustion synthesis method, where most of the Mg converted to MgH2, and the others reacted with the MgNi2 generating Mg2NiH4, which produced in situ Mg2Ni during dehydrogenation. Results showed that the Mg2Ni and Mg2NiH4 could induce hydrogen absorption and desorption of the MgH2, that it absorbed 2.5 wt% H2 at 473 K, much higher than that of pure Mg, and the dehydrogenation capacity increased by 2.6 wt% at 573 K. Besides, the initial dehydrogenation temperature of the composite under the promotion of Mg2NiH4 decreased greatly by 100 K, whereas it is 623 K for MgH2. Furthermore, benefiting from the catalyst effect of Mg2NiH4 during dehydrogenation, the apparent activation energy of the composite reduced to 73.2 kJ mol−1 H2 from 129.5 kJ mol−1 H2.  相似文献   

14.
The hydrogenation characteristics and hydrogen storage kinetics of the melt-spun Mg10NiR (R = La, Nd and Sm) alloys have been studied comparatively. It is found that the Mg10NiNd and Mg10NiSm alloys are in amorphous state but the Mg10NiLa alloy is composed of an amorphous phase and minor crystalline La2Mg17 after melt-spinning. The alloys can be hydrogenated into MgH2, Mg2NiH4 and a rare earth metal hydride RHx. The rare earth metal hydride and Mg2NiH4 synergistically provide a catalytic effect on the hydrogen absorption–desorption reactions in the Mg−H2 system. The hydrogen storage kinetics is not influenced by different rare earth metal hydrides but by the particle size of the rare earth metal hydrides.  相似文献   

15.
The present work demonstrates the reversible hydrogen storage properties of the ternary alloy Mg18In1Ni3, which is prepared by ball-milling Mg(In) solid solution with Ni powder. The two-step dehydriding mechanism of hydrogenated Mg18In1Ni3 is revealed, namely the decomposition of MgH2 is involved with different intermetallic compounds or Ni, which leads to the formation of Mg2Ni(In) solid solution or unknown ternary Mg–In–Ni alloy phase. As a result, the alloy Mg18In1Ni3 shows improved thermodynamics in comparison with pure Mg. The Ni addition also results in the kinetic improvement, and the minimum desorption temperature is reduced down to 503 K, which is a great decrease comparing with that for Mg–In binary alloy. The composition and microstructure of Mg–In–Ni ternary alloy could be further optimized for better hydrogen storage properties.  相似文献   

16.
Magnesium hydride is considered as a promising solid-state hydrogen storage material due to its high hydrogen capacity. How to improve hydrogen desorption kinetics of MgH2 is one of key issues for its practical applications. In this study, we synthesize a Mg–Ni–TiS2 composite through a solution-based synthetic strategy. In the as-prepared composite, the co-precipitated Mg and Ni nanoparticles are highly dispersed on TiS2 nanosheets. As a result, the activation energy for hydrogen desorption decreases to 79.4 kJ mol−1. Meanwhile, the capacity retention rate is kept at the level of 98% and only slight kinetic deterioration is caused after fifty hydrogenation-dehydrogenation cycles. Further investigation indicates that the superior hydrogen desorption kinetics is attributed to the synergistically catalytic effect of the in situ formed Mg2NiH4 and TiH2, and the remained TiS2. The excellent cycle stability is related not only to the inhibition effect of the secondary phases on powder agglomeration and crystallite growth of Mg and MgH2 but also to the prevention effect of MgS and TiS2 on redistribution of catalytic Mg2NiH4 and TiH2 nanoparticles during cycling. This work introduces a feasible approach to develop Mg-based hydrogen storage materials.  相似文献   

17.
The structure stability of nanometric-Ni (n-Ni) produced by Vale Inco Ltd. Canada as a catalytic additive for MgH2 has been investigated. Each n-Ni filament is composed of nearly spherical interconnected particles having a mean diameter of 42 ± 16 nm. After ball milling of the MgH2 + 5 wt.%n-Ni mixture for 15 min the n-Ni particles are found to be uniformly embedded within the particles of MgH2 and at their surfaces. Neither during ball milling of the MgH2 + 5 wt.%n-Ni mixture nor its first decomposition at temperatures of 300, 325, 350 and 375 °C the elemental n-Ni reacts with the elemental Mg to form the Mg2Ni intermetallic phase (and eventually the Mg2NiH4 hydride). The n-Ni additive acts as a strong catalyst accelerating the kinetics of desorption. From the Arrhenius and Johnson–Mehl–Avrami–Kolmogorov theory the activation energy for the first desorption is determined to be ∼94 kJ/mol. After cycling at 300 °C the activation energy for desorption is determined to be ∼99 kJ/mol. This is much lower than ∼160 kJ/mol observed for the undoped and ball milled MgH2. During cycling at 275 and 300 °C the n-Ni additive is converted into Mg2Ni (Mg2NiH4). The newly formed Mg2NiH4 has a nanosized grain on the order of 20 nm. Its catalytic potency seems to be similar to its n-Ni precursor. The formation of Mg2Ni (Mg2NiH4) may be one of the factors responsible for the systematic decrease of hydrogen capacity observed upon cycling at 275 and 300 °C.  相似文献   

18.
The Mg-based hydrogen storage alloy with multiple platforms is successfully prepared by ball milling Co powder and Mg-RE-Ni precursor alloy, and its hydrogen storage behavior was investigated in detail by XRD, EDS, TEM, PCI, and DSC methods. The ball-milled alloy consists of the main phase Mg, the catalytic phases Mg2Ni, Mg2Co as well as a small amount of Mg12Ce, and convert into the MgH2–CeH2.73-Mg2NiH4–Mg2CoH5 composite after hydrogenation. The composite has three PCI platforms corresponding to the reversible de/hydrogenation reaction of Mg/MgH2, Mg2Ni/Mg2NiH4 and Mg6Co2H11/Mg2CoH5. Among them, the transformation between Mg2Ni and Mg2NiH4 triggers the “spill-over” effect which promote the decomposition of MgH2 phases and enhances the hydrogen desorption kinetics. Meanwhile, the conversion of the Mg6Co2H11 to Mg2CoH5 phase induces the “chain reaction” effect, which leads to preferential nucleation of Mg phase and improves the hydrogen absorption kinetics. Therefore, the Mg-RE-Ni-Co alloy has a double improvement on hydrogen absorption and desorption kinetics. Concretely, the alloy has an optimal hydrogen absorption temperature of 200 °C, at which it can absorb 5.5 wt. % H2 within 40 s. Under the conditions, the capacity of absorption almost reaches the maximum reversible value (about 5.6 wt. %). Besides, the alloy has a dehydrogenation activation energy of 67.9 kJ/mol and can desorb 5.0 wt. % H2 within 60 min at the temperature of 260 °C.  相似文献   

19.
Mg2CoH5 was synthesized by reactive mechanical milling (RMM) under hydrogen atmosphere (0.5 MPa) from 2MgH2–Co and 3MgH2–Co mixtures, with a yield >80%. The microstructure, structure and thermal behavior of the phases formed during the processing were investigated by transmission electron microscopy, X-ray diffraction and differential scanning calorimetry. Kinetic properties of the reaction with hydrogen of the 2MgH2–Co and 3MgH2–Co mixtures after RMM were evaluated using modified Sieverts-type equipment. The 3MgH2–Co mixture showed better properties for storage applications, with its highest rate of hydrogen absorption and desorption at 300 °C, its storage capacity of about 3.7 wt% in less than 100 s, and good stability after cycling. Although the starting material presents Mg2CoH5 as majority phase, the cycling leads to disproportion between Mg and Co. We obtained a mixture of Mg2CoH5, Mg6Co2H11 and MgH2 hydrides, as well as other phases such as Co and/or Mg, depending on experimental conditions.  相似文献   

20.
MgH2 is considered as a promising hydrogen storage material for on-board applications. In order to improve hydrogen storage properties of MgH2, the amorphous TiMgVNi3-doped MgH2 is prepared by ball milling under hydrogen atmosphere. It is found that the catalytic (Ti,V)H2 and Mg2NiH4 nanoparticles are in situ formed after activation. As a result, the amorphous TiMgVNi3-doped MgH2 exhibits enhanced dehydrogenation kinetics (the activation energy for hydrogen desorption is 94.4 kJ mol?1 H2) and superior cycle durability (the capacity retention rate is up to 92% after 50 cycles). These results demonstrate that the in situ formation of highly dispersed catalytic nanoparticles from an amorphous phase is an effective pathway to enhance hydrogen storage properties of MgH2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号