首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study examined an integrated solution of the building energy supply system consisting of flat plate solar thermal collectors in combination with a ground-source heat pump and an exhaust air heat pump for the heating and cooling, and production of domestic hot water. The supply energy system was proposed to a 202 m2 single-family demo dwelling (SFD), which is defined by the Norwegian Zero Emission Building standard. The main design parameters were analyzed in order to find the most essential parameters, which could significantly influenced the total energy use. This study found that 85% of the total heating demand of the SFD was covered by renewable energy. The results showed that the solar energy generated by the system could cover 85–92% and 12–70% of the domestic hot water demand in summer and winter respectively. In addition, the solar energy may cover 2.5–100% of the space heating demand. The results showed that the supply air volume, supply air and zone set point temperatures, auxiliary electrical volume, volume of the DHW tank, orientation and tilt angle and the collector area could influenced mostly the total energy use.  相似文献   

2.
A simulation program, based on Visual Pascal, for sizing and techno-economic analysis of the performance of solar-hydrogen combined heat and power systems for remote applications is described. The accuracy of the submodels is checked by comparing the real performances of the system’s components obtained from experimental measurements with model outputs. The use of the heat generated by the PEM fuel cell, and any unused excess hydrogen, is investigated for hot water production or space heating while the solar-hydrogen system is supplying electricity. A 5 kWh daily demand profile and the solar radiation profile of Melbourne have been used in a case study to investigate the typical techno-economic characteristics of the system to supply a remote household. The simulation shows that by harnessing both thermal load and excess hydrogen it is possible to increase the average yearly energy efficiency of the fuel cell in the solar-hydrogen system from just below 40% up to about 80% in both heat and power generation (based on the high heating value of hydrogen). The fuel cell in the system is conventionally sized to meet the peak of the demand profile. However, an economic optimisation analysis illustrates that installing a larger fuel cell could lead to up to a 15% reduction in the unit cost of the electricity to an average of just below 90 c/kWh over the assessment period of 30 years. Further, for an economically optimal size of the fuel cell, nearly a half the yearly energy demand for hot water of the remote household could be supplied by heat recovery from the fuel cell and utilising unused hydrogen in the exit stream. Such a system could then complement a conventional solar water heating system by providing the boosting energy (usually in the order of 40% of the total) normally obtained from gas or electricity.  相似文献   

3.
太阳能吸收式空调及供热系统的设计和性能   总被引:42,自引:6,他引:42  
一套太阳能吸收式空调及供热综合系统已在山东省乳山市建成。该系统由热管式真空管集热器、溴化锂吸收式制冷机、储水箱、循环、冷却塔、空调箱、辅助燃油锅炉和自动控制系统等内部分组成,具有夏季制冷、冬季供热和全年提供生活用热水等功能。太阳能集热器总采光面积540m∧2,制冷、供热功率100kW,空调、采暖建筑面积1000m∧2供生活用热水量32m∧3/d。文中着重介绍了系统的设计特点和测试性能。  相似文献   

4.
A novel proposal for the modeling and operation of a micro-CHP (combined-heat-and-power) residential system based on HT-PEMFC (High Temperature-Proton Exchange Membrane Fuel Cell) technology is described and analyzed to investigate its commercialization prospects. An HT-PEMFC operates at elevated temperatures, as compared to Nafion-based PEMFCs and therefore can be a significant candidate for cogeneration residential systems. The proposed system can provide electric power, hot water, and space heating for a typical Danish single-family household. A complete fuel processing subsystem, with all necessary BOP (balance-of-plant) components, is modeled and coupled to the fuel cell stack subsystem. The micro-CHP system is simulated in LabVIEW™ environment to provide the ability of Data Acquisition of actual components and thereby more realistic design in the future. A part-load study has been conducted to indicate performance characteristics at off-design conditions. The system is sized to provide realistic dimensioning of the actual system.  相似文献   

5.
In this study, the compression heat pump system using wastewater, as a heat source, from hotel with sauna was designed and analyzed. This study was performed to investigate the feasibility of the wastewater use for heat pump as a heat source and to obtain engineering data for system design. This heat pump system uses off-peak electricity that is a cheap energy compared to fossil fuel in Korea. For this, the charging process of heat into the hot water storage tank is achieved only at night time (22:00–08:00). TRNSYS was used for the system simulation with some new components like the heat pump, which we create ourselves.As a result, it was forecasted that the yearly mean COP of heat pump is about 4.8 and heat pump can supply 100% of hot water load except weekend of winter season. The important thing that should be considered for the system design is to decrease the temperature difference between condenser and evaporator working fluids during the heat charging process by the heat pump. This heat pump system using wastewater from sauna, public bath, building, etc. can therefore be effectively applied not only for water heating but also space heating and cooling in regions like as Korea.  相似文献   

6.
Smart solar tanks for small solar domestic hot water systems   总被引:1,自引:0,他引:1  
Investigation of small SDHW systems based on smart solar tanks are presented. The domestic water in a smart solar tank can be heated both by solar collectors and by means of an auxiliary energy supply system. The auxiliary energy supply system––in this study electric heating elements––heats up the hot-water tank from the top and the water volume heated by the auxiliary energy supply system is fitted to the hot-water consumption and consumption pattern. In periods with a large hot-water demand, the volume is large; in periods with a small hot-water demand, the volume is small.Two small SDHW systems, based on differently designed smart solar tanks and a traditional SDHW system were investigated by means of laboratory experiments and theoretical calculations. The investigations showed that the yearly thermal performance of SDHW systems with smart solar tanks is 5–35% higher than the thermal performance of traditional SDHW systems. Estimates indicate that the performance/cost ratio can be improved by up to 25% by using a smart solar tank instead of a traditional tank when the backup energy system is electric heating elements. Further, smart solar tanks are suitable for unknown, variable, large or small hot-water consumption and the risk of oversized solar heating systems and oversized tank volumes is reduced by using smart solar tanks. Based on the investigations it is recommended to start development of smart solar tank units with an oil-fired boiler or a natural gas burner as auxiliary energy supply system.  相似文献   

7.
工业锅炉是采暖供热系统的核心设备,它的主要任务是安全可靠、经济有效地把燃料的化学能转化为热能,进而将热能传递给水,生产出满足需要的蒸汽或热水。  相似文献   

8.
Emission and electricity consumption are important aspects of a pellet heating system. Low noxious emissions, particularly carbon monoxide, are a measure of a well‐performing system. High carbon monoxide emissions are often caused by unnecessary cycling of the burner, poor adjustment of the combustion air and insufficient maintenance. The carbon monoxide output, the thermal performance and the electricity consumption for modulating and non‐modulating operation mode have been investigated by simulations of four stoves/boilers as part of combined solar and pellet heating systems. The systems have been modelled with the simulation programme TRNSYS and simulated with the boundary conditions for space heating demand, hot water load and climate data as used in earlier research projects. The results from the simulations show that operating the pellet units with modulating combustion power reduces the number of starts and stops but does not necessarily reduce the carbon monoxide output. Whether the carbon monoxide output can be reduced or not depends very strongly on the reduction of starts and stops and how much the carbon monoxide emissions increase with decreased combustion power, which are in turn dependent on the particular settings of each pellet burner and how the heat is transferred to the building. However, for most systems the modulating operation mode has a positive impact on carbon monoxide emissions. Considering the total auxiliary energy demand, including the electricity demand of the pellet units, the modulating combustion control is advantageous for systems 1 and 4 for the used boundary conditions. The study also shows that an appropriate sizing of the stove or boiler has a huge potential for energy saving and carbon monoxide emission reduction. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
The potential for both heat and power extraction from a PEM fuel cell is investigated experimentally and using computer simulation to improve the economics of a solar-hydrogen system supplying energy to a remote household. The overall average energy efficiency of the fuel cell was measured to be about 70% by utilizing the heat generated for domestic water heating, compared to only 35-50% for electricity generation alone. The corresponding round-trip energy efficiency of the hydrogen storage sub-system (electrolyzer, storage tank, and fuel cell) was raised from about 34% in a power-only application to about 50% in combined heat and power (CHP) mode. The economic benefit of using the fuel cell heat for boosting an LPG hot water system over a 30-year assessment period is estimated to be equivalent to about 15% of the total capital cost of the solar-hydrogen system. The stoichiometry of the input air, and the fuel cell operating temperature, were found to influence significantly the overall performance of the solar-hydrogen CHP system.  相似文献   

10.
In this paper, performance of three types of district heating/cooling and hot water supply system with natural and unused energy utilization were examined by using system simulation. An area zoned for both commercial and residential buildings was chosen for this study. The first system is the conventional system in which an electric driven turbo chiller and a gas-fired boiler are installed as the heat source. This is considered as the reference system. Two alternative systems utilize waste heat from space cooling and heating. One is designed based on short-term heat recovery and the other employs the concept of an annual cycle energy system (i.e. seasonal heat recovery). All of the three systems use solar thermal energy for hot water supply to the residential zone. The index for evaluation is the coefficient of performance of the overall system, based on primary energy. As a result, it was found that the seasonal storage system could decrease the energy consumption by about 26% and the short-term heat recovery system could decrease it by about 16% compared with the reference system. In designing the heat recovery system, a balance of cooling/heating demand is an important factor. Therefore a sensitivity analysis of performance of the overall system and the seasonal thermal storage for several load patterns was performed. From these results, it was found that if the amount of heating/cooling demand were well balanced, an improvement of energy performance could be achieved and the utilization factor of the seasonal tank would become higher. Furthermore, the volume of the seasonal storage tank could be reduced.  相似文献   

11.
This paper focuses on the detailed modelling of micro combined heat and power (mCHP) modules and their interaction with other renewable micro generators in domestic applications based on an integrated modular modelling approach. The simulation model has been developed using Matlab/Simulink and incorporates a Stirling engine mCHP module embedded in a lumped-parameter domestic energy model, together with contributions from micro wind and photovoltaic modules. The Stirling cycle component model is based on experimental identification of a domestic-scale system which includes start up and shut down characteristics. The integrated model is used to explore the interactions between the various energy supply technologies and results are presented showing the most favourable operating conditions that can be used to inform the design of advanced energy control strategies in building. The integrated model offers an improvement on previous models of this kind in that a fully-dynamic approach is adopted for the equipment and plant enabling fast changing load events such as switching on/off domestic loads and hot water, to be accurately captured at a minimum interval of 1 min. The model is applied to two typical 3- and 4-bedroom UK house types equipped with a mCHP module and two other renewable energy technologies for a whole year. Results of the two cases show that the electrical contribution of a Stirling engine type mCHP heavily depends on the thermal demand of the building and that up to 19% of the locally-generated electricity is exported whilst meeting a similar percentage of the overall annual electricity demand. Results also show that the increased number of switching of mCHP module has an impact on seasonal module efficiency and overall fuel utilisation. The results demonstrate the need for the analysis of equipment design and optimal sizing of thermal and electrical energy storage.  相似文献   

12.
  目的  以各类建筑全年典型日冷、热、电负荷需求作为计算基础,得出分布式能源系统优化配置和运行策略。  方法  能源站配置了内燃机、烟气-热水型溴化锂机组、离心式电制冷(热泵)机组、地源热泵、天然气热水锅炉及水蓄冷(热)罐等多种节能节资装置,实现了能源的梯级利用,更好地匹配用户端负荷需求。  结果  研究结果表明,在技术、经济上具有一定的可行性。  结论  能源站合理配置机组可节省投资,环保节能。利用峰谷电价差,降低运行费用,提高系统效益。  相似文献   

13.
An indirect forced circulation solar water heating systems using a flat-plate collector is modeled for domestic hot water requirements of a single-family residential unit in Montreal, Canada. All necessary design parameters are studied and the optimum values are determined using TRNSYS simulation program. The solar fraction of the entire system is used as the optimization parameter. Design parameters of both the system and the collector were optimized that include collector area, fluid type, collector mass flow rate, storage tank volume and height, heat exchanger effectiveness, size and length of connecting pipes, absorber plate material and thickness, number and size of the riser tubes, tube spacing, and the collector’s aspect ratio. The results show that by utilizing solar energy, the designed system could provide 83-97% and 30-62% of the hot water demands in summer and winter, respectively. It is also determined that even a locally made non-selective-coated collector can supply about 54% of the annual water heating energy requirement by solar energy.  相似文献   

14.
In this study, zero energy building (ZEB) with four occupants in the capital and most populated city of Iran as one of the biggest greenhouse gas producers is simulated and designed to reduce Iran's greenhouse emissions. Due to the benefits of hydrogen energy and its usages, it is used as the primary energy storage of this building. Also, the thermal comfort of occupants is evaluated using the Fanger model, and domestic hot water consumption is supplied. Using hydrogen energy as energy storage of an off-grid zero energy building in Iran by considering occupant thermal comfort using the fanger model has been presented for the first time in this study. The contribution of electrolyzer and fuel cell in supplying domestic hot water is shown. For this simulation, Trnsys software is used. Using Trnsys software, the transient performance of mentioned ZEB is evaluated in a year. PV panels are used for supplying electricity consumption of the building. Excess produced electricity is converted to hydrogen and stored in the hydrogen tank when a lack of sunrays exists and electricity is required. An evacuated tube solar collector is used to produce hot water. The produced hot water will be stored in the hot water tank. For supplying the cooling load, hot water fired water-cooled absorption chiller is used. Also, a fan coil with hot water circulation and humidifier are used for heating and humidifying the building. Domestic hot water consumption of the occupants is supplied using stored hot water and rejected heat of fuel cell and the electrolyzer. The thermal comfort of occupants is evaluated using the Fanger model with MATLAB software. Results show that using 64 m2 PV panel power consumption of the building is supplied without a power outage, and final hydrogen pressure tank will be higher than its initial and building will be zero energy. Required hot water of the building is provided with 75 m2 evacuated tube solar collector. The HVAC system of the building provided thermal comfort during a year. The monthly average of occupant predicted mean vote (PMV) is between ?0.4 and 0.4. Their predicted percentage of dissatisfaction (PPD) is lower than 13%. Also, supplied domestic hot water (DHW) always has a temperature of 50 °C, which is a setpoint temperature of DHW. Finally, it can be concluded that using the building's rooftop area can be transformed to ZEB and reduce a significant amount of greenhouse emissions of Iran. Also, it can be concluded that fuel cell rejected heat, unlike electrolyzer, can significantly contribute to supplying domestic hot water requirements. Rejected heat of electrolyzer for heating domestic water can be ignored.  相似文献   

15.
Solar water heating systems are widely used in Brazil for domestic purposes in single-family households. The exploitation of the potential energy of the water from the upper tank and the thermosyphon phenomena for hot water circulation constitutes the absolute majority of the residential solar water heating systems in the country. But, these water heating systems are usually sized according to tables provided by the manufacturers, which show the number of plates required based on the size of the family and the number of hot water outlets. This sizing is based much more on intuition rather than on scientific data. For that reason, this work has developed an optimization model for water heating systems design parameters, using a numerical simulation routine, in a long-term transient regime. The optimized design gives the slope and area of the flat plate collector, which results in the minimum cost over the equipment life cycle. The computing procedure was executed considering specific characteristics of the project. A thermosyphon solar water heating system with flat-plate collector for Sao Paulo's climate was simulated. The practice of Brazilian designers and manufacturers is to recommend the maximization of the energetic gain for the winter. This paper has analyzed in economic terms if it is more attractive to increase the gain of solar energy in the winter period, with the consequence of reduction of the solar energy gain along the year, or to adopt the adequate slope, which improves the yearly solar energy gain.  相似文献   

16.
《Applied Thermal Engineering》2007,27(2-3):646-657
Seventy to ninety percent of the electric energy used by dishwashers and washing machines heats the water, the crockery, the laundry and the machine and could just as well be replaced by heating energy from solar collectors, district heating or a boiler. A dishwasher and a washing machine equipped with a heat exchanger and heated by a hot water circulation circuit instead of electricity (heat-fed machines) have been simulated together with solar heating systems for single-family houses in two different climates (Stockholm, Sweden and Miami, USA). The simulations show that a major part of the increased heat load due to heat-fed machines can be covered by solar heat both in hot and cold climates if the collector area is compensated for the larger heat load to give the same marginal contribution. Using ordinary machines connected to the hot water pipe (hot water-fed machines) and using only cold water for the rinses in the washing machine gives almost the same solar contribution; however considerably lower electrical energy savings are achieved. The simulations also indicate that improvements in the system design of a combisystem (increased stratification in the store) are more advantageous if heat-fed machines are connected to the store. Thus, using heat-fed machines also encourages the use of more advanced solar combisystems.  相似文献   

17.
This article reports investigations of a residential building in Serbian conditions energized by electricity from photovoltaics (PVs), and the electricity grid. The building uses electricity to run its space heating system, lighting and appliances, and to heat domestic hot water (DHW). The space heating system comprises floor heaters, a water-to-water heat pump, and a ground heat exchanger. The PV system generates electricity that either may be consumed by the building or may be fed-in the electricity grid. The electricity grid is used as electricity storage. Three residential buildings are investigated. The first residential building has PVs that yearly produce smaller amount of electricity than the heating system requires. This is a negative-net energy building (NNEB). The second building has the PVs that produce the exact amount of electricity that the entire building annually needs. This is a zero-net energy building (ZNEB). The third building has PVs that entirely cover the south-facing roof of the building. This is a positive-net energy building (PNEB). These buildings are presented by a mathematical model, partially in an EnergyPlus environment. For all buildings, simulations by using EnergyPlus software would give the generated, consumed, and purchased energy with time step, and monthly and yearly values. For sure, these buildings would decrease demand for electricity during summer, however they will increase this demand during winter when there is no sun and start of space heating is required. Depending on the size of PV array this building will be either NNEB, or ZNEB, or PNEB. However it is crucial for such a building to be connected to the electricity grid. The smaller payback for investment in the PV array is obtained for buildings with larger size of PV array. The feed-in tariff for the generation of electricity in Serbia should be under the constant watch to be corrected accordingly for larger penetration of this technology in the Serbian market.  相似文献   

18.
In this paper, a wind turbine energy system is integrated with a hydrogen fuel cell and proton exchange membrane electrolyzer to provide electricity and heat to a community of households. Different cases for varying wind speeds are taken into consideration. Wind turbines meet the electricity demand when there is sufficient wind speed available. During high wind speeds, the excess electricity generated is supplied to the electrolyzer to produce hydrogen which is stored in a storage tank. It is later utilized in the fuel cell to provide electricity during periods of low wind speeds to overcome the shortage of electricity supply. The fuel cell operates during high demand conditions and provides electricity and heat for the residential application. The overall efficiency of the system is calculated at different wind speeds. The overall energy and exergy efficiencies at a wind speed 5 m/s are then found to be 20.2% and 21.2% respectively.  相似文献   

19.
Solar energy systems are an effective way to meet the needs of zone heating, cooling, electricity, and domestic hot water. However, to reach sustainability, and energy storage unit should be considered for installation. In this study, two combined cooling, heating and power (CCHP) systems are simulated and studied using TRNSYS software; both using natural gas engine generators and photovoltaics as prime movers and a hydrogen fuel cell/electrolyzer storage unit, one with absorption chiller and another with compression chiller cooling. For the study, a residential building is modeled for three major populated climate zones of the United States of America, namely, Hot-humid, mixed-humid and cold using DesignBuilder and EnergyPlus software. The energy demand for its HVAC operation and domestic electricity is obtained and used for system simulation in TRNSYS software. Due to choosing actual equipment for the CCHP arrangement, precise economic and environmental models are designed to further evaluate the possibility of execution of the system. The results show that absorption chiller-equipped CCHP has better performance both environmentally and economically. In addition, the outcome shows that the suggested systems show less favorability to be utilized in hot humid climate zones.  相似文献   

20.
The independent fuel cell micro‐grid that accommodates power and heat independently without connecting with other power systems is expected to back up power supply in an emergency, and at peak cuts of a power plant, and the effective use of exhaust heat is anticipated. Therefore, this paper analyses the cost minimization problem of the arrangement planning of a fuel cell system, and the feeding order of exhaust heat. An analysis programme for operation plan at the time of connecting a distributed fuel cell with an energy network was developed using a genetic algorithm. The fuel cell energy network was optimized in six buildings to minimize operation costs, facility costs, and the installation costs of the facilities. As a result, the analysis method for the arrangement plan for the capacity of each installed fuel cell, boiler, heat storage tank, and hot‐water circulating pump was clarified. If the hot‐water network of the distributed fuel cell is installed, in the winter of a cold district, facility cost is disadvantageous compared with the conventional method. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号