首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The objective of this study was to investigate the performance and emissions of a pilot-ignited, supercharged, dual-fuel engine powered by different types of syngas at various equivalence ratios. It was found that if certain operating conditions were maintained, conventional engine combustion could be transformed into combustion with two-stage heat release. This mode of combustion has been investigated in previous studies with natural gas, and has been given the name PREmixed Mixture Ignition in the End-gas Region (PREMIER) combustion. PREMIER combustion begins as premixed flame propagation, and then, because of mixture autoignition in the end-gas region, ahead of the propagating flame front, a transition occurs, with a rapid increase in the heat release rate. It was determined that the mass of fuel burned during the second stage affected the rate of maximum pressure rise. As the fuel mass fraction burned during the second stage increased, the rate of maximum pressure rise also increased, with a gradual decrease in the delay between the first increase in the heat release rate following pilot fuel injection and the point when the transition to the second stage occurred. The H2 and CO2 content of syngas affected the engine performance and emissions. Increased H2 content led to higher combustion temperatures and efficiency, lower CO and HC emissions, but higher NOx emissions. Increased CO2 content influenced performance and emissions only when it reached a certain level. In the most recent studies, the mean combustion temperature, indicated thermal efficiency, and NOx emissions decreased only when the CO2 content of the syngas increased to 34%. PREMIER combustion did not have a major effect on engine cycle-to-cycle variation. The coefficient of variation of the indicated mean effective pressure (COVIMEP) was less than 4% for all types of fuel at various equivalence ratios, indicating that the combustion was within the stability range for engine operation.  相似文献   

2.
Two-dimensional detailed numerical simulation is performed to study syngas/air combustion under partially premixed combustion (PPC) engine conditions. Detailed chemical kinetics and transport properties are employed in the study. The fuel, a mixture of CO and H2 with a 1:1 molar ratio, is introduced to the domain at two different instances of time, corresponding to the multiple injection strategy of fuel used in PPC engines. It is found that the ratio of the fuel mass between the second injection and the first injection affects the combustion and emission process greatly; there is a tradeoff between NO emission and CO emission when varying the fuel mass ratio. The ignition zone structures under various fuel mass ratios are examined. A premixed burn region and a diffusion burn region are identified. The premixed burn region ignites first, followed by the ignition of mixtures at the diffusion burn region, and finally a thin diffusion flame is formed to burn out the remaining fuel. NO is produced mainly in the premixed burn region, and later from the diffusion burn region in mixtures close to stoichiometry, whereas unburned CO emission is mainly from the diffusion burn region. An optimization of the fuel mass in the two regions can offer a better tradeoff between NO emission and CO emission. The effects of initial temperature and turbulence on the premixed burn and diffusion burn regions are investigated.  相似文献   

3.
A detailed numerical study is carried out to investigate the performance of a diesel-hydrogen dual fuel (DF) compression ignition engine operating under a novel combustion strategy in which diesel injection and most of the combustion occur at a constant volume. A detailed validation of the numerical model for diesel-hydrogen DF engine operation has been carried out. Then a parametric study has been performed to investigate the effects of the constant volume combustion phase (CVCP) at up to 90% hydrogen energy share (HES) on engine performance and emissions at low and high load with comparisons to the conventional engine. The results demonstrate that the CVCP strategy can improve thermal efficiency at all HESs and load conditions with far lower carbon-based emissions. Conventional DF engines struggle at low load high HESs due to the reduced diesel injection failing to ignite the leaner premixed charge. Through use of a CVCP thermal efficiency at low load 90% HES increased from 11% to 38% with considerably reduced hydrogen emission due to the increased temperatures and pressures allowing for the wholesale ignition of the hydrogen-air mix. It was also found that increasing the time allowed for combustion within the CVCP, by advancing the diesel injection, can lead to even further thermal efficiency gains while not negatively impacting emissions.  相似文献   

4.
Ammonia appears to be a potential alternative fuel that can be used as a hydrogen vector and fuel for gas turbines and internal combustion engines. Chemical mechanisms of ammonia combustion are important for the development of ammonia combustion systems, but also as a mean of investigation of harmful NOx emissions, so they can be minimized. Despite of large body of experimental and modelling work on the topic of ammonia combustion, there is still need for additional investigation of combustion kinetics.The object of this work is further numerical study of ammonia combustion chemistry under conditions resembling industrial ones. After literature review, three mechanisms of ammonia combustion that also include carbon chemistry are used for simulation of experimental premixed swirl burner with the aim of evaluating their performance. San Diego mechanism, that was also the most detailed one, proved to be the best in terms of emissions, but neither one of the models was able to accurately reproduce CO emission after equivalence ratio went beyond 0.81. It was also observed that oxygen is excessively consumed. This study contributes to the current knowledge by providing new insights in ammonia burning conditions closely resembling those in industrial applications, and consequently is expected that insights obtained will help in the design of real industrial burning systems.  相似文献   

5.
A previously developed and validated zero-dimensional, multi-zone, thermodynamic combustion model for the prediction of spark ignition (SI) engine performance and nitric oxide (NO) emissions has been extended to include second-law analysis. The main characteristic of the model is the division of the burned gas into several distinct zones, in order to account for the temperature and chemical species stratification developed in the burned gas during combustion. Within the framework of the multi-zone model, the various availability components constituting the total availability of each of the multiple zones of the simulation are identified and calculated separately. The model is applied to a multi-cylinder, four-stroke, turbocharged and aftercooled, natural gas (NG) SI gas engine running on synthesis gas (syngas) fuel. The major part of the unburned mixture availability consists of the chemical contribution, ranging from 98% at the inlet valve closing (IVC) event to 83% at the ignition timing of the total availability for the 100% load case, which is due to the presence of the combustible fuel. On the contrary, the multiple burned zones possess mainly thermomechanical availability. Specifically, again for the 100% load case, the total availability of the first burned zone at the exhaust valve opening (EVO) event consists of thermomechanical availability approximately by 90%, with similar percentages for all other burned zones. Two definitions of the combustion exergetic efficiency are used to explore the degree of reversibility of the combustion process in each of the multiple burned zones. It is revealed that the crucial factor determining the thermodynamic perfection of combustion in each burned zone is the level of the temperatures at which combustion occurs in the zone, with minor influence of the whole temperature history of the zone during the complete combustion phase. The availability analysis is extended to various engine loads. The engine in question is supplied with increasingly leaner mixtures as loads rise in order to keep the emitted nitrogen oxides (NOx) low. Therefore, in-cylinder combustion temperatures are reduced, resulting in increased destruction of availability due to combustion and reduced availability losses due to heat transfer with the cylinder walls, when expressed as percentages of the fuel chemical availability. Specifically, when engine load increases from 40% to 100% of full load, with the relative air–fuel ratio also increasing from 1.56 to 1.83, the destroyed availability due to combustion rises from 14.19% to 15.02% of the fuel chemical availability, while the respective percentage of the cumulative availability loss due to heat transfer decreases from 13.37% to 9.05%.  相似文献   

6.
Five detailed hydrogen combustion chemical kinetics mechanisms coupled with a partially stirred reactor (PaSR) combustion model were applied with large eddy simulation (LES) to study the influence of detailed mechanisms on supersonic combustion in a model scramjet combustor. The LES predictions of five detailed mechanisms for velocity, temperature, and combustor wall pressure show reasonable agreement with experimental results. Examining the effects on the distributions of temperature and species in supersonic combustion reveals that the supersonic flame structure is affected by detailed mechanisms. The different detailed mechanisms have a strong influence on the combustion efficiency, volume of the subsonic region, and subsonic combustion heat release rate in the combustor. Moreover, the total heat release in the computational domain for the five detailed chemical kinetics mechanisms is quite different. The subsonic combustion is dominant in the combustor for all detailed mechanisms. An analysis of the important reactions for H2O, HO2, and OH is performed, revealing the reasons for differences in temperature and species distributions among the different detailed mechanisms in the combustor.  相似文献   

7.
The effect of the physical and chemical properties of biodiesel fuels on the combustion process and pollutants formation in Direct Injection (DI) engine are investigated numerically by using multi-dimensional Computational Fluid Dynamics (CFD) simulation. In the current study, methyl butanoate (MB) and n-heptane are used as the surrogates for the biodiesel fuel and the conventional diesel fuel. Detailed kinetic chemical mechanisms for MB and n-heptane are implemented to simulate the combustion process. It is shown that the differences in the chemical properties between the biodiesel fuel and the diesel fuel affect the whole combustion process more significantly than the differences in the physical properties. While the variations of both the chemical and the physical properties between the biodiesel and diesel fuel influence the soot formation at the equivalent level, the variations in the chemical properties play a crucial role in the NOx emissions formation.  相似文献   

8.
Hydrogen generated from renewable sources is an eco-friendly fuel that can be used in automotive industry or for energy generation purposes. Hydrogen is a high-energy content gas and its carbonless chemical structure can provide significant benefits of high thermal efficiency and near zero or very low carbon emissions when combusted with other fuels.In this study, the implementation of hydrogen fuel was tested at low and medium operating loads in a heavy-duty hydrogen-diesel dual-fuel engine. The paper provides a detailed experimental analysis of the effects of hydrogen energy share ratio and various combustion strategies such as exhaust gas recirculation, diesel injection pressure and diesel injection patterns.At low load conditions, engine operation with an H2 energy share ratio of up to 98% was achieved without any engine operation implications. This condition provided a simultaneous reduction of carbon and NOx emission of over 90% while soot emissions were dropped by 85% compared to the conventional diesel-only operation. At medium load, the increased NOx emission due to the high energy content of hydrogen fuel was found to be the primary challenge.  相似文献   

9.
Chemical kinetics plays a dominant role in power generation and gas turbine combustion systems, where many unstable behaviors are observed and investigated. Here, we propose a chemical delay model and apply it in a methane-burnt combustion system. It is revealed that the time delay between the concentration evolution of representative chemical species and unsteady heat release can be on a similar time scale as the limit cycle oscillations observed in an unstable combustor. Further kinetics studies on the heat release and temperature sensitivity found that the major reactions constitute mutually promoting looped kinetics with both exothermic and endothermic reactions. The loop which forms a chain branching cycle plays the role of thermokinetic feedback which is the key driving mechanism for the self-sustained unsteady heat release. Besides, collision regulated well skipping/stabilization switch, and other associated factors such as the type and dilution of bath gas can effectively affect the thermokinetic feedback.  相似文献   

10.
Thermoacoustic energy conversion is based on the Stirling cycle. In their most basic forms, thermoacoustic devices are comprised of two heat exchangers, a porous medium, both placed inside a resonator. Work is created through the interaction of strong sound waves with the porous medium that is subject to external heating. This work explores the effect of resonator curvature on the thermoacoustic effect. A CFD analysis of a whole thermoacoustic engine was developed and the influence of a curved resonator on the thermoacoustic effect is discussed. The variation of pressure amplitude and operating frequency serves as metrics in this investigation. It was found that the introduction of curvature affects the pressure amplitude achieved. Severely curved resonators also exhibited a variation in operating frequency.  相似文献   

11.
Coal direct chemical looping (CDCL) substitutes the gasification process in syngas chemical looping (SCL), thus eliminating the need for higher oxygen consumption. In this study, operating conditions are assessed for CDCL and SCL, directed towards hydrogen production from coal. The main objective is to increase the overall H2/CO2 ratio for a given amount of coal, based on the various conditions. The operating variables considered as part of a resource optimization analysis include: (i) inlet conditions to the primary reactors, (ii) minimum resource requirements (air, steam and iron oxide), (iii) hydrogen-to-component ratios, and (iv) effect of coal carrier gas. The results suggest that CDCL has a higher hydrogen-to-CO2 ratio than SCL along with advantages such as low overall resource requirements (steam and air) and fewer intermediate processes. The coal carrier gas affects the hydrogen production only in the SCL system by altering the composition of syngas induced by gasifier temperature variation.  相似文献   

12.
A numerical work has been performed to analyze the heat transfer and fluid flow in a pent-roof type combustion chamber. Dynamic mesh model was used to simulation piston intake stroke. Revolution of piston (1000 ≤ n ≤ 5000) is the main governing parameter on heat and fluid flow. k–ε turbulence model was used to predict the flow in the cylinder of a non-compressing fluid. They were solved with finite volume method and FLUENT 12.0 commercial code. Velocity profiles, temperature distribution, pressure distribution and velocity vectors are presented. It is found that the inclined surface of pent-roof type of combustion chamber reduces the swirl effect and it can be a control parameter for heat and fluid flow.  相似文献   

13.
14.
This study investigated the engine performance and emissions of a supercharged engine fueled by hydrogen and ignited by a pilot amount of diesel fuel in dual-fuel mode. The engine was tested for use as a cogeneration engine, so power output while maintaining a reasonable thermal efficiency was important. Experiments were carried out at a constant pilot injection pressure and pilot quantity for different fuel-air equivalence ratios and at various injection timings without and with charge dilution. The experimental strategy was to optimize the injection timing to maximize engine power at different fuel-air equivalence ratios without knocking and within the limit of the maximum cylinder pressure. The engine was tested first with hydrogen-operation condition up to the maximum possible fuel-air equivalence ratio of 0.3. A maximum IMEP of 908 kPa and a thermal efficiency of about 42% were obtained. Equivalence ratio could not be further increased due to knocking of the engine. The emission of CO was only about 5 ppm, and that of HC was about 15 ppm. However, the NOx emissions were high, 100–200 ppm or more. The charge dilution by N2 was then performed to obtain lower NOx emissions. The 100% reduction of NOx was achieved. Due to the dilution by N2 gas, higher amount of energy could be supplied from hydrogen without knocking, and about 13% higher IMEP was produced than without charge dilution.  相似文献   

15.
The NO mechanism under the moderate or intense low-oxygen dilution (MILD) combustion of syngas has not been systematically examined. This paper investigates the NO mechanism in the syngas MILD regime under the dilution of N2, CO2, and H2O through counterflow combustion simulation. The syngas reaction mechanism and the counterflow combustion simulation are comprehensively validated under different CO/H2 ratios and strain rates. The effects of oxygen volume fraction, CO/H2 ratio, pressure, strain rate, and dilution atmosphere are systematically investigated. For all the MILD cases, the contribution of the prompt and NO-reburning routes to the overall NO emission is less than 0.1% due to the lack of CH4 in fuel. At atmospheric pressure, the thermal route only accounts for less than 20% of the total NO emission because of the low reaction temperature. Moreover, at atmospheric pressure, the contribution of the NNH route to NO emission is always larger than 55% in the N2 atmosphere. The N2O-intermediate route is enhanced in CO2 and H2O atmospheres due to the increased third-body effects of CO2 and H2O through the reaction N2 + O (+M) ? N2O (+M). Especially in the H2O atmosphere, the N2O-intermediate route contributes to 60% NO at most. NO production is reduced with increasing CO/H2 ratio or pressure, mainly due to decreased NO formation from the NNH route. Importantly, a high reaction temperature and low NO emission are simultaneously achieved at high pressure. To minimize NO emission, the reactions should be operated at high values of CO/H2 ratios (i.e., >4) and pressures (e.g., P > 10 atm), low oxygen volume fractions (e.g., XO2 < 15%), and using H2O as a diluent. This study provides a new fundamental understanding of the NO mechanism of syngas MILD combustion in N2, CO2, and H2O atmospheres.  相似文献   

16.
The fact that fossil fuels, which supply a large amount of the energy need, are limited in the world and can be only found in certain regions, have led humankind to seek alternatives. In addition, the use of fossil fuels generates wastes detrimental to humans and nature, which has led this search to alternative, clean and renewable energy sources. The use of hydrogen, which is a clean energy source, in internal combustion engines is very important in terms of reducing emission values as well as providing an alternative to petroleum-derived fuels. This study presents a literature review on the effect of the hydrogen ratio and combustion chamber geometry on the engine performance and emissions in a compression-ignition engine operating in the hydrogen diesel bi-fuel mode. As a result of the study, it was concluded that the hydrogen energy ratio should be between 5 and 20% and the combustion chamber should be designed by considering the combustion characteristics. The main purpose of the study is to highlight the functionality of the use of hydrogen in dual fuel mode in compression ignition engines and to be a resource for researchers who will work on this subject.  相似文献   

17.
The effect of heat loss on the syngas production from partial combustion of fuel-rich in a divergent two-layer burner is numerically studied using two-dimensional model with detailed kinetics GRI-Mech 1.2. Both the radiation and wall heat losses to the surrounding are considered in the computations. It is shown that two types heat losses have different effects on the syngas production. The radiation heat loss has significant effect on the syngas temperature and the syngas temperature is dropped as radiation heat loss is increased, but it has neglected effect on the reforming efficiency and methane conversion efficiency. The wall heat loss has a comprehensive effect on the syngas production. The wall heat loss not only reduces the conversion efficiency, but also significantly decreases the syngas temperature. The effect of wall heat loss becomes weak as the equivalence is increased. The reforming efficiency drops from 0.440 to 0.424 for equivalence ratio of 2 and mixture velocity of 0.17 m/s for the predictions between adiabatic wall and non-adiabatic conditions.  相似文献   

18.
Hydrogen internal combustion engine (H2ICE) easily occur inlet manifold backfire and other abnormal combustion phenomena because of the low ignition energy, wide flammability range and rapid combustion speed of hydrogen. In this paper, the effect of injection timing on mixture formation in a manifold injection H2ICE was studied in various engine speed and equivalence ratio by CFD simulation. It was concluded that H2ICE of manifold injection have an limited injection end timing in order to prevent backfire in the inlet manifold. Finally, the limit of injection end timing of the H2ICE was proposed and validated by engine experiment.  相似文献   

19.
Up to 90% hydrogen energy fraction was achieved in a hydrogen diesel dual-fuel direct injection (H2DDI) light-duty single-cylinder compression ignition engine. An automotive-size inline single-cylinder diesel engine was modified to install an additional hydrogen direct injector. The engine was operated at a constant speed of 2000 revolutions per minute and fixed combustion phasing of ?10 crank angle degrees before top dead centre (°CA bTDC) while evaluating the power output, efficiency, combustion and engine-out emissions. A parametric study was conducted at an intermediate load with 20–90% hydrogen energy fraction and 180-0 °CA bTDC injection timing. High indicated mean effective pressure (IMEP) of up to 943 kPa and 57.2% indicated efficiency was achieved at 90% hydrogen energy fraction, at the expense of NOx emissions. The hydrogen injection timing directly controls the mixture condition and combustion mode. Early hydrogen injection timings exhibited premixed combustion behaviour while late injection timings produced mixing-controlled combustion, with an intermediate point reached at 40 °CA bTDC hydrogen injection timing. At 90% hydrogen energy fraction, the earlier injection timing leads to higher IMEP/efficiency but the NOx increase is inevitable due to enhanced premixed combustion. To keep the NOx increase minimal and achieve the same combustion phasing of a diesel baseline, the 40 °CA bTDC hydrogen injection timing shows the best performance at which 85.9% CO2 reduction and 13.3% IMEP/efficiency increase are achieved.  相似文献   

20.
Synthesis gas, a mixture of hydrogen and carbon monoxide, could be produced in a chemical looping process. The objective of this work is the modeling of syngas production in a fixed bed microreactor by chemical looping reforming. A perovskite oxygen carrier was used for the reduction of methane to syngas. Twenty one gas-solid kinetic models were applied to the experimental data in which their parameters were estimated using an optimization code. The results show that among all models, reaction order model is the most preferable choice with satisfactory fitting criteria. The gas-solid model was coupled with a catalytic scheme to predict not only the conversion of perovskite oxygen carrier, but also the catalytic performance of the solid particles for syngas production. The kinetic parameters of the unified model were evaluated based on the experimental data of a fixed bed reactor. Analysis of both perovskite and nickel oxide, oxygen carriers shows that perovskite particles could convert 50 times slower than those of nickel oxide. A H2/CO ratio of below 10 was obtained in a period of time. A large amount of hydrogen was produced after completing gas-solid reactions which was due to cracking of methane to carbon and hydrogen. Although hydrogen was the main outlet product afterwards, corresponding carbon formation is a problem which should be avoided. The reduction of methane was proposed before 500 s with a carbon formation of below 0.04 kg carbon per one kg of perovskite carrier. Solid reduction conversion, methane consumption and product distribution were analyzed inside the microreactor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号