首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
The role of protein kinase C (PKC) in ischemic preconditioning remains controversial because of difficulties with both its measurement and pharmacological manipulation. We investigated preconditioning in isolated neonatal rat cardiocytes by expressing constitutively active isotypes of PKC. Observations at differing durations of simulated ischemia suggested beta-galactosidase (beta-gal) activity reflected viability within transfected myocytes. Preconditioning with 90 min of ischemia significantly increased beta-gal activity and myocyte survival after 6 h of ischemia; an effect abolished by PKC inhibitors. After co-transfection with plasmids encoding beta-gal and either constitutively active mutants of PKC-delta, PKC-alpha, wild type PKC-delta, or empty vector, cardiocytes were subjected to 6 h of ischemia. Only PKC-delta, rendered constitutively active by a limited deletion within the pseudosubstrate domain, consistently increased resistance to simulated ischemia (beta-gal activity was 85.6 +/- 11.9% versus 53.7 +/- 6.5% (p 相似文献   

2.
Protein kinase C (PKC) consists of a family of closely related Ca2+/phospholipid-dependent phosphotransferase isozymes, most of which are present in the brain and are differentially activated by second messengers. Calcium-dependent PKC activity may cause neuronal degeneration after ischemic insult. PKC is also involved in trophic-factor signaling, indicating that activity of some PKC subspecies may be beneficial to the injured brain. Therefore, we screened long-term changes in the expression of multiple PKC subspecies after focal brain ischemia. Middle cerebral artery occlusion was produced by using an intraluminal suture for 30 min of 90 min. In in situ hybridization experiments, mRNA levels of PKC alpha, -beta, -gamma, -delta, -epsilon, and -zeta were decreased in the infarct core 4 hr after ischemia and were lost completely 12 hr after ischemia. In areas surrounding the core, PKC delta mRNA was specifically induced 4, 12, and 24 hr after ischemia in the cortex. At 3 and 7 d, the core and a rim around it showed increased mRNA levels of PKC delta. No other subspecies were induced. At 2 d, immunoblotting demonstrated increased levels of PKC delta protein in the perifocal tissue, and immunocytochemistry revealed an increased number of PKC delta-positive neurons in the perifocal cortex. In the core, PKC delta-positive macrophages and endothelial cells were seen. Pretreatment with MK-801, an NMDA antagonist, inhibited cortical PKC delta mRNA induction. The data show that focal brain ischemia induces PKC delta mRNA and protein but not other PKC subspecies through the activation of NMDA receptors and that the upregulation lasts for several days in neurons of the perifocal zone.  相似文献   

3.
Tonin- and kallikrein-like activities were investigated in different regions of the rat brain. The highest values of specific tonin activity, expressed as picomoles of angiotensin II liberated per minute per milligram of protein, were found in the neurohypophysis (359 +/- 190) and in the archicerebellum (200 +/- 68). The highest level of total tonin activity (picomoles of angiotensin II liberated per minute) was observed in the archicerebellum (902 +/- 308) which retained 97% of total tonin activity of whole cerebellum. Tonin activity was not detected in the cortex of cerebellum and in the choroid plexus. Low to intermediate values of specific (1.09 +/- 0.33 to 5.32 +/- 2.37) and total (1.38 +/- 0.55 to 93.00 +/- 49.30) tonin activity were observed in adenohypophysis, cerebellar nuclei, hypothalamus, thalamus, midbrain, pons, medulla and neurohypophysis. The lowest values of specific (0.11 +/- 0.05) and total (0.69 +/- 0.31) activities were observed in the hippocampus. Kallikrein-like activity was expressed as picomoles of p-nitroaniline liberated per minute per milligram of protein. No activity was detected in the neurohypophysis. For other regions, the values of the specific activity ranged between 72 +/- 18 and 282 +/- 14 except for the choroid plexus which was 5 +/- 2. The total kallikrein activity was also homogeneous ranging from 330 +/- 100 to 1870 +/- 112. For the choroid plexus and adenohypophysis the total kallikrein activity was 2.0 +/- 0.8 and 27 +/- 11, respectively.  相似文献   

4.
Our previous studies have shown that human native low density lipoprotein (LDL) can be oxidized by activated human monocytes. In this process, both activation of protein kinase C (PKC) and induction of superoxide anion (O-2) production are required. PKC is a family of isoenzymes, and the functional roles of individual PKC isoenzymes are believed to differ based on subcellular location and distinct responses to regulatory signals. We have shown that the PKC isoenzyme that is required for both monocyte O-2 production and oxidation of LDL is a member of the conventional PKC group of PKC isoenzymes (Li, Q., and Cathcart, M. K. (1994) J. Biol. Chem. 269, 17508-17515). The conventional PKC group includes PKCalpha, PKCbetaI, PKCbetaII, and PKCgamma. With the exception of PKCgamma, each of these isoenzymes was detected in human monocytes. In these studies, we investigated the requirement for select PKC isoenzymes in the process of monocyte-mediated LDL lipid oxidation. Our data indicate that PKC activity was rapidly induced upon monocyte activation with the majority of the activity residing in the membrane/particulate fraction. This enhanced PKC activity was sustained for up to 24 h after activation. PKCalpha, PKCbetaI, and PKCbetaII protein levels were induced upon monocyte activation, and PKCalpha and PKCbetaII substantially shifted their location from the cytosol to the particulate/membrane fraction. To distinguish between these isoenzymes for regulating monocyte O-2 production and LDL oxidation, PKCalpha or PKCbeta isoenzyme-specific antisense oligonucleotides were used to selectively suppress isoenzyme expression. We found that suppression of PKCalpha expression inhibited both monocyte-mediated O-2 production and LDL lipid oxidation by activated human monocytes. In contrast, inhibition of PKCbeta expression (including both PKCbetaI and PKCbetaII) did not affect O-2 production or LDL lipid oxidation. Further studies demonstrated that the respiratory burst oxidase responsible for O-2 production remained functionally intact in monocytes with depressed levels of PKCalpha because O-2 production could be restored by treating the monocytes with arachidonic acid. Taken together, our data reveal that PKCalpha, and not PKCbetaI or PKCbetaII, is the predominant isoenzyme required for O-2 production and maximal oxidation of LDL by activated human monocytes.  相似文献   

5.
The change in the subcellular distribution of Ca2+/calmodulin-dependent protein kinase II was studied in the rat hippocampus following normothermic and hypothermic transient cerebral ischemia of 15 min duration. A decrease in immunostaining of Ca2+/calmodulin-dependent protein kinase II was observed at 1 h of reperfusion which persisted until cell death in the CA1 region. In the CA3 and dentate gyrus areas immunostaining recovered at one to three days of reperfusion. The CA2+/calmodulin-dependent protein kinase II was translocated to synaptic junctions during ischemia and reperfusion which could be due to a persistent change in the intracellular calcium ion homeostasis. The expression of the messenger RNA of the alpha-subunit of Ca2+/calmodulin-dependent protein kinase II decreased in the entire hippocampus during reperfusion, and was most marked in the dentate gyrus at 12 h of reperfusion. This decrease could be a feedback downregulation of the mRNA due to increased Ca2+/calmodulin-dependent protein kinase II activation. Intraischemic hypothermia protected against ischemic neuronal damage and attenuated the ischemia-induced decrease of Ca2+/calmodulin-dependent protein kinase II immunostaining in all hippocampal regions. Hypothermia also reduced the translocation of Ca2+/calmodulin-dependent protein kinase II and restored Ca2+/calmodulin-dependent protein kinase II alpha messenger RNA after ischemia. The data suggest that ischemia leads to an aberrant Ca2+/calmodulin-dependent protein kinase II mediated signal transduction in the CA1 region, which is important for the development of delayed neuronal damage. Hypothermia enhances the restoration of the Ca2+/calmodulin-dependent protein kinase II mediated cell signalling.  相似文献   

6.
Delayed neuronal death after transient cerebral ischemia may be mediated, in part, by the induction of apoptosis-regulatory gene products. Caspase-3 is a newly characterized mammalian cysteine protease that promotes cell death during brain development, in neuronal cultures, and in other cell types under many different conditions. To determine whether caspase-3 serves to regulate neuronal death after cerebral ischemia, we have (1) cloned a cDNA encoding the rat brain caspase-3; (2) examined caspase-3 mRNA and protein expression in the brain using in situ hybridization, Northern and Western blot analyses, and double-labeled immunohistochemistry; (3) determined caspase-3-like activity in brain cell extracts; and (4) studied the effect of caspase-3 inhibition on cell survival and DNA fragmentation in the hippocampus in a rat model of transient global ischemia. At 8-72 hr after ischemia, caspase-3 mRNA and protein were induced in the hippocampus and caudate-putamen (CPu), accompanied by increased caspase-3-like protease activity. In the hippocampus, caspase-3 mRNA and protein were predominantly increased in degenerating CA1 pyramidal neurons. Proteolytic activation of the caspase-3 precursor was detected in hippocampus and CPu but not in cortex at 4-72 hr after ischemia. Double-label experiments detected DNA fragmentation in the majority of CA1 neurons and selective CPu neurons that overexpressed caspase-3. Furthermore, ventricular infusion of Z-DEVD-FMK, a caspase-3 inhibitor, decreased caspase-3 activity in the hippocampus and significantly reduced cell death and DNA fragmentation in the CA1 sector up to 7 d after ischemia. These data strongly suggest that caspase-3 activity contributes to delayed neuronal death after transient ischemia.  相似文献   

7.
We studied changes in expression of F3/contactin (F3), a neuron-specific adhesion molecule, in the gerbil hippocampus after transient forebrain ischemia for 5 min. By immunohistochemical techniques using F3 antibody, we found a biphasic change in immunoreactivity for F3 in the CA1 area after ischemia. Western blotting of F3 protein showed a similar biphasic change. F3 immunoblots decreased to 67% of the control at 1 week, but then they increased and attained 159% at 3 weeks and 152% at 5 weeks after ischemia. Immunoreactivity of a neurofilament (NF145) showed a similar biphasic change to F3 but to a lesser extent. In contrast, microtubule-associated protein 2 (MAP2) immunoreactivity uniformly decreased after ischemia. In situ hybridization revealed that F3 messenger RNA (mRNA) hybridization signals in CA1 area were greatly reduced 1 week after ischemia, while the signals in the CA3 area were unchanged and even increased 3 weeks after ischemia. Damage to CA3 neurons by hyperthermic ischemia blocked the F3 increase in area CA1. Our results suggest that the initial decrease in F3 following ischemia reflects loss of CA1 neurons and the late increase in F3, which shows that a similar time course with neurofilaments may be caused by neurite sprouting.  相似文献   

8.
The expression of protein kinase C (PKC) isozymes in human basophils and the regulation of PKC isozymes during basophil activation by phorbol 12-myristate 13-acetate (PMA) +/- ionomycin, f-met-leu-phe (FMLP), and anti-IgE antibody were examined. In human basophils (> 98% purity), PKCbetaI, betaII, delta, and were expressed, PKCalpha was difficult to detect, and PKCgamma and eta were undetectable. In unstimulated basophils, PKCbetaI and betaII were found primarily in the cytosol fraction (95% +/- 3% of total and 98% +/- 1%, respectively). Within 5 minutes of stimulation with PMA (100 ng/mL), both PKCbetaI and betaII were translocated to the membrane fraction (85% +/- 4% and 83% +/- 6%, respectively). In resting cells, 48% +/- 3% and 61% +/- 10% of PKCdelta and , respectively, existed in the membrane fraction. Within 1 minute of stimulation with PMA, 90% +/- 6% of PKC was found in the membrane fraction, however, no translocation of PKCdelta was apparent. Stimulation with FMLP caused modest translocation ( approximately 20%) of all PKC isozymes by 1 minute, whereas stimulation with anti-IgE antibody led to no detectable changes in PKC location throughout a 15-minute period of measurement. However, concentrations of PMA and ionomycin that alone caused no PKC translocation and little histamine release, together caused significant histamine release but no apparent PKC translocation. Studies with bis-indolylmaleimide analogs showed inhibition of PMA-induced, but not anti-IgE-induced, histamine release. These pharmacological studies suggest that PKC does not play a prodegranulatory role in human basophil IgE-mediated secretion.  相似文献   

9.
Recent studies strongly suggest that oxidative stresses participate in ischemia/reperfusion-induced neurodegeneration. In addition, heme oxygenase (HO) and major histocompatibility complex (MHC) antigens serve as functional molecules against oxidative stress and as self-recognition markers in the immune system, respectively. In this study, we examined the induction of HO and MHC antigens in the rat hippocampus after transient forebrain ischemia. The protein level of HO-1 was significantly enhanced after an episode of ischemia. After ischemia, HO-1 expression was observed early but transiently in the CA1 pyramidal neurons and later but continuously in glial cells. Glial cells expressing HO-1 were predominantly ameboid microglia, but not astrocytes. Ameboid microglia expressing HO-1 were predominantly localized with MHC class II antigens. These results indicate that (1) HO-1 expression in CA1 pyramidal neurons may be harmful, and (2) ischemia induces HO-1 in ameboid microglia that express MHC class II antigens, indicating a very specific microglial stress protein response.  相似文献   

10.
The effect of interleukin-6 (IL-6) on metallothionein-I (MT-I) and MT-III expression in the brain has been studied in transgenic mice expressing IL-6 under the regulatory control of the glial fibrillary acidic protein gene promoter (GFAP-IL6 mice), which develop chronic progressive neurodegenerative disease. In situ hybridization analysis revealed that GFAP-IL6 (G16-low expressor line, and G36-high expressor line) mice had strongly increased MT-I mRNA levels in the cerebellum (Purkinje and granular layers of the cerebellar cortex and basal nuclei) and, to a lesser degree, in thalamus (only G36 line) and hypothalamus, whereas no significant alterations were observed in other brain areas studied. Microautoradiography and immunocytochemistry studies suggest that the MT-I expression is predominantly localized to astrocytes throughout the cerebrum and especially in Bergman glia in the cerebellum. However, a significant expression was also observed in microglia of the GFAP-IL6 mice. MT-III expression was significantly increased in the Purkinje cell layer and basal nuclei of the cerebellum, which was confirmed by Northern blot analysis of poly(A)+ mRNA and by ELISA of the MT-III protein. In contrast, in the G36 but not G16 mice, transgene expression of IL-6 was associated with significantly decreased MT-III RNA levels in the dentate gyrus and CA3 pyramidal neuron layer of the hippocampus and, in both G36 and G16 mice, in the occipital but not frontal cortex and in ependymal cells. Thus, both the widely expressed MT-I isoform and the CNS specific MT-III isoform are significantly affected in a MT isoform- and CNS area-specific manner in the GFAP-IL6 mice, a chronic model of brain damage.  相似文献   

11.
We have previously demonstrated that the neuroprotective effect of the beta2-adrenoceptor agonist clenbuterol in vitro and in vivo was most likely mediated by an increased nerve growth factor (NGF) expression. In the present study, we examined whether clenbuterol was capable of inhibiting apoptosis caused by ischemia. Transient forebrain ischemia was performed in male Wistar rats (300 to 350 g) by clamping both common carotid arteries and reducing the blood pressure to 40 mm Hg for 10 minutes. Clenbuterol (0.1, 0.5, and 1.0 mg/kg intraperitoneally) was administered 3 hours before ischemia or immediately after ischemia. The brains were removed for histologic evaluation 7 days after ischemia. The time course of DNA fragmentation was determined 1, 2, 3 and 4 days after ischemia. Staining with terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end-labeling (TUNEL) was used for further analysis of DNA fragments in situ 3 days after ischemia. The NGF protein was assayed by enzyme-linked immunosorbent assay. Ten-minute forebrain ischemia damaged 80% to 90% of the neurons in the hippocampal CA1 region evaluated 7 days after ischemia. Pretreatment with clenbuterol (0.5 and 1.0 mg/kg) reduced the neuronal damage by 18.1% (P < 0.01) and 13.1% (P < 0.05), respectively. The neuroprotective effect also was found when clenbuterol (0.5 mg/kg) was administered immediately after ischemia (P < 0.05). The DNA laddering appeared in striatum 1 day and in hippocampus 2 days after ischemia and peaked on the third day in both regions. The DNA laddering was nearly abolished in the hippocampus and partially blocked in striatum and cortex by 0.5 mg/kg clenbuterol. These results were confirmed by TUNEL staining. Clenbuterol (0.5 mg/kg intraperitoneally) elevated the NGF protein level by 33% (P < 0.05) in the hippocampus and 41% (P < 0.05) in the cortex 6 hours after ischemia. Three days after ischemia, the NGF levels in these regions were no longer different between the clenbuterol-treated and control groups. This study clearly demonstrates that clenbuterol possesses a neuroprotective activity and a marked capacity to inhibit DNA degradation after global ischemia. The results suggest that clenbuterol increases NGF expression during the first hours after global ischemia and thereby protects neurons against apoptotic damage.  相似文献   

12.
It is now recognized that protein kinase C (PKC) plays a critical role in 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) promotion of HL-60 cell differentiation. In this study, the effects of phosphorothioate antisense oligonucleotides directed against PKCalpha, PKCbeta, PKCbetaI, and PKCbetaII on HL-60 promyelocyte cell differentiation and proliferation were examined. Cellular differentiation was determined by nonspecific esterase activity, nitro blue tetrazolium reduction, and CD14 surface antigen expression. Differentiation promoted by 1,25-(OH)2D3 (20 nM for 48 h) was inhibited similarly in cells treated with PKCbeta antisense (30 microM) 24 h prior to or at the same time as hormone treatment (86 +/- 9% inhibition; n = 4 versus 82 +/- 8% inhibition; n = 4 (mean +/- S.E.), respectively). In contrast, cells treated with PKCbeta antisense 24 h after 1, 25-(OH)2D3 were unaffected and fully differentiated. PKCalpha antisense did not block 1,25-(OH)2D3 promotion of HL-60 cell differentiation. Next, the ability of PKCbetaI- and PKCbetaII-specific antisense oligonucleotides to block 1,25-(OH)2D3 promotion of cell differentiation was examined. PKCbetaII antisense (30 microM) completely blocked CD14 expression induced by 1, 25-(OH)2D3, whereas PKCbetaI antisense had little effect. Interestingly, PKCbetaII antisense blocked differentiation by 87 +/- 7% (n = 2, mean +/- S.D.) but had no effect on 1,25-(OH)2D3 inhibition of cellular proliferation. These results indicate that the effects of 1,25-(OH)2D3 on HL-60 cell differentiation and proliferation can be dissociated by blocking PKCbetaII expression.  相似文献   

13.
Protein kinase C (PKC) is a family of intracellular signal transduction enzymes, comprising isoforms that vary in sensitivity to calcium, arachidonic acid, and diacylglycerol. PKC isoforms alpha, gamma, and delta are expressed by cerebellar Purkinje cells and neurons in the cerebellar nuclei and vestibular nuclei of the Long-Evans rat. In control rats, these PKCs are distributed symmetrically in the flocculonodular-lobe Purkinje cells. Behavioral recovery from vestibular dysfunction produced by unilateral labyrinthectomy (UL) is accompanied by asymmetric expression of PKC isoforms in these regions within 6 hr after UL. These expression changes were localized within parasagittal regions of the flocculus and nodulus. The distribution of PKCalpha, -gamma, and -delta were identical, suggesting that they are coregulated in cerebellar Purkinje cells during this early compensatory period. The pattern of Purkinje cell PKC expression returned to the control, symmetric distribution within 24 hr after UL. It is hypothesized that these regional changes in Purkinje cell PKC expression are an early intracellular signal contributing to vestibular compensation. In particular, regulation of PKC expression may contribute to changes in the efficacy of cerebellar synaptic plasticity during the acute post-UL period.  相似文献   

14.
The possible modulation of nitric oxide (NO) synthase (NOS) activity by protein kinase C (PKC) was investigated in primary cultures of rat cerebellar neurons. Incubation of the cells with L-arginine and nicotinamide-adenine dinucleotide phosphate (NADPH) produced detectable levels of NO, as quantified by photometric assay [0.14 +/- 0.03 nmol/h/dish (2.5 x 10(6) cells)]. The NO producing activity was paralleled by concomitant accumulation of cyclic GMP (cGMP) (0.12 +/- 0.02 pmol/dish). Downregulation of PKC by prolonged treatment with phorbol esters or inhibition of the kinase by treatment with 4taurosporine raised the basal levels of NO and cGMP five fold. When granule cells were incubated in the absence of extracellular Mg2+, N-methyl-D-aspartate and to a lesser extent, glutamate became effective in enhancing NO formation and cGMP accumulation with respect to the control. The NO and cGMP increases induced by the two agonists were almost doubled by treatment of the cells with staurosporine or depletion of PKC. Calphostin C. an inhibitor of the regulatory domain of PKC, was as effective as staurosporine in increasing the formation of NO in both resting and excited cells. These results indicate that downregulation or inhibition of PKC increase NOS activity in cerebellar neurons, and suggest that phosphorylation of NOS by PKC negatively modulates the catalytic activity of the enzyme in these cells.  相似文献   

15.
We previously demonstrated that the anticancer agent and protein kinase C (PKC) inhibitor 7-hydroxystaurosporine (UCN-01) induces apoptosis independently of p53 and protein synthesis in HL60 cells. We now report the associated changes of PKC isoforms. PKCalpha, betaI, betaII, delta, and zeta activities were measured after immunoprecipitation of cytosols from UCN-01-treated HL60 cells. UCN-01 had no effect on PKCzeta and inhibited kinase activity of PKCbetaI, betaII, and delta. PKCalpha activity was initially inhibited at 1 h, and subsequently increased as cells underwent apoptosis 3 h after the beginning of UCN-01 treatment. Camptothecin (CPT) and etoposide (VP-16) also markedly enhanced PKCalpha activity during apoptosis in HL60 cells. However, CPT did not affect PKCbetaI, betaII and zeta, and activated PKCdelta. PKCalpha activation was not due to increased protein levels or proteolytic cleavage but was associated with PKCalpha autophosphorylation in vitro and increased phosphorylation in vivo. We also found that not only PKC delta but also PKC betaI was proteolytically activated in HL60 cells during apoptosis. The PKCalpha activation and hyperphosphorylation were abrogated by N-benzyloxycarbonyl-Val-Ala-Asp(O-methyl)-fluoromethylketone (z-VAD-fmk) under conditions that abrogated apoptosis. z-VAD-fmk also prevented PKCdelta and betaI proteolytic activation. Together these findings suggest that caspases regulate PKC activity during apoptosis in HL60 cells. At least two modes of activation were observed: hyperphosphorylation for PKCalpha and proteolytic activation for PKC delta and betaI.  相似文献   

16.
The hippocampus as part of the limbic system is sensitive to gonadal hormones. The time-dependent expression of steroid receptors and the testosterone converting enzyme aromatase (CYP19) is well studied. In contrast, little is known about other cytochrome P450 enzymes in hippocampus which inactivate the gonadal hormones. For investigation of the total cytochrome P450 content and the expression of testosterone degrading CYP2B10 we used embryonic (E18) in comparison to postnatal (P21) immortalized hippocampal neurons. These embryonic neurons were demonstrated to react to hormones according a 'critical period' of sexual differentiation: testosterone treatment (1 microM to 5 microM in the culture medium) resulted in a decrease of beta-tubulin, as showed by immunocytochemistry and Western blotting. Measurements with reduced CO-difference spectrum elucidated that the P450 concentration in the embryonic neurons (10.2 pmol/mg protein; S.D. +/- 1.9) was twice as high as in the postnatal ones (5.2 pmol/mg protein; S.D. +/- 1.0). Correspondingly, a high value of the mitochondrial subfraction of approx. 141 pmol P450/mg protein was found in the embryonic neurons relative to the mitochondrial value of 37.7 pmol P450/mg protein in the postnatal neurons. Our results suggest a differential expression of cytochrome P450 during development. CYP2B10 was proved by electron microscopy and hormone degrading activity.  相似文献   

17.
Cerebral ischemia is known to modify the expression of genetic information in the brain. To complement this knowledge, in the present study we have estimated the expression of calcium- and phospholipid-dependent (classical) protein kinase C (c PKC) isoform mRNAs (alpha, beta1 and gamma) at different time following ischemia. Forebrain cerebral ischemia was performed on Mongolian gerbils by 5 minutes bilateral occlusion of common carotid arteries. At the pointed time the cytoplasmic RNA was extracted from hippocampus and the expression of PKC mRNA quantified by RT PCR technique using GAPDH expression as an internal standard. Results indicate that only one gamma isoform of cPKC mRNA expression becomes significantly modified in postischemic hippocampus. A transient increase up to 145% of control within the first 3 h was followed by its decline to 60-65% at a longer recirculation period. This lowered levels returned back to control at 72 h postischemic recovery. This result indicates that gamma PKC could be particularly sensitive to ischemic insult and would react in accordance with the other early signals determining ischemic outcome.  相似文献   

18.
In adult rats, kainic acid-induced status epilepticus reduces GluR2 subunit expression prior to neurodegeneration of hippocampal CA3 neurons. Increased formation of Ca2+ permeable AMPA receptors may contribute to the delayed neurodegenerative process. In rat pups, highly prone to seizures but resistant to seizure-induced hippocampal damage, GluR2 mRNA and protein expression remain constant in CA3 neurons possibly contributing to their survival. To investigate whether reduced GluR2 expression in hippocampus may lead to enhanced hippocampal vulnerability in an age-dependent manner and whether changes correspond to altered electroencephalography (EEG) patterns, unilateral microinfusion of GluR2 antisense oligodeoxynucleotides (AS-ODNs) into hippocampus was performed at three ages (postnatal (P8), P13, and adult). At P13, GluR2 knockdown resulted in spontaneous seizure-like behavioral manifestations and neurodegeneration of CA3 neurons lateral and distal from the cannula infusion site. EEG recordings revealed high rhythmic activity associated with seizure-like behavior. In P8 pups and adult rats, there were no behavioral manifestations; distant hippocampal damage of the CA3 was not observed. Results indicate that unilateral knockdown of hippocampal GluR2 subunit expression induces age-dependent seizure-like behavioral manifestations, altered EEG recording patterns, and reduces the survival of CA3 neurons in the hippocampus of young rats during a specific postnatal period (3rd week), when GluR2 expression peaks in development and glutamatergic inputs are maturing.  相似文献   

19.
The patterns of expression of the bcl-2, bax, and bci-X genes were examined immunohistochemically in neurons of the adult rat brain before and after 10 min of global ischemia induced by transient cardiac arrest. High levels of the cell death promoting protein Bax and concomitant low levels of the apoptosis-blocking protein Bcl-2 were found in some populations of neurons that are particularly sensitive to cell death induced by transient global ischemia, such as the CA1 sector of the hippocampus and the Purkinje cells of the cerebellum. Moreover, within 0.5 to 3 hr after an ischemic episode, immunostaining for Bax was markedly increased within neurons with morphological features of degeneration in many regions of the brain. Use of a two-color staining method for simultaneous analysis of Bax protein and in situ detection of DNA-strand breaks revealed high levels of Bax immunoreactivity in many neurons undergoing apoptosis. Postischemic elevations in Bax protein levels in the hippocampus, cortex, and cerebellum were also demonstrated by immunoblotting. At early times after transient ischemia, regulation of Bcl-2 and Bcl-x protein levels varied among neuronal subpopulations, but from 3 hr on, those neurons with morphological evidence of degeneration uniformly contained reduced levels of Bci-2 and particularly Bci-X immunoreactivity. The findings suggest that differential expression of some members of the bcl-2 gene family may play an important role in determining the relative sensitivity of neuronal subpopulations to ischemia and that postischemic alterations in the expression of bax, bcl-2, and bcl-x may contribute to the delayed neuronal cell death that occurs during the repurfusion phase after a transient ischemic episode.  相似文献   

20.
Alzheimer's disease (AD) is a multifactorial disease in which beta-amyloid peptide (betaAP) plays a critical role. We report here that the soluble fraction 1-40 of betaAP differentially degrades protein kinase C-alpha and -gamma (PKCalpha and PKCgamma) isoenzymes in normal (age-matched controls, AC) and AD fibroblasts most likely through proteolytic cascades. Treatment with nanomolar concentrations of betaAP(1-40) induced a 75% decrease in PKCalpha, but not PKCgamma, immunoreactivity in AC fibroblasts. In the AD fibroblasts, a 70% reduction of the PKCgamma, but not PKCalpha, immunoreactivity was observed after betaAP treatment. Preincubation of AC or AD fibroblasts with 50 microM lactacystine, a selective proteasome inhibitor, prevented beta-AP(1-40)-mediated degradation of PKCalpha in the AC cells, and PKCgamma in the AD fibroblasts. The effects of betaAP(1-40) on PKCalpha in AC fibroblasts were prevented by inhibition of protein synthesis and reversed by PKC activation. A 3-hr treatment with 100 nM phorbol 12-myristate 13-acetate restored the PKCalpha signal in treated AC cells but it did not reverse the effects of betaAP(1-40) on PKCgamma in the AD fibroblasts. Pretreatment with the protein synthesis inhibitor, cycloheximide (CHX, 100 microM), inhibited the effects of betaAP(1-40) on PKCalpha and blocked the rescue effect of phorbol 12-myristate 13-acetate in AC fibroblasts but did not modify PKCgamma immunoreactivity in AD cells. These results suggest that betaAP(1-40) differentially affects PKC regulation in AC and AD cells via proteolytic degradation and that PKC activation exerts a protective role via de novo protein synthesis in normal but not AD cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号