首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A compact tubular sensor based on NASICON (sodium super ionic conductor) and V2O5-doped TiO2 sensing electrode was designed for the detection of SO2. In order to reduce the size of the sensor, a thick-film of NASICON was formed on the outer surface of a small Al2O3 tube; furthermore, a thin layer of V2O5-doped TiO2 with nanometer size was attached on the NASICON as a sensing electrode. This paper investigated the influence of V2O5 doping and sintering temperature on the characteristics of the sensor. The sensor attached with 5 wt% V2O5-doped TiO2 sintered at 600 °C exhibited excellent sensing properties to 1–50 ppm SO2 in air at 200–400 °C. The EMF value of the sensor was almost proportional to the logarithm of SO2 concentration and the sensitivity (slope) was −78 mV/decade at 300 °C. It was also seen that the sensor showed a good selectivity to SO2 against NO, NO2, CH4, CO, NH3 and CO2. Moreover, the sensor had speedy response kinetics to SO2 too, the 90% response time to 50 ppm SO2 was 10 s, and the recovery time was 35 s. On the basis of XPS analysis for the SO2-adsorbed sensing electrode, a sensing mechanism involving the mixed potential at the sensing electrode was proposed.  相似文献   

2.
The CuO-functionalized SnO2 nanowire (NW) sensors were fabricated by depositing a slurry containing SnO2 NWs on a polydimethylsiloxane (PDMS)-guided substrate and subsequently dropping Cu nitrate aqueous solution. The CuO coating increased the gas responses to 20 ppm H2S up to 74-fold. The Ra/Rg value of the CuO-doped SnO2 NWs to 20 ppm H2S was as high as 809 at 300 °C, while the cross-gas responses to 5 ppm NO2, 100 ppm CO, 200 ppm C2H5OH, and 100 ppm C3H8 were negligibly low (1.5–4.0). Moreover, the 90% response times to H2S were as short as 1–2 s at 300–400 °C. The selective detection of H2S and enhancement of the gas response were attributed to the uniform distribution of the sensitizer (CuO) on the surface of the less agglomerated network of the SnO2 NWs.  相似文献   

3.
This paper presents the ability of electrostatic sprayed tin oxide (SnO2) and tin oxide doped with copper oxide (1, 2, and 4 at.% Cu) films to detect different pollutant gases, i.e., H2S, SO2, and NO2. The influence of a copper oxide dopant on the SnO2 morphology is studied using scanning electron microscopy (SEM) technique, which reveals a small decrease in the porosity and particle size when the amount of dopant is increased. The sensing properties of the SnO2 films are greatly improved by doping, i.e., the Cu-doped SnO2 films have large response to low concentration (10 ppm) of H2S at low operating temperature (100 °C). Furthermore, no cross-sensitivity to 1 ppm NO2 and 20 ppm SO2 is observed. Among the studied films, the 1 at.% Cu-doped SnO2 layer is the most sensitive in the detection of all the studied gases.  相似文献   

4.
Detection of sulfur dioxide (SO2) at high temperature (600–750 °C) in the presence of some interferents found in combustion exhausts (NO2, NO, CO2, CO, and hydrocarbon (C3H6)) is described. The detection scheme involves use of a catalytic filter in front of a non-Nernstian (mixed-potential) sensing element. The catalytic filter was a Ni:Cr powder bed operating at 850 °C, and the sensing elements were pairs of platinum (Pt) and oxide (Ba-promoted copper chromite ((Ba,Cu)xCryOz) or Sr-modified lanthanum ferrite (LSF)) electrodes on yttria-stabilized zirconia. The Ni:Cr powder bed was capable of reducing the sensing element response to NO2, NO, CO, and C3H6, but the presence of NO2 or NO (“NOx”, at 100 ppm by volume) still interfered with the SO2 response of the Pt–(Ba,Cu)xCryOz sensing element at 600 °C, causing approximately a 7 mV (20%) reduction in the response to 120 ppm SO2 and a response equivalent to about 20 ppm SO2 in the absence of SO2. The Pt–LSF sensing element, operated at 750 °C, did not suffer from this NOx interference but at the cost of a reduced SO2 response magnitude (120 ppm SO2 yielded 10 mV, in contrast to 30 mV for the Pt-(Ba,Cu)xCryOz sensing element). The powder bed and Pt–LSF sensing element were operated continuously over approximately 350 h, and the response to SO2 drifted downward by about 7%, with most of this change occurring during the initial 100 h of operation.  相似文献   

5.
Au-doped WO3-based sensor for NO2 detection at low operating temperature   总被引:1,自引:1,他引:0  
Pure and Au-doped WO3 powders for NO2 gas detection were prepared by a colloidal chemical method, and characterized via X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The NO2 sensing properties of the sensors based on pure and Au-doped WO3 powders were investigated by HW-30A gas sensing measurement. The results showed that the gas sensing properties of the doped WO3 sensors were superior to those of the undoped one. Especially, the 1.0 wt% Au-doped WO3 sensor possessed larger response, better selectivity, faster response/recovery and better longer term stability to NO2 than the others at relatively low operating temperature (150 °C).  相似文献   

6.
Qi  Tong  Xuejun  Huitao  Li  Rui  Yi 《Sensors and actuators. B, Chemical》2008,134(1):36-42
Pure and Sm2O3-doped SnO2 are prepared through a sol–gel method and characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The sensor based on 6 wt% Sm2O3-doped SnO2 displays superior response at an operating temperature of 180 °C, and the response magnitude to 1000 ppm C2H2 can reach 63.8, which is 16.8 times larger than that of pure SnO2. This sensor also shows high sensitivity under various humidity conditions. These results make our product be a good candidate in fabricating C2H2 sensors.  相似文献   

7.
The NO2 gas sensing characteristics of semiconductor type gas sensors with channels composed of necked ZnO nanoparticles (NPs) were investigated in this study. The heat treatment of the NPs at 400 °C led to their necking and coarsening. The response of the necked-NP-based sensors was as high as 100 when exposed to 0.2 ppm of NO2 at 200 °C. As the concentration of NO2 increased to 5 ppm, their response was enhanced to approximately 400. During the repeated injection of NO2 gas with a concentration of 0.4 ppm, the sensors exhibited stable response characteristics. Furthermore, the 90% response and recovery times of the gas sensor were as fast as 13 and 10 s, respectively. These observations indicate that the non-agglomerated necking of the NPs induced by the heat treatment significantly enhances the gas sensing characteristics of the NP-based gas sensors.  相似文献   

8.
The influences of La2O3 loading on the ethanol sensing properties of SnO2 nanorods were investigated. An obvious enhancement of response was obtained. The response of 5 wt% La2O3 loaded SnO2 nanorods was up to 213 for 100 ppm ethanol at low working temperature of 200 °C, while that of pure SnO2 nanorods is 45.1. The improvement in response might be attributed to the presence of basic sites, which facilitated the dehydrogenation process. While the working temperature was increased to 300 °C, the sensor response decreased to 16 for 100 ppm ethanol. Additionally, the La2O3 loaded SnO2 nanorods sensors showed good selectivity to ethanol over methane and hydrogen. Our results demonstrated that the La2O3 loaded SnO2 nanorods were promising in fabricating high performance ethanol sensors which could work at low temperature.  相似文献   

9.
J.D.  A.  J.R.   《Sensors and actuators. B, Chemical》2009,142(1):179-184
The authors present an ab initio study of NO2 and SO2 chemisorption onto non-polar ZnO and ZnO surfaces with the aim of providing theoretical hints for further developments in gas sensors. From first principles calculations (DFT-GGA approximation), the most relevant surface reduction scenarios are analyzed and, subsequently, considered in the chemisorption study. First, calculations indicate that NO2 adsorbs avidly onto Zn surface atoms. This is compatible with the oxidizing character of NO2. Second, results also explain the sensor poisoning by SO2 adsorption (since this molecule competes with NO2 for the same adsorption sites) and indicate that poisoning can only be reverted at typical operation temperatures (T ≤ 700 °C) in the case of stoichiometric ZnO surfaces.  相似文献   

10.
Pulsed laser deposited (PLD) Y-doped BaZrO3 thin films (BaZr1-xYxO3-y/2, x = 0.2, y > 0), were investigated as to their viability for reliable humidity microsensors with long-term stability at high operating temperatures (T > 500 °C) as required for in situ point of source emissions control as used in power plant combustion processes. Defect chemistry based models and initial experimental results in recent humidity sensor literature [1] and [2]. indicate that bulk Y-doped BaZrO3 could be suitable for use in highly selective, high temperature compatible humidity sensors. In order to accomplish faster response and leverage low cost batch microfabrication technologies we have developed thin film deposition processes, characterized layer properties, fabricated and tested high temperature humidity micro sensors using these thin films. Previously published results on sputtering Y-doped BaZrO3 thin films have confirmed the principle validity of our approach [3]. However, the difficulty in controlling the stoichiometry of the films and their electrical properties as well as mud flat cracking of the films occurring either at films thicker than 400 nm or at annealing temperature above 800 °C have rendered sputtering a difficult process for the fabrication of reproducible and reliable thin film high temperature humidity microsensors, leading to the evaluation of PLD as alternative deposition method for these films.X-ray Photoelectron Spectroscopy (XPS) data was collected from as deposited samples at the sample surface as well as after 4 min of Ar+ etching. PLD samples were close to the desired stoichiometry. X-ray diffraction (XRD) spectra from all as deposited BaZrO3:Y films show that the material is polycrystalline when deposited at substrate temperatures of 800 °C. AFM results revealed that PLD samples have a particle size between 32 nm and 72 nm and root mean square (RMS) roughness between 0.2 nm and 1.2 nm. The film conductivity increases as a function of temperature (from 200 °C to 650 °C) and upon exposure to a humid atmosphere, supporting our hypothesis of a proton conduction based conduction and sensing mechanism. Humidity measurements are presented for 200–500 nm thick films from 500 °C to 650 °C at vapor pressures of between 0.05 and 0.5 atm, with 0.03–2% error in repeatability and 1.2–15.7% error in hysteresis during cycling for over 2 h. Sensitivities of up to 7.5 atm−1 for 200 nm thick PLD samples at 0.058 atm partial pressure of water were measured.  相似文献   

11.
The nitrogen dioxide (NO2) sensing capability of polypyrrole (PPy) was enhanced dramatically after functionalized with iron(III)phthalocyanine-4,4′,4″,4-tetrasulfonic acid monosodium salt (FePcTSA). The incorporated phthalocyanine was confirmed by different characterization techniques such as UV–vis spectroscopy, FTIR, GFAAS, EDAX, etc. The resistance of the functionalized PPy decreased spontaneously during exposure to NO2 gas at room temperature. This material exhibited excellent stability, reversibility, and reproducibility. The lowest response time (t50) thus obtained is 47 s with a highest response factor (ΔR/R0 × 100) of 50.25.  相似文献   

12.
One-dimensional (1D) amorphous InGaZnO4 (a-IGZO) submicron-tubes were synthesized in a method involving an electrospun polymeric fiber template and the direct RF-sputter-coating of a-IGZO films combined with subsequent calcination at 450 °C. The a-IGZO hollow fibers with a diameter of 300 nm and a shell thickness of 20–30 nm showed an amorphous structure, as confirmed by XRD and HR-TEM analyses. Gas sensors using semiconducting a-IGZO tube networks exhibited n-type gas sensing characteristics and a 3.7-fold higher gas response (Rgas/Rair = 109.5 at 2 ppm NO2) compared to (Rgas/Rair = 29.4) planar a-IGZO thin films at an operating temperature of 300 °C. The enhanced gas response of a-IGZO tubes is attributed to the greater space charge modulation depth associated with the thin shell structures and the porous networks which are readily accessible by gas.  相似文献   

13.
Fenghua  Heqing  Xiaoli  Li  Lihui  Jie  Hua  Bin 《Sensors and actuators. B, Chemical》2009,141(2):381-389
Hollow sea urchin-like α-Fe2O3 nanostructures were successfully synthesized by a hydrothermal approach using FeCl3 and Na2SO4 as raw materials, and subsequent annealing in air at 600 °C for 2 h. The hollow sea urchin-like α-Fe2O3 nanostructures with the diameters of 2–4.5 μm consist of well-aligned α-Fe2O3 nanorods with an average length of about 1 μm growing radially from the centers of the nanostructures, have a hollow interior with a diameter of about 2 μm. α-Fe2O3 nanocubes with a diameter of 700–900 nm were directly obtained by a hydrothermal reaction of FeCl3 at 140 °C for 12 h. The response Sr (Sr = Ra/Rg) of the hollow sea urchin-like α-Fe2O3 nanostructures reached 2.4, 7.5, 5.9, 14.0 and 7.5 to 56 ppm ammonia, 32 ppm formaldehyde, 18 ppm triethylamine, 34 ppm acetone, and 42 ppm ethanol, respectively, which was excess twice that of the α-Fe2O3 nanocubes and the nanoparticle aggregations. Our results demonstrated that the hollow sea urchin-like α-Fe2O3 nanostructures were very promising for gas sensors for the detection of flammable and/or toxic gases with good-sensing characteristics.  相似文献   

14.
ZnO–SnO2 nanofibers have been developed through in situ electrospinning technique and calcination. Poly(vinyl pyrrolidone) (PVP) is selected as fiber template. The composition of products can be controlled concisely by adjusting the compositions in their precursors. Under the optimized experimental conditions, the prepared product shows the desirable sensing characteristics towards ethanol gas at 300 °C, such as high response, excellent linearity in the range of 1–300 ppm, quick response time (5 s) and recovery time (6 s), good reproducibility, stability and selectivity.  相似文献   

15.
Detection of low concentrations of petroleum gas was achieved using transparent conducting SnO2 thin films doped with 0–4 wt.% caesium (Cs), deposited by spray pyrolysis technique. The electrical resistance change of the films was evaluated in the presence of LPG upon doping with different concentrations of Cs at different working temperatures in the range 250–400 °C. The investigations showed that the tin oxide thin film doped with 2% Cs with a mean grain size of 18 nm at a deposition temperature of 325 °C showed the maximum sensor response (93.4%). At a deposition temperature of 285 °C, the film doped with 3% Cs with a mean grain size of 20 nm showed a high response of 90.0% consistently. The structural properties of Cs-doped SnO2 were studied by means of X-ray diffraction (XRD); the preferential orientation of the thin films was found to be along the (3 0 1) directions. The crystallite sizes of the films determined from XRD are found to vary between 15 and 60 nm. The electrical investigations revealed that Cs-doped SnO2 thin film conductivity in a petroleum gas ambience and subsequently the sensor response depended on the dopant concentration and the deposition temperature of the film. The sensors showed a rapid response at an operating temperature of 345 °C. The long-term stability of the sensors is also reported.  相似文献   

16.
A 440 MHz wireless and passive surface acoustic wave (SAW)-based multi-gas sensor integrated with a temperature sensor was developed on a 41° YX LiNbO3 piezoelectric substrate for the simultaneous detection of CO2, NO2, and temperature. The developed sensor was composed of a SAW reflective delay lines structured by an interdigital transducer (IDT), ten reflectors, a CO2 sensitive film (Teflon AF 2400), and a NO2 sensitive film (indium tin oxide). Teflon AF 2400 was used for the CO2 sensitive film because it provides a high CO2 solubility, with good permeability and selectivity. For the NO2 sensitive film, indium tin oxide (ITO) was used. Coupling of mode (COM) modeling was conducted to determine the optimal device parameters prior to fabrication. Using the parameters determined by the simulation results, the device was fabricated and then wirelessly measured using a network analyzer. The measured reflective coefficient S11 in the time domain showed high signal/noise (S/N) ratio, small signal attenuation, and few spurious peaks. The time positions of the reflection peaks were well matched with the predicted values from the simulation. High sensitivity and selectivity were observed at each target gas testing. The obtained sensitivity was 2.12°/ppm for CO2 and 51.5°/ppm for NO2, respectively. With the integrated temperature sensor, temperature compensation was also performed during gas sensitivity evaluation process.  相似文献   

17.
The effects of the crystallographic orientation on the H2 gas sensing properties were investigated in highly oriented polycrystalline Pd-doped SnO2 films, which were obtained using rf magnetron sputtering of a Pd (0.5 wt%)-SnO2 target on various substrates (a-, m-, r-, and c-cut sapphire and quartz). All the films had a similar thickness (110 nm), root-mean-square (rms) roughness (1.3 nm), surface area, and chemical status (O, Sn, and Pd). However, the orientation of the films was strongly affected by the orientation of the substrates. The (1 0 1), (0 0 2), and (1 0 1) oriented films were grown on (a-cut), (m-cut), and (r-cut) Al2O3 substrates, respectively, and rather randomly oriented films were deposited on (0 0 0 1) (c-cut) Al2O3 and quartz substrates. In addition, the oriented Pd-doped SnO2 films were highly textured and had in-plane orientation relationships with the substrates similar to the epitaxial films. The (1 0 1) Pd-doped SnO2 films on and Al2O3 showed a considerably higher H2 sensitivity, and their gas response decreased with increasing sensing temperature (400–550 °C). The films deposited on and (0 0 0 1) Al2O3 showed the maximum sensitivity at 500 °C. The comparison of the H2 gas response between undoped and Pd-doped SnO2 films revealed that the Pd-doping shifted the optimum sensing temperature to a lower value instead of improving the gas sensitivity.  相似文献   

18.
A new sensitive pH sensor based on immobilization of the crown heteropolyanion K28Li5H7P8W48O184·92H2O (P8W48) on a electrode surface through a layer by layer assembly process is described. The immobilization is based on the electrostatic adsorption of the complex in layers of charged polyelectrolyte poly(allylamine hydrochloride) (PAH). The deposited P8W48/LBL film was investigated by cyclic voltammetry, potentiometry and electrochemical impedance spectroscopy. Compared to the electrochemical behavior of dissolved P8W48, a slight shift in the redox peak towards negative potentials is observed, which have been attributed to a slight decrease in the acidity of the interior of the P8W48/LBL film compared to the testing buffer solution. The relationship between the peak currents of the deposited P8W48/LBL film and the number of layers is shown to be linear, which demonstrates that equal amounts of P8W48 are adsorbed in each deposition layer. The P8W48/LBL modified electrode showed high sensitivities toward pH. Therefore, such electrodes were tested as pH sensors using the titration method. The resulting pH sensor has a detection range of pH 1–13, a sensitivity of 69 ± 2 mV/pH, high repeatability (<3 mV), fast response time (<7 s), low sensitivity toward change in ionic strength and nature of the supporting electrolyte, low internal resistance and a working life time of at least 3 months. Moreover, the sensor is easy to manufacture and can be easily miniaturized for measurements in micro- and nano-systems.  相似文献   

19.
Tungsten-coated carbon microspheres were prepared by one-pot hydrothermal reaction of an aqueous solution containing glucose and sodium tungstate. The spheres were converted into WO3 hollow microspheres by the decomposition of their core carbon. The [glucose]/[sodium tungstate] ratio of the stock solution determined not only the morphology of the precursors but also the phase of the powders after calcination. The WO3 hollow microspheres showed a higher gas response and more selective detection of 0.5–2.5 ppm NO2 than WO3 solid and nano-porous microspheres did. The enhanced NO2 sensing characteristics are explained in relation to the surface area, pore volume, and hollow morphology.  相似文献   

20.
W.  K.  A.  H.L. 《Sensors and actuators. B, Chemical》2009,141(2):485-490
Microsphere-templated BaCO3 films with well-defined area were deposited onto quartz crystal microbalances by thermal ink-jet printing, and the devices were characterized with respect to their microstructures and NO2 sensing characteristics. Highly porous three-dimensional BaCO3 frameworks with promising sensor characteristics were obtained. The printed thin films exhibited reversible frequency shifts following exposure to NO2 and subsequent recovery under CO/CO2 at 400 °C. The feasibility of controlled deposition of complex functional films in controlled patterns is discussed in the context of the direct-write features of ink-jet printing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号