共查询到20条相似文献,搜索用时 0 毫秒
1.
在大量的文本数据中,针对不能快速有效地提取或查找有用信息及知识这个问题,以文本相似度计算为基础的文本数据挖掘成为数据挖掘研究领域里的一个重要的课题。论文主要研究两种不同的方法 VSM余弦算法和Simhash来实现文本相似度的计算,首先采用传统的VSM余弦算法和Simhash算法,按照余弦公式通过内积最终计算出文本间的相似度大小n(0相似文献
2.
文本相似度的计算在数字图书馆系统里有着广泛的应用前景。该文采用余弦系数和向量空间模型计算文本的相似度,并给出了实现的方法。 相似文献
3.
4.
基于双语主题模型思想分析双语文本相似性,提出基于双语LDA跨语言文本相似度计算方法。先利用双语平行语料集训练双语LDA模型,再利用该模型预测新语料集主题分布,将新语料集的双语文档映射到同一个主题向量空间,结合主题分布使用余弦相似度方法计算新语料集双语文档的相似度,使用从类别间和类别内的主题分布离散度的角度改进的主题频率-逆文档频率方法计算特征主题权重。实验表明,改进后的权重计算对于基于双语LDA相似度算法的召回率有较大提高,算法对类别不受限且有较好的可靠性。 相似文献
5.
6.
文本相似度计算的一种新方法 总被引:1,自引:0,他引:1
1 引言目前信息检索技术已应用于许多领域,尤其广泛应用在Internet网络、图书馆等领域,为快速查阅文本信息提供极大便利。文本信息检索利用文本相似度描述文本与查询式之间的匹配程度。计算文本相似度的传统方法有向量空间模型,它把文本和查询式表示成以词为元素单位的向量,根据词频tf以及逆文本频率idf,赋予该向量各个分量的权值,与欧氏空间的向量1-1对应,用向量夹角的余弦值定量表示文本和查询式之间的相似度,即 相似文献
7.
基于文本分类的文档相似度计算 总被引:1,自引:0,他引:1
如何从成千上万篇文档中找出与指定文档相似的所有文档,首先要做的第一件事就是判断其类别,也就是分类;在判定类别后,再进一步计算,找出同类中所有与指定文档内容相似的文档。由于文档相似度的计算和文本分类过程很相似,所以可以借助指定文档的分类结果,即类别和文档特征向量值,通过进一步计算与同类中其他文档的相似度值,找出超过阂值的文档,即找出与指定目标内容相似的文档。 相似文献
8.
基于单词相似度的文本聚类 总被引:3,自引:1,他引:3
研究了现有的基于向量空间模型的文本聚类算法,发现这些算法都存在数据维度过高和忽略了单词之间语义关系的缺点.针对这些问题,提出一种基于单词相似度的文本聚类算法,该算法首先利用单词相似度对单词进行分类获得单词间的语义关系,然后利用产生的单词类作为向量空间的项表示文本降低了向量空间的维度,最后采用基于划分聚类方法对文本聚类.实验结果表明,相对于传统基于向量空间模型的聚类算法,该算法具有较好的聚类效果. 相似文献
9.
一种新的句子相似度度量及其在文本自动摘要中的应用 总被引:7,自引:0,他引:7
本文提出了一种新的句子相似度度量的方法并应用于文本自动摘要中。其创新处在于相似度计算不仅考虑句子中的unigram ,还考虑了bi-gram 和tri-gram ,通过回归方法将这几种相似度结果综合起来。实验证明这种相似度计算方法是有效的。同时本文还提出了一种新的,利用句子间相似度以及句子的权重的抽句
式文摘算法,在抽取出句子的同时也去掉了冗余。DUC2003、DUC2004 (Document Understanding Conference 2003 ,2004) 的评测结果征明了方法的有效性。我们的系统在DUC2004 的评测中列第二位。 相似文献
10.
根据概念相似信息,文中提出了一种新的文本相似度计算方法.新方法首先将文本转换为词向量空间模型,然后将词分解为概念集合,通过计算概念间的内积空间,得到词之间的相似度,最后根据词之间的相似度,计算文本相似性.文中的主要工作包括:1)提出了一种新的词相似度计算公式;2)提出了一种新的基于词相似度的文本相似计算方法;3)成功的将该方法应用到WEB新闻相似查询中;4)通过实验证明算法的有效性. 相似文献
11.
传统的文本相似度计算大多基于词匹配的方法,忽略了词汇语义信息,计算结果很大程度上取决于文本的词汇重复率。虽然分布式词向量可以有效表达词汇语义关系,但目前基于词向量的文本处理方法大都通过词汇串联等形式表示文本,无法体现词汇在语料库中的分布情况。 针对以上问题,本文提出了一种新的计算方法, 该方法认为基于统计的文本向量各元素之间存在相关性,且该相关性可通过词汇语义相似度表示。 因此, 本文利用词汇相似度改进了基于余弦公式的文本相似度计算方法。 实验表明该方法在 F1 值和准确度评价标准上优于其他方法。 相似文献
12.
郐媛媛 《计算机光盘软件与应用》2014,(9):302-303
文本相似度算法研究一直是文本挖掘领域非常重要的算法,指采用一定的策略比较两个文本之间的相似程度,目前文本相似度算法已经在文本分类、文本聚类、自然语言处理等多个领域崭露头角。本文主要就语义角度出发对文本之间相似度进行界定。 相似文献
13.
14.
15.
通过分析已有的基于统计和基于语义分析的文本相似性度量方法的不足,提出了一种新的基于语言网络和词项语义信息的文本相似度计算方法。对文本建立语言网络,计算网络节点综合特征值,选取TOP比例特征词表征文本,有效降低文本表示维度。计算TOP比例特征词间的相似度,以及这些词的综合特征值所占百分比以计算文本之间的相似度。利用提出的相似度计算方法在数据集上进行聚类实验,实验结果表明,提出的文本相似度计算方法,在F-度量值标准上优于传统的TF-IDF方法以及另一种基于词项语义信息的相似度量方法。 相似文献
16.
由于对文档进行分类有时并不能有效地满足信息检索的需要,文本提出了一种在文本分类的基础上的关键词分类算法,用于优化基于多关键词组合的搜索系统。 相似文献
17.
为了更好地提高短文本语义相似度分析能力,提出了基于神经网络和组合语义的短文本语义相似度分析算法。利用神经网络构建词义表示模型,结合局部和全局上下文信息学习词语在实际语境下的表示;通过句法分析,得到文本的依存关系,并依此构建组合关系树,使用组合语义模型得到整个文本的语义表示;通过计算两个语义表示结果之间的相似性来计算文本的语义相似度。实验分析结果表明,该方法能够在一定程度上提高文本语义分析能力。 相似文献
18.
基于TF-IDF和余弦相似度的文本分类方法 总被引:1,自引:0,他引:1
文本分类是文本处理的基本任务。大数据处理时代的到来致使文本分类问题面临着新的挑战。研究者已经针对不同情况提出多种文本分类算法,如KNN、朴素贝叶斯、支持向量机及一系列改进算法。这些算法的性能取决于固定数据集,不具有自学习功能。该文提出一种新的文本分类方法,包括三个步骤: 基于TF-IDF方法提取类别关键词;通过类别关键词和待分类文本关键词的相似性进行文本分类;在分类过程中更新类别关键词改进分类器性能。仿真实验结果表明,本文提出方法的准确度较目前常用方法有较大提高,在实验数据集上分类准确度达到90%,当文本数据量较大时,分类准确度可达到95%。算法初次使用时,需要一定的训练样本和训练时间,但分类时间可下降到其他算法的十分之一。该方法具有自学习模块,在分类过程中,可以根据分类经验自动更新类别关键词,保证分类器准确率,具有很强的现实应用性。 相似文献
19.
20.
层次关系是中文文本概念间存在的最为重要的关系之一,对层次关系的正确判定是进行领域本体自动构建、文本数据挖掘等信息处理的基础研究内容。先将概念间可能存在的候选层次关系罗列出来,构建词性序列语义余弦相似度和关系词语余弦相似度混合的核函数分类器,将概念间层次关系的挖掘问题转化为分类问题;再通过对文本数据进行模板标注来训练分类器;最后输入预处理后的中文文本,使用核函数分类器对候选层次关系进行判定。以空军武器装备领域的中文文本为测试数据,通过实验表明,该方法简单可靠,具有较好的正确率和召回率。 相似文献