首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Thin ribbons of the metallic glass Mg65Cu25Y10, obtained by spinning, were saturated with atomic hydrogen from electrochemical decomposition of water. The maximum amount of absorbed hydrogen was 4 mass %. The hydrogen content was determined by hot extraction. We studied the microstructure of samples with different hydrogen contents by x-ray phase analysis (from the change in the diffuse maximum), atomic force microscopy, scanning electron microscopy, and transmission electron microscopy. When the hydrogen content increases up to 3.6 mass %, the amorphous structure of the Mg65Cu25Y10 alloy is converted to a nanocrystalline structure, with formation of magnesium and yttrium hydrides at room temperature.  相似文献   

2.
The devitrification of Mg65Cu25Tb10 bulk metallic glass (BMG) has been studied by time-resolved small angle X-ray scattering (SAXS) and wide angle X-ray scattering (WAXS) simultaneously. By analyzing the interference peaks on SAXS patterns and the Bragg peaks on WAXS patterns, it is found that devitrification initiates by activation of quenched-in short-range orders. Crystallization proceeds in three stages. During stage I, icosahedral clusters are formed that transforms to a quasi-crystalline 1/1 approximant during stage II, accompanied by the formation of cubic TbMg3. In stage III, the 1/1 approximant transforms to a 2/1 approximant. The orthorhombic CuMg2 phase is formed at a higher temperature when the quasi-crystalline phase starts to decompose. Pair distribution functions were evaluated to demonstrate these structural evolutions in real space. This article is based on a presentation given in the symposium entitled “Bulk Metallic Glasses IV,” which occurred February 25–March 1, 2007 during the TMS Annual Meeting in Orlando, Florida under the auspices of the TMS/ASM Mechanical Behavior of Materials Committee.  相似文献   

3.
4.
The structural and thermomechanical properties of rapidly quenched layered amorphous–crystalline Ti50Ni25Cu25 composite materials with various ratios of amorphous and crystalline phases are studied. These layered composite materials are shown to exhibit the two-way shape memory effect accompanied by bending deformation without additional thermomechanical treatment. The ratio of amorphous and crystalline phases is found to affect the reversible change in the shape of the composite material.  相似文献   

5.
The mechanism of impact fracture of soft magnetic amorphous alloy Fe73.5Cu1Nb3Si13.5B9 ribbons in a disintegrator after heat treatment at a temperature from the range 300–700°C and the fractional composition of the formed powder are studied. The temperature ranges of a change in the mechanism of ribbon fracture are determined. The particle size distribution is shown to change weakly within the revealed temperature ranges.  相似文献   

6.
This work applies a constrained coincidence site lattice/constrained complete pattern shift lattice (CCSL/CDSCL) model and secondary O-lattice model to simulate the interfacial structure in the major side interface of Mg17Al12/Mg. The result shows that, at the orientation relationship (OR) with a small deviation (∼0.5 deg) from the Burgers OR, the secondary misfit in the interface normal to the parallel Δg vectors can be completely accommodated by the steps. The secondary dislocation networks in the habit plane and major side facet have been calculated. This article is based on a presentation made in the symposium entitled “Phase Transformations and Deformation in Magnesium Alloys,” which occurred during the Spring TMS meeting, March 14–17, 2004, in Charlotte, NC, under the auspices of ASM-MSCTS Phase Transformations Committee.  相似文献   

7.
The effect of planar flow melt spinning (PFMS) parameters on the continuity, surface quality, and structure of 10-mm-wide Fe68.5Si18.5B9Nb3Cu1 ribbons has been investigated. The change in shape and stability of the melt puddle as a function of the processing parameter was studied using a high-speed imaging system and was correlated to ribbon formation. A window of process parameters for obtaining continuous ribbons with good surface quality has been evaluated. It has been observed that thinner ribbons are found to be more continuous because of higher ductility. The higher melt temperature leads to the formation of crystalline phase in as-spun ribbons, and this deteriorates the soft magnetic properties on annealing. The experimental results are corroborated with the numerical estimates, which suggest that the critical thickness for amorphous phase formation decreases with increasing initial melt temperature.  相似文献   

8.
method for phase analysis of three-component alloys is proposed. It is based on a pair interaction model and an experimental determination of the sign of pair chemical interaction energy and includes an electron-microscopic investigation of microstructures above and below the ordering–separation phase transition temperature for each diffusion couple. This method is used to study an Ni50Co25Mo25 alloy. The phases that precipitate in this alloy over the entire heating temperature range, including the liquid state, are detected.  相似文献   

9.
The coarsening behavior of Mg2Si intermetallic particles was studied during homogenization of aluminum 6105 alloy. An industrially homogenized 6105 aluminum alloy contained large globular undissolved Mg2Si. With subsequent heat treatment at 590 °C over 1 week, it was found that the large Mg2Si precipitates coarsened with time. The coarsening of the large Mg2Si precipitates was quantified by statistical analysis of micrographs. A linear relationship between and time fits the experimental measurements quite well, indicating that the coarsening is diffusion controlled, with grain-boundary diffusion dominating volume diffusion.  相似文献   

10.
Inhibitors and oxide additives have been investigated with varying success to control high-temperature corrosion. Effect of Y2O3 on high-temperature corrosion of Superni 718 and Superni 601 superalloys was investigated in the Na2SO4-60 pct V2O5 environment at 1173 K (900 °C) for 50 cycles. Y2O3 was applied as a coating on the surfaces of the specimens. Superni 601 was found to have better corrosion resistance in comparison with Superni 718 in the Na2SO4-60 pct V2O5 environment. The Y2O3 superficial coating was successful in decreasing the reaction rate for both the superalloys. In the oxide scale of the alloy Superni 601, Y and V were observed to coexist, thereby indicating the formation of a protective YVO4 phase. There was a distinct presence of a protective Cr2O3-rich layer just above the substrate/scale interface in the alloy. Whereas Cr2O3 was present with Fe and Ni in the scale of Superni 718. Y2O3 seemed to be contributing to better adhesion of the scale, as comparatively lesser spalling was noticed in the presence of Y2O3.  相似文献   

11.
A new (Dy0.8Y0.2)Rh4B4 superconductor (the superconducting transition temperature is T c ≈ 5.5 K), which has an inherent magnetic subsystem whose properties are determined by the crystal structure of the superconductor, is synthesized at a high pressure (∼8 GPa) and t ≈ 1800°. The magnetic sublattice of the (Dy0.8Y0.2)Rh4B4 compound is found to substantially affect its superconducting properties and, in a number of cases, to lead to their anomalous variations, namely, to the absence of the traditional Meissner effect and an anomalously abrupt increase in magnetic induction B k2 (upper critical field) upon a transition of the magnetic subsystem into the antiferromagnetic state. Upon cooling from 250 to 1.6 K, the (Dy0.8Y0.2)Rh4B4 compound undergoes a number of phase transformations, namely, a paramagnet-ferrimagnet transition at a Curie temperature T C ≈ 30 K, a superconducting transition at T c ≈ 5.5 K against the background of a ferrimagnetic order, and a ferrimagnet-antiferromagnet transition (the Neel temperature is T N ≈ 2.8 K) in the retained superconducting state.  相似文献   

12.
We have investigated the mechanical behavior of a composite material consisting of a Zr57Nb5Al10Cu15.4Ni12.6 metallic glass matrix with 60 vol pct tungsten particles under uniaxial compression over a range of strain rates from 10−4 to 104 s−1. In contrast to the behavior of single-phase metallic glasses, the failure strength of the composite increases with increasing strain rate. The composite shows substantially greater plastic deformation than the unreinforced glass under both quasi-static and dynamic loading. Under quasi-static loading, the composite specimens do not fail even at nominal plastic strains in excess of 30 pct. Under dynamic loading, fracture of the composite specimens is induced by shear bands at plastic strains of approximately 20 to 30 pct. We observed evidence of shear localization in the composite on two distinct length scales. Multiple shear bands with thicknesses less than 1 μm form under both quasi-static and dynamic loading. The large plastic deformation developed in the composite specimens is due to the ability of the tungsten particles both to initiate these shear bands and to restrict their propagation. In addition, the dynamic specimens also show shear bands with thicknesses on the order of 50 μm; the tungsten particles inside these shear bands are extensively deformed. We propose that thermal softening of the tungsten particles results in a lowered constraint for shear band development, leading to earlier failure under dynamic loading.  相似文献   

13.
In this paper, the crystallization kinetics of melt-spun Cu50Zr50 amorphous alloy ribbons has been investigated using differential scanning calorimetry. Moreover, the Kissinger, Ozawa and isoconversional approaches have been used to obtain the crystallization kinetic parameters. As shown in the results, the onset crystallization activation energy E x is less than crystallization peak activation energy E p. The local activation energy E α increases at the crystallized volume fraction α < 0.2 and decreases at the rest, which suggests that crystallization process is increasingly hard (α < 0.2) at first, after which it become increasingly easy (α > 0.2). The nucleation activation energy E nucleation is greater than grain growth activation energy E growth, indicating that the nucleation is harder than growth. In terms of the local Avrami exponent n(α), it lies between 1.27 and 8, which means that crystallization mechanism in the non-isothermal crystallization is interface-controlled one- two- or three-dimensional growth with different nucleation rates.  相似文献   

14.
15.
16.
17.
The structure and mechanical properties of nanocrystalline intermetallic phase dispersed amorphous matrix composite prepared by hot isostatic pressing (HIP) of mechanically alloyed Al65Cu20Ti15 amorphous powder in the temperature range 573 K to 873 K (300 °C to 600 °C) with 1.2 GPa pressure were studied. Phase identification by X-ray diffraction (XRD) and microstructural investigation by transmission electron microscopy confirmed that sintering in this temperature range led to partial crystallization of the amorphous powder. The microstructures of the consolidated composites were found to have nanocrystalline intermetallic precipitates of Al5CuTi2, Al3Ti, AlCu, Al2Cu, and Al4Cu9 dispersed in amorphous matrix. An optimum combination of density (3.73 Mg/m3), hardness (8.96 GPa), compressive strength (1650 MPa), shear strength (850 MPa), and Young’s modulus (182 GPa) were obtained in the composite hot isostatically pressed (“hipped”) at 773 K (500 °C). Furthermore, these results were compared with those from earlier studies based on conventional sintering (CCS), high pressure sintering (HPS), and pulse plasma sintering (PPS). HIP appears to be the most preferred process for achieving an optimum combination of density and mechanical properties in amorphous-nanocrystalline intermetallic composites at temperatures ≤773 K (500 °C), while HPS is most suited for bulk amorphous alloys. Both density and volume fraction of intermetallic dispersoids were found to influence the mechanical properties of the composites.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号