首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method of generating a synthetic ambient wind field in neutral atmosphere is described and verified for modelling the effect of wind shear and turbulence on a wind turbine wake using the flow solver EllipSys3D. The method uses distributed volume forces to represent turbulent fluctuations, superimposed on top of a mean deterministic shear layer consistent with that used in the IEC standard for wind turbine load calculations. First, the method is evaluated by running a series of large‐eddy simulations in an empty domain, where the imposed turbulence and wind shear is allowed to reach a fully developed stage in the domain. The performance of the method is verified by comparing the turbulence intensity and spectral distribution of the turbulent energy to the spectral distribution of turbulence generated by the IEC suggested Mann model. Second, the synthetic turbulence and wind shear is used as input for simulations with a wind turbine, represented by an actuator line model, to evaluate the development of turbulence in a wind turbine wake. The resulting turbulence intensity and spectral distribution, as well as the meandering of the wake, are compared to field data. Overall, the performance of the synthetic methods is found to be adequate to model atmospheric turbulence, and the wake flow results of the model are in good agreement with field data. An investigation is also carried out to estimate the wake transport velocity, used to model wake meandering in lower‐order models. The conclusion is that the appropriate transport velocity of the wake lies somewhere between the centre velocity of the wake deficit and the free stream velocity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
Shengbai Xie  Cristina Archer 《风能》2015,18(10):1815-1838
Mean and turbulent properties of the wake generated by a single wind turbine are studied in this paper with a new large eddy simulation (LES) code, the wind turbine and turbulence simulator (WiTTS hereafter). WiTTS uses a scale‐dependent Lagrangian dynamical model of the sub‐grid shear stress and actuator lines to simulate the effects of the rotating blades. WiTTS is first tested by simulating neutral boundary layers without and with a wind turbine and then used to study the common assumptions of self‐similarity and axisymmetry of the wake under neutral conditions for a variety of wind speeds and turbine properties. We find that the wind velocity deficit generally remains self similarity to a Gaussian distribution in the horizontal. In the vertical, the Gaussian self‐similarity is still valid in the upper part of the wake, but it breaks down in the region of the wake close to the ground. The horizontal expansion of the wake is always faster and greater than the vertical expansion under neutral stability due to wind shear and impact with the ground. Two modifications to existing equations for the mean velocity deficit and the maximum added turbulence intensity are proposed and successfully tested. The anisotropic wake expansion is taken into account in the modified model of the mean velocity deficit. Turbulent kinetic energy (TKE) budgets show that production and advection exceed dissipation and turbulent transport. The nacelle causes significant increase of every term in the TKE budget in the near wake. In conclusion, WiTTS performs satisfactorily in the rotor region of wind turbine wakes under neutral stability. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Aerodynamic wake interaction between commercial scale wind turbines can be a significant source of power losses and increased fatigue loads across a wind farm. Significant research has been dedicated to the study of wind turbine wakes and wake model development. This paper profiles influential wake regions for an onshore wind farm using 6 months of recorded SCADA (supervisory control and data acquisition) data. An average wind velocity deficit of over 30% was observed corresponding to power coefficient losses of 0.2 in the wake region. Wind speed fluctuations are also quantified for an array of turbines, inferring an increase in turbulence within the wake region. A study of yaw data within the array showed turbine nacelle misalignment under a range of downstream wake angles, indicating a characteristic of wind turbine behaviour not generally considered in wake studies. The turbines yaw independently in order to capture the increased wind speeds present due to the lateral influx of turbulent wind, contrary to many experimental and simulation methods found in the literature. Improvements are suggested for wind farm control strategies that may improve farm‐wide power output. Additionally, possible causes for wind farm wake model overestimation of wake losses are proposed.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Incident flows on wind turbines are often highly turbulent, because these devices operate in the atmospheric boundary layer and often in the wake of other wind turbines. This article presents experimental investigations of the effects of a high turbulence level on wind turbine aerodynamics. Power and thrust are measured on a horizontal axis wind turbine model in the ‘Lucien Malavard’ wind tunnel. A grid is used to generate three turbulence levels (4·4%, 9% and 12%) with integral length scale of the order of magnitude of the chord length. Experiments show little effect of turbulence on the wind turbine model power and thrust. This can be justified by analysis of the aerodynamic loads along the blade. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
This study presents the external wind conditions for the design and assessment of wind turbine loading in tropical cyclone regions, including physical constants, wind speed (cyclone classes), wind shear, turbulence intensity, turbulence length scale and turbulence spectral models. For the extreme condition, this study focuses on the wind characteristics of the cyclone eye-wall region that carries the strongest wind. For the dynamic response of wind turbine structures, it is worth the effort to characterize the size of eddies constituting turbulent wind. The turbulence integral length scale for cyclone wind is defined and validated with various measurements. Moreover, several turbulence spectral models are validated with field measurements and the ESDU von Karman model gives the best fit. Based on the external wind conditions, a new turbulent cyclone wind model is created with the associated load case(s). A state-of-the-art load analysis is performed using this new cyclone wind model and the results for the relevant turbine components are compared with the existing loads envelope.  相似文献   

6.
In the present work, the wake development behind small‐scale wind turbines is studied when introducing local topography variations consisting of a series of sinusoidal hills. Additionally, wind‐tunnel tests with homogeneous and sheared turbulent inflows were performed to understand how shear and ambient turbulence influence the results. The scale of the wind‐turbine models was about 1000 times smaller than full‐size turbines, suggesting that the present results should only be qualitatively extrapolated to real‐field scenarios. Wind‐tunnel measurements were made by means of stereoscopic particle image velocimetry to characterize the flow velocity in planes perpendicular to the flow direction. Over flat terrain, the wind‐turbine wake was seen to slowly approach the ground while it propagated downstream. When introducing hilly terrain, the downward wake deflection was enhanced in response to flow variations induced by the hills, and the turbulent kinetic energy content in the wake increased because of the speed‐up seen over the hills. The combined wake observed behind 2 streamwise aligned turbines was more diffused and when introducing hills, it was more prone to deflect towards the ground compared to the wake behind an isolated turbine. Since wake interactions are common at sites with multiple turbines, this suggested that it is important to consider the local hill‐induced velocity variations when onshore wind farms are analysed. Differences in the flow fields were seen when introducing either homogeneous or sheared turbulent inflow conditions, emphasizing the importance of accounting for the prevailing turbulence conditions at a given wind‐farm site to accurately capture the downstream wake development.  相似文献   

7.
Vertical wind shear is one of the dominating causes of load variations on the blades of a horizontal axis wind turbine. To alleviate the varying loads, wind turbine control systems have been augmented with sensors and actuators for individual pitch control. However, the loads caused by a vertical wind shear can also be affected through yaw misalignment. Recent studies of yaw control have been focused on improving the yaw alignment to increase the power capture at below rated wind speeds. In this study, the potential of alleviating blade load variations induced by the wind shear through yaw misalignment is assessed. The study is performed through simulations of a reference turbine. The study shows that optimal yaw misalignment angles for minimizing the blade load variations can be identified for both deterministic and turbulent inflows. It is shown that the optimal yaw misalignment angles can be applied without power loss for wind speeds above rated wind speed. In deterministic inflow, it is shown that the range of the steady‐state blade load variations can be reduced by up to 70%. For turbulent inflows, it is shown that the potential blade fatigue load reductions depend on the turbulence level. In inflows with high levels of turbulence, the observed blade fatigue load reductions are small, whereas the blade fatigue loads are reduced by 20% at low turbulence levels. For both deterministic and turbulent inflows, it is seen that the blade load reductions are penalized by increased load variations on the non‐rotating turbine parts. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
A high fidelity approach for wind turbine aero-elastic simulations including explicit representation of the atmospheric wind turbulence is presented. The approach uses a dynamic overset computational fluid dynamics (CFD) code for the aerodynamics coupled with a multi-body dynamics (MBD) code for the motion responses to the aerodynamic loads. Mann's wind turbulence model was implemented into the CFD code as boundary and initial conditions. The wind turbulence model was validated by comparing the theoretical one-point spectrum for the three components of the velocity fluctuations, and by comparing the expected statistics from the CFD simulated wind turbulent field with the explicit wind turbulence inlet boundary from Mann model. Extensive simulations based on the proposed coupled approach were conducted with the conceptual NREL 5-MW offshore wind turbine in an increasing level of complexity, analyzing the turbine behavior as elasticity, wind shear and atmospheric wind turbulence are added to the simulations. Results are compared with the publicly available simulations results from OC3 participants, showing good agreement for the aerodynamic loads and blade tip deflections in time and frequency domains. Wind turbulence/turbine interaction was examined for the wake flow. It was found that explicit turbulence addition results in considerably increased wake diffusion. The coupled CFD/MBD approach can be extended to include multibody models of the shaft, bearings, gearbox and generator, resulting in a promising tool for wind turbine design under complex operational environments.  相似文献   

9.
Here, we quantify relationships between wind farm efficiency and wind speed, direction, turbulence and atmospheric stability using power output from the large offshore wind farm at Nysted in Denmark. Wake losses are, as expected, most strongly related to wind speed variations through the turbine thrust coefficient; with direction, atmospheric stability and turbulence as important second order effects. While the wind farm efficiency is highly dependent on the distribution of wind speeds and wind direction, it is shown that the impact of turbine spacing on wake losses and turbine efficiency can be quantified, albeit with relatively large uncertainty due to stochastic effects in the data. There is evidence of the ‘deep array effect’ in that wake losses in the centre of the wind farm are under‐estimated by the wind farm model WAsP, although overall efficiency of the wind farm is well predicted due to compensating edge effects. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
This study shows that turbulent kinetic energy (TKE) estimates, derived from static LiDARs in Doppler Beam Swing (DBS) mode, permit a qualitative and quantitative characterization and analysis of turbulent structures as wind turbine wakes, and convective or shear generated eddies in the lower atmospheric boundary layer. The analysed data, collected by a WINDCUBE™ v1 in a wind park in Austria, is compared to WINDCUBE™ v1 and sonic data from the WINd Turbine Wake EXperiment Wieringermeer (WINTWEX-W). Although turbulence measurements with a WINDCUBE™ v1 are limited to a specific length scale, processed measurements above this threshold are in a good agreement with sonic anemometer data. In contrast to the commonly used turbulence intensity, the calculation of TKE not only provides an appropriate measure of turbulence intensities but also gives an insight into its origin. The processed data show typical wake characteristics, as flow decelerations, turbulence enhancement and wake rotation. By comparing these turbulence characteristics to other turbulent structures in the atmospheric boundary layer, we found that convection driven eddies in the surface layer have similar turbulence characteristics as turbine wakes, which makes convective weather situations relevant for wind turbine fatigue considerations.  相似文献   

11.
Michael J. Werle 《风能》2016,19(2):279-299
An engineering model is presented for predicting the performance of a single turbine located in an incoming turbulent, sheared, wind velocity field. The approach used is a variant of the well‐known and documented Ainslie eddy viscosity approach as also employed in the Direct Wake Meandering model. It incorporates a new and simple means of representing the rotor's loading profile, initializing the calculations, simplifying the wakes' shear layer mixing model and accounting for wind shear effects. Additionally, two figures of merit are employed for assessing the reliability of all data used and predictions provided. The first, a wake momentum‐flux/thrust parameter, is used for quantitatively assessing the accuracy and utility of both measured and/or computational wake data. The second, a rotor swept area wake‐averaged velocity, is employed as a single quantitative measure of a turbine's impact on its downstream neighbor. Through detailed comparisons with three independent state‐of‐the‐art Computational Fluid Dynamic generated datasets and a field‐measured dataset, the current model is shown to be accurate for turbine rated power levels from 100 kW to 2.3 MW, wind speeds of 6 to 22 m s?1 (corresponding to turbine thrust coefficient levels of 0.14 to 0.8) and free‐stream turbulence levels from 0% to 16%. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Field‐scale and wind tunnel experiments were conducted in the 2D to 6D turbine wake region to investigate the effect of geometric and Reynolds number scaling on wake meandering. Five field deployments took place: 4 in the wake of a single 2.5‐MW wind turbine and 1 at a wind farm with numerous 2‐MW turbines. The experiments occurred under near‐neutral thermal conditions. Ground‐based lidar was used to measure wake velocities, and a vertical array of met‐mounted sonic anemometers were used to characterize inflow conditions. Laboratory tests were conducted in an atmospheric boundary layer wind tunnel for comparison with the field results. Treatment of the low‐resolution lidar measurements is discussed, including an empirical correction to velocity spectra using colocated lidar and sonic anemometer. Spectral analysis on the laboratory‐ and utility‐scale measurements confirms a meandering frequency that scales with the Strouhal number St = fD/U based on the turbine rotor diameter D. The scaling indicates the importance of the rotor‐scaled annular shear layer to the dynamics of meandering at the field scale, which is consistent with findings of previous wind tunnel and computational studies. The field and tunnel spectra also reveal a deficit in large‐scale turbulent energy, signaling a sheltering effect of the turbine, which blocks or deflects the largest flow scales of the incoming flow. Two different mechanisms for wake meandering—large scales of the incoming flow and shear instabilities at relatively smaller scales—are discussed and inferred to be related to the turbulent kinetic energy excess and deficit observed in the wake velocity spectra.  相似文献   

13.
Wind measurements were performed with the UTD mobile LiDAR station for an onshore wind farm located in Texas with the aim of characterizing evolution of wind‐turbine wakes for different hub‐height wind speeds and regimes of the static atmospheric stability. The wind velocity field was measured by means of a scanning Doppler wind LiDAR, while atmospheric boundary layer and turbine parameters were monitored through a met‐tower and SCADA, respectively. The wake measurements are clustered and their ensemble statistics retrieved as functions of the hub‐height wind speed and the atmospheric stability regime, which is characterized either with the Bulk Richardson number or wind turbulence intensity at hub height. The cluster analysis of the LiDAR measurements has singled out that the turbine thrust coefficient is the main parameter driving the variability of the velocity deficit in the near wake. In contrast, atmospheric stability has negligible influence on the near‐wake velocity field, while it affects noticeably the far‐wake evolution and recovery. A secondary effect on wake‐recovery rate is observed as a function of the rotor thrust coefficient. For higher thrust coefficients, the enhanced wake‐generated turbulence fosters wake recovery. A semi‐empirical model is formulated to predict the maximum wake velocity deficit as a function of the downstream distance using the rotor thrust coefficient and the incoming turbulence intensity at hub height as input. The cluster analysis of the LiDAR measurements and the ensemble statistics calculated through the Barnes scheme have enabled to generate a valuable dataset for development and assessment of wind farm models.  相似文献   

14.
Light detection and ranging (LIDAR) systems are able to measure the speed of incoming wind before it reaches a wind turbine rotor. These preview wind measurements can be used in feedforward control systems designed to reduce turbine structural loads. However, the degree to which such preview‐based control techniques can reduce loads by reacting to turbulence depends on how accurately the incoming wind field can be measured. This study examines the accuracy of different measurement scenarios that rely on coherent continuous‐wave or pulsed Doppler LIDAR systems, in terms of root‐mean‐square measurement error, to determine their applicability to feedforward control. In particular, the impacts of measurement range, angular offset of the LIDAR beam from the wind direction, and measurement noise are studied for various wind conditions. A realistic simulation case involving a scanning LIDAR unit mounted in the spinner of a MW‐scale wind turbine is studied in depth, with emphasis on preview distances that provide minimum measurement error for a specific scan radius. Measurement error is analyzed for LIDAR‐based estimates of point wind speeds at the rotor as well as spanwise averaged blade effective wind speeds. The impact of turbulence structures with high coherent turbulent kinetic energy on measurement error is discussed as well. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Wind parks are often cited in complex terrain whose features determine the wind flow over the area. Results from a field experiment, comprising in-situ and remote sensing techniques (high-resolution acoustic sounders), concerning the upwind area and the near-wake region behind a single medium-sized wind turbine are presented. The experimental site is the Samos Island Wind Park installed on top of a 390 m-high saddle. Because of the topography, wind speed acceleration and channeling effects are expected; thus, the commonly used logarithmic profile is not valid, and the choice of a representative surface roughness length zo is difficult. Interesting features of the profiles of the standard deviation of the ambient wind speed are also presented. The obtained results reveal a nonlinear interaction of the near wake with the turbine-tower shadowing, while cross-wind wake profiles indicate a potential core structure. The effect of ambient turbulence is apparent, especially at lower wind speeds, even at a distance of one rotor diameter (1 D) behind the turbine. The wake centerline at distances greater than 1 D is often observed at heights greater than the hub-height and attributed to the wind flow characteristics over the Wind Park. Finally, evidence of rotational motion inside the wake is identified.  相似文献   

16.
Wind data collected at nine meteorological towers at the Goodnoe Hills MOD-2 wind turbine site were analyzed to characterize the wind flow over the site both in the absence and presence of wind turbine wakes. Free-flow characteristics examined were the variability of wind speed and turbulence intensity across the site as a function of wind direction and surface roughness. The nine towers' data revealed that scattered areas of trees upwind of the site caused pronounced variations in the wind flow over the site. At two towers that were frequently downwind of an extensive grove of trees, up to 30% reductions in wind speed and a factor of 2 to 3 increase in turbulence intensity were measured. A substantial increase in the magnitude of the wind gusts, as well as a considerable decrease in the mean wind speed, was observed when a tower was downwind of the trees.Wind turbine wake characteristics analyzed included the average velocity deficits, wake turbulence, wake width, wake trajectory, vertical profile of the wake, and the stratification of wake properties as a function of the ambient wind speed and turbulence intensity. The wind turbine rotor disk spanned a height of 15 m to 107 m. The nine towers' data permitted a detailed analysis of the wake behavior at a height of 32 m at various downwind distances from 2 to 10 rotor diameters (D). The relationship between velocity deficit and downwind distance was surprisingly linear, with average maximum deficits ranging from 34% at 2 D to 7% at 10 D. Largest deficits were at low wind speeds and low turbulence intensities. Average wake widths were 2.8 D at a downwind distance of 10 D. Implications for turbine spacing are that, for a wind farm with a 10-D row separation, array losses would be significantly greater for a 2-D than a 3-D spacing because of incremental effects caused by overlapping wakes. Other interesting wake properties observed were the wake turbulence (which was greatest along the flanks of the wake). the vertical variation of deficits (which were greater below hub height than above), and the trajectory of the wake (which was essentially straight).  相似文献   

17.
High resolution measurements of wind speed and energy generation from an instrumented Bergey XL.1 small wind turbine were used to investigate the effect of ambient turbulence levels on wind turbine energy production. It was found that ambient turbulent intensity impacts energy production, but that the impact is different at different wind speeds. At low wind speeds, increased turbulence appeared to increase energy production from the turbine. However, at wind speeds near the turbine furling speed, elevated turbulence resulted in decreased energy production, likely to turbulent gusts initiating furling events. Investigation of measurements recorded at 1 Hz showed a time lag of one to 2 s between a change in wind speed and the resulting change in energy production. Transient changes in wind speed of only 1 s duration did not impact energy production, however, longer duration changes in wind speed were tracked reasonably well by energy production.  相似文献   

18.
To identify the influence of wind shear and turbulence on wind turbine performance, flat terrain wind profiles are analysed up to a height of 160 m. The profiles' shapes are found to extend from no shear to high wind shear, and on many occasions, local maxima within the profiles are also observed. Assuming a certain turbine hub height, the profiles with hub‐height wind speeds between 6 m s?1 and 8 m s?1 are normalized at 7 m s?1 and grouped to a number of mean shear profiles. The energy in the profiles varies considerably for the same hub‐height wind speed. These profiles are then used as input to a Blade Element Momentum model that simulates the Siemens 3.6 MW wind turbine. The analysis is carried out as time series simulations where the electrical power is the primary characterization parameter. The results of the simulations indicate that wind speed measurements at different heights over the swept rotor area would allow the determination of the electrical power as a function of an ‘equivalent wind speed’ where wind shear and turbulence intensity are taken into account. Electrical power is found to correlate significantly better to the equivalent wind speed than to the single point hub‐height wind speed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
Simulations of wind turbine loads for the NREL 5 MW reference wind turbine under diabatic conditions are performed. The diabatic conditions are incorporated in the input wind field in the form of wind profile and turbulence. The simulations are carried out for mean wind speeds between 3 and 16 m s ? 1 at the turbine hub height. The loads are quantified as the cumulative sum of the damage equivalent load for different wind speeds that are weighted according to the wind speed and stability distribution. Four sites with a different wind speed and stability distribution are used for comparison. The turbulence and wind profile from only one site is used in the load calculations, which are then weighted according to wind speed and stability distributions at different sites. It is observed that atmospheric stability influences the tower and rotor loads. The difference in the calculated tower loads using diabatic wind conditions and those obtained assuming neutral conditions only is up to 17%, whereas the difference for the rotor loads is up to 13%. The blade loads are hardly influenced by atmospheric stability, where the difference between the calculated loads using diabatic and neutral input wind conditions is up to 3% only. The wind profiles and turbulence under diabatic conditions have contrasting influences on the loads; for example, under stable conditions, loads induced by the wind profile are larger because of increased wind shear, whereas those induced by turbulence are lower because of less turbulent energy. The tower base loads are mainly influenced by diabatic turbulence, whereas the rotor loads are influenced by diabatic wind profiles. The blade loads are influenced by both, diabatic wind profile and turbulence, that leads to nullifying the contrasting influences on the loads. The importance of using a detailed boundary‐layer wind profile model is also demonstrated. The difference in the calculated blade and rotor loads is up to 6% and 8%, respectively, when only the surface‐layer wind profile model is used in comparison with those obtained using a boundary‐layer wind profile model. Finally, a comparison of the calculated loads obtained using site‐specific and International Electrotechnical Commission (IEC) wind conditions is carried out. It is observed that the IEC loads are up to 96% larger than those obtained using site‐specific wind conditions.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
When a wind turbine works in yaw, the wake intensity and the power production of the turbine become slightly smaller and a deflection of the wake is induced. Therefore, a good understanding of this effect would allow an active control of the yaw angle of upstream turbines to steer the wake away from downstream machines, reducing its effect on them. In wind farms where interaction between turbines is significant, it is of interest to maximize the power output from the wind farm as a whole and to reduce fatigue loads on downstream turbines due to the increase of turbulence intensity in wakes. A large eddy simulation model with particular wind boundary conditions has been used recently to simulate and characterize the turbulence generated by the presence of a wind turbine and its evolution downstream the machine. The simplified turbine is placed within an environment in which relevant flow properties like wind speed profile, turbulence intensity and the anisotropy of turbulence are found to be similar to the ones of the neutral atmosphere. In this work, the model is used to characterize the wake deflection for a range of yaw angles and thrust coefficients of the turbine. The results are compared with experimental data obtained by other authors with a particle image velocimetry technique from wind tunnel experiments. Also, a comparison with simple analytical correlations is carried out. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号