首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Solid particle erosion is identified as a major wear process occurring in numerous industrial applications. A number of test parameters influence the behavior of the materials during this wear process. Particle shape is one of the key factors, which is often discussed for ductile or brittle materials in the literature, but a comparative study of ductile and brittle materials showing an effect of particle shape has not been addressed in detail until now. The present work discusses the influence of erodent shape on the wear behavior of a ductile (Ti-6Al-4 V alloy) and a brittle (TiN coating) material during the erosion process. Investigations are performed in an erosion test rig where the ductile and brittle materials are charged with spherical and angular SiO2 particles at normal impact. Results show an inverse erosion behavior of ductile and brittle materials with the variation in particle shape. Ductile materials show low material removal with spherical particles, whereas brittle materials show low material removal rates with angular ones. This work also provides an analysis of the material removal phenomenon to understand the effect of particle shape on tested materials. Since materials removal phenomenon in ductile materials is often reported in the literature, this work addresses the material removal behavior especially in ceramic coatings.  相似文献   

2.
J.A. Laitone 《Wear》1979,56(1):239-246
Experimental investigations of velocity effects on the erosion of a ductile material by aerodynamically entrained solid particles indicate that erosion varies with the fourth power of velocity in normal or 90° impacts. For smaller angles of attack the exponent is less than 4 but greater than 2. Previous quantitative erosion models do not predict these high exponent values. In this study the two-phase fluid mechanical system is analyzed and an analytical expression is presented that predicts particle impact speeds varying with the square of the fluid free stream speed in normal impacts. It is shown that the high values found experimentally are the result of aerodynamic effects alone.  相似文献   

3.
J.W. Edington  I.G. Wright 《Wear》1978,48(1):131-144
The erosion behavior of metals and alloys by solid particles entrained in relatively slow moving gases is of current interest as a result of ongoing efforts in coal conversion and the consequent production of dust-laden gases. Haynes Stellite 6B represents a typical alloy used for erosive wear resistance in such situations and also provides an appropriate alloy for the study of the mechanisms of erosion because it comprises essentially large brittle carbide phases in a ductile matrix. A scanning electron microscope study of the surface of Stellite 6B after erosion by alumina particles is described, and the types of erosion damage incurred by the ductile metal matrix and the brittle carbides are characterized. The only mechanism of material loss of the ductile metal for which positive evidence was found was cutting, with the possibility that fracture on a very fine scale may also be involved. The mechanism of material removal from the carbides appeared to be by surface crack interlinkage. Under the conditions studied, corners of the eroding alumina particles were found to break off and to adhere to the alloy or carbide surface; at the highest impact velocity studied an extensive layer of embedded alumina fragments was built up on the alloy surface and probably modified its erosion behavior.  相似文献   

4.
Performance of hydropower plant is severely affected by the presence of sand particles in river water. Degree of degradation significantly depends on the level of operating parameters (velocity, impingement angle, concentration, particle size and shape), which is further related to erosion mechanism. In this investigation, the effect of some of these operating parameters on erosion mechanism of generally used hydroturbine steel, CA6NM (13Cr4Ni), is reported. Morphology and variation in the martensite and austenite phases of the eroded surfaces were investigated using SEM and XRD. It was observed that velocity and impingement angle affect the erosion mechanism of CA6NM steel. Erosion mechanism was also significantly affected by the radial distance from the impact zone. Primary mechanism responsible for the removal of material at normal impingement angle was the formation and removal of platelets. At acute impingement angle, ploughing was observed to be one of the prime mechanisms responsible for the loss of the material. Other than these two well-known erosion mechanisms, the presence of another two erosion mechanisms was also observed. Models have been proposed for these unfamiliar erosion mechanisms. Interaction amongst different operating parameters was studied using line and contour plots. It was observed that the interaction between velocity and concentration was most significant. Using the experimental results, a statistical model based on regression approach was developed. Validity of this statistical model was checked using the experimental results from the literature and present study.  相似文献   

5.
A.K. Cousens  I.M. Hutchings 《Wear》1983,88(3):335-348
Detailed observations of the mechanism of material removal in aluminium alloys eroded at normal incidence by spherical particles are reported in this paper.Eroded specimens were examined by scanning electron microscopy and were sectioned for metallographic examination. Important features observed included surface ripples of uniform wavelength and the formation of platelets on the surface. Beneath each surface examined was a layer, clearly delineated from the bulk material, with approximately four times the hardness of the bulk. This layer had a laminar structure and contained numerous embedded fragments of erodent particles. The layer was of relatively uniform thickness and was perforated in places by bulk material penetrating to the surface. Markers were placed beneath the surface of the specimens; after the specimens had been sectioned at different stages of erosion, the movement and distortion of the markers enabled the following mechanism of erosion to be identified.In the early stages of erosion, before a linear erosion rate is established, the subsurface microstructure is developed. Then, by a process akin to backward extrusion, bulk material is forced to the surface through fissures in the hard layer. The breaks in the layer coincide with peaks in the surface topography. The softer material is beaten into platelets by subsequent particle impacts, and wear results from the detachment of these platelets.  相似文献   

6.
蓝宝石衬底双面研磨的材料去除机理研究   总被引:1,自引:0,他引:1  
对蓝宝石双面研磨加工进行了实验研究,借助SEM观察被加工工件表面,发现双面研磨加工的工件表面存有磨粒的二体、三体延性和磨损加工痕迹;建立了材料的理论去除模型并进行了计算,且与实验加工值进行了对比。结果表明,蓝宝石双面研磨中同时存在延性去除和脆性去除,该模型可以定性地描述双面研磨加工材料的去除率。  相似文献   

7.
The response of Al-Mg and Al-Cu alloys to multiple liquid impact in the velocity range 90 –148 m s−1 has been investigated. The variation in erosion rate with Al-Mg composition is discussed in terms of a change in the erosion mechanism from ductile rupture of small particles to the removal of whole grains by intercrystalline fracture. This transition occurs with both increased magnesium content and increased velocity of impact. In contrast, Al-4%Cu fails by a mixture of ductile rupture and transgranular fracture The latter mode exhibits river patterns typical of cleavage but occasionally fatigue-like striations are also visible.  相似文献   

8.
Manish Roy 《摩擦学汇刊》2013,56(6):1028-1036
Solid particle erosion is an important material degradation process. One way of improving the erosion resistance of a material is to suitably modify the surface. Electrospark deposition (ESD) is a well-known surface modification process. Operational simplicity, low capital cost, and low operational cost of the ESD process have made it attractive for high-technology areas in engineering industries. Tungsten carbide (WC) is considered a potential hard material for erosion-resistant application. This material can be deposited by ESD. The present investigation has been undertaken to evaluate the room-temperature erosion response of WC coating deposited by ESD and to compare the erosion behavior of this coating with that of detonation-sprayed WC-Co coating. WC coatings were deposited on mild steel (MS) and aluminum substrate by ESD. Similarly, WC-12% Co coatings were deposited on MS and Al by detonation spraying. The microstructural features and mechanical properties of these coatings were characterized using optical microscopy, scanning electron microscopy (SEM), X-ray diffraction, and microhardness testing. The solid particle erosion rate was determined using an erosion test rig. The morphology of the eroded surfaces and the areas beneath the eroded surfaces were examined by means of SEM. The results showed that the WC coating by ESD improves erosion resistance. Although most coatings exhibit a ductile erosion response, WC coating by ESD on Al substrate exhibits a brittle erosion response. Material loss from ESD coating on Al occurs due to the joining of preexisting cracks and the removal of chunk of material.  相似文献   

9.
A 100-h-long cavitation erosion experiment was performed on a sample of polytetrafluoroethelyene (PTFE). The weight loss curve of PTFE was different from that of metals, and the erosion process was characterized by two stages, each with a distinct erosion rate. Morphology studies on the erosion pits and X-ray diffraction analysis of the eroded surfaces revealed that brittle fracture was the main reason for the higher erosion rate at the beginning of the erosion process, while ductile fracture dominated the weight loss process later in the erosion process, thereby reducing the erosion rate. Based on these results, we consider that this transition from brittle to ductile fracture was responsible for the different erosion rates at the two different erosion stages.  相似文献   

10.
M. Takaffoli  M. Papini 《Wear》2012,274(1-2):648-655
In the accompanying paper (M. Takaffoli, M. Papini, Numerical simulation of solid particle impacts on Al6061-T6 Part I: Three dimensional representation of angular particles), it was demonstrated that realistic 3D models of angular particles could be generated and used with a smoothed particle hydrodynamics model to simulate the damage done to an Al6061-T6 target due to many non-overlapping particle impacts. In this paper, the same methodology was used to simulate overlapping impacts, and thus the material removal mechanisms associated with the solid particle erosion of this material. The evolution of the topography of the blasted surface was simulated, and the surface ripple patterns that typically form during the erosion of aluminum alloys were observed. The predicted volumetric erosion rates at different impact angles were, on average, within 7% of those measured in erosion experiments. An investigation of the simulated trajectory of the impacting particles revealed the cooperative contribution of overlapping impacts to material loss, and solid particle erosion mechanisms such as the micromachining of chips, the ploughing of craters, and the formation, forging and knocking off of crater lips. The results indicate that numerical simulation of the solid particle erosion of ductile metals by realistic angular particles is possible.  相似文献   

11.
Y. Shida  H. Fujikawa 《Wear》1985,103(4):281-296
The particle erosion behaviour of typical boiler tube materials, including carbon steel, low alloy steels and austenitic steels, at elevated temperatures up to 650 °C was studied using irregularly shaped silica particles. Using 304 steel, the influence of various factors, namely particle concentration, velocity and impingement angle, was examined. The erosion behaviour did not seem to differ significantly from that obtained at room temperature. The erosion rate was a linear function of the particle concentration. The velocity exponents obtained at 300 and 650 °C were both approximately 2.8. The peak impingement angle was at acute angles of 20° – 30°, with a tendency for the peak angle to be slightly higher at 300 °C than at 650 °C. However, the temperature effect was clearly observed in that the erosion rate at acute impingement angles increased significantly with the temperature suggesting that the steel tends to show a behaviour more typical of ductile materials as the temperature is increased. The erosion morphologies at low angles indicated cutting for every temperature used and the lengths of the cutting tracks obtained at 20° also increased with temperature.The erosion rate varied significantly between materials, e.g. the alloy (Incoloy) 800 eroded the most and the 12Cr-1Mo-V steel eroded the least at every temperature used, although every material showed an increase in the erosion rate with temperature. From an attempt to compare the erosion rate data obtained at 20° for every material at every temperature with the tensile properties of the steels, it was found that the yield strength of materials correlates reasonably well with the erosion rate. The erosion rate was apparently proportional to the reciprocal of the yield strength, suggesting that the flow stress included in Finnie's cutting theory may be conveniently substituted by the yield strength multiplied by a constant.  相似文献   

12.
Ceramic matrix composites of type C/SiC with superior properties have got increasing importance in many fields of industry, especially in the aerospace area. Rotary ultrasonic machining is a high-efficiency processing technology for these advanced materials. However, due to the inhomogeneity and anisotropy of these composites, the machining process is still challenging to achieve desired result due to the lack of understanding and control of material removal mechanism. In this paper, the maximum depth of penetration by diamond abrasives in workpiece material is proposed to quantify the material removal modes. A model of maximum depth of penetration for rotary ultrasonic face machining (RUFM) was developed based on the indentation theory. An experimental RUFM of C/SiC was carried out, and it revealed that the material removal mechanism transited from ductile mode to brittle fracture mode with the decrease of cutting speed. Similar transition was observed with the increase of feed rate and cutting depth. By comparing the measured cutting force with simulation, a critical depth of penetration for the cutting mechanism transition was defined at about 4 μm. The processed surface topography was studied, and the transition of material removal modes was identified by the sudden change of the 3D surface roughness map at the critical penetration depth. Thus, the maximum depth of penetration model developed in this paper can be applied to identify the ductile or brittle fracture removal mode in RUFM of C/SiC using the cutting parameters. This allows controlling the material removal mechanism to achieve desired machining efficiency and quality.  相似文献   

13.
单晶硅片磨削表面相变研究   总被引:2,自引:1,他引:1  
为了揭示硅片自旋转磨削加工过程中材料的去除机理,采用显微拉曼光谱仪研究了硅片磨削表面的相变。结果表明:半精磨和精磨硅片表面存在-Si相、Si-III相、Si-IV相和Si-XII相,这表明磨削过程中Si-I相发生了高压金属相变(Si-II相),Si-II相容易以塑性方式去除。粗磨硅片表面没有明显的多晶硅,只有少量的非晶硅出现,材料以脆性断裂方式去除。从粗磨到精磨,材料去除方式由脆性断裂去除向塑性去除过渡。粗磨向半精磨过渡时,相变强度越大,材料的塑性去除程度越大;半精磨向精磨过渡时,相变强度越小,材料的塑性去除程度越大。  相似文献   

14.
I.M. Hutchings 《Wear》1981,70(3):269-281
A theoretical analysis is presented for the erosion of metals by spheres at normal incidence. The model employs a criterion of critical plastic strain to determine when material will be removed, and velocity exponents of 3 for erosion and −2 for the mass of spherical particles which must hit the surface before material is removed are predicted. The mechanical properties of the metal are described by two quantities: the dynamic hardness of the metal and the ductility of the metal under erosion conditions. Data obtained in experiments with aluminium alloys, as well as previously published data, are compared with the theory.  相似文献   

15.
《Wear》1996,199(2):275-282
A modeling study was conducted on the abrasive waterjet milling (AWJM) of polycrystalline ceramics. The optimum jet incidence angle was determined from experiments. A conclusion from previous studies, which indicated intergranular cracking to be the dominant erosion mechanism, was applied. A hypothesis that links the intergranular cracking to impact-induced stress waves was used. An existing expression for the input stress wave energy was adopted in a crack network model to evaluate material removal. A new material constant “AWJM Erosion Resistance” was defined. The derived erosion model is verified with single-pass AWJM experiments.  相似文献   

16.
A previously described rigid-plastic model of the erosion of ductile targets by the impact of single angular particles was experimentally verified over a wide range of particle angularities, incident angles of attack, and incident orientation angles. The model assumes that the particle is perfectly rigid and thus is non-deforming, while the target material response is fully plastic, so that elastic rebound effects are neglected.Measurements of particle rebound kinematics, crater volume, and crater shape revealed generally good agreement with those predicted by the rigid-plastic model, and erosion mechanisms resulting from particles tumbling either forwards or backwards, were identified. For highly angular particles, target material removal sometimes occurred due to tunnelling of the particles below the target surface, leading to early break-off of a machined chip, behaviour that could not be predicted by the rigid-plastic model. Besides providing insights into fundamental erosion mechanisms, the results of the present study can be used to predict particle rebound kinematics, crucial for simulations of erosive streams which take into account interference between incident and rebounding particles.  相似文献   

17.
Machining of brittle materials entails two modes of material removal: pure plastic deformation and brittle fracture. The mode of material removal is generally identified by surface quality observations in a scanning electron microscope (SEM) or an atomic force microscope (AFM) after machining. Hence, there is a need for the development of in-process monitoring technology in order to detect whether the mode of material removal is ductile or brittle, and thereby predict surface quality. In the present paper, acoustic emission (AE) is proposed as a means of monitoring the ductile to brittle transition. Microindentation and microscratching tests of single crystal silicon were conducted using an ultrafine-motion table with very small motion error. The obtained AE signals were correlated with crack initiation and the ductile to brittle transition. The critical force fc defined as the force at which AE was induced during the microindentation and microscratching tests was measured to be 40 ∼ 50 mN. AFM observations revealed the critical depth of cut dc to be 0.20 μm in the microscratching test.  相似文献   

18.
光纤端面研磨加工机理研究   总被引:8,自引:2,他引:6  
给出了研磨光纤时的材料去除机理,选用粒度为微米及亚微米级的金刚石磨料砂纸,在研磨压力为0.48Mpa时,在KE-OFP-12型光纤连接器研磨机上对光纤端面进行了研磨实验.结果表明:光纤研磨加工的材料去除存在脆性断裂、半脆性半延性、延性等3种模式.材料去除模式主要取决于磨料的平均粒度,磨料粒度为3μm时,为脆性断裂到延性研磨的临界转换点.并从理论上对结果进行了分析,光纤以延性模式研磨加工时,光纤表面粗糙度Ra可达到纳米级,其表面看不到任何划痕,而光纤以脆性断裂模式研磨加工时,其表面粗糙度只能达到亚微米级,证明材料以延性模式去除是提高光纤表面质量的有效方法.  相似文献   

19.
A statistically derived model for predicting the erosion of ductile target materials was modified and its range was extended to incorporate maximum particle velocities of approximately 3000 m/sec. The usefulness of the modified model in predicting the erosion of ductile targets by both homogeneous and heterogeneous erosive agents was assessed.It was found that soft erosive particles can produce higher erosion rates than hard particles for the same target material. It was concluded that the geometry of the particle acceleration tube employed in the erosion test facility had a significant effect on the magnitude of observed erosion rates.  相似文献   

20.
Wire electrical discharge turning (WEDT) process was developed to generate cylindrical form on any electrically conductive material applied in aerospace and automotive industry. The mechanism of metal removal in WEDT process is by means of successive spark discharge. Each spark results in the formation of crater. In the present work, a new model is proposed to predict the erosion rate of each spark for a given discharge energy. A new method is proposed to measure the crater depth from 2D roughness profile of the machined component. The proposed model is validated by conducting experiments on AISI 4340 steel and the results obtained are presented in the paper. It is observed that the results are in close proximity with the experimental values at low discharge energy. The stochastic erosion mechanism of WEDT process is analyzed using scanning electron microscope images of spark eroded wire. Using the proposed model the erosion rate can be controlled and better surface characteristic of machined surface can be achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号