首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Morphological and metallurgical changes in the coating after the laser treatment process were examined using the scanning electron microscope, energy dispersive spectroscopy, and X-ray diffraction. The residual stress formed in the coating prior and after laser treatment was measured using the curvature method. Temperature and stress fields formed in the coating were simulated in line with the experimental conditions and finite element method was incorporated in the simulations. It is found that laser treated coating surfaces is free from asperities such as cavities and cracks, and uniform melting is achieved across the coating thickness. The residual stress predicted agrees well with the measured data.  相似文献   

2.
High stresses formed around the laser cut edges limit the practical applications of the parts produced. In the present study, laser cutting of small diameter hole into Ti-6Al-4V alloy is carried out. Temperature and stress fields developed in the cutting region are simulated, in line with the experimental parameters, via incorporating the finite element code. The temperature predictions are validated with the thermocouple data. The residual stress developed at the vicinity of the cut surface is obtained using the XRD technique. The features of the hole section are examined using the optical and scanning electron microscopes. It is found that temperature decay is gradual, due to the annealing effect, in the region where the cutting ends; in which case, the peak value of von Mises stress reduces in this region. The residual stress predicted agrees well with the data obtained from the XRD technique.  相似文献   

3.
In this study, laser treatment of sintered SiC surfaces is carried out to enhance the surface hydrophobicity. Morphological and metallurgical changes of the treated surfaces are evaluated using optical and scanning electron microscopy, energy dispersive spectroscopy, and x-ray diffraction (XRD). Microhardness and fracture toughness are measured using indentation tests. The residual stresses present are determined using the XRD technique. The wetting characteristics of the treated surfaces are assessed through contact angle measurements. It is found that the laser-treated surfaces consist of fine grooves and pillars and that the resulting surface roughness enhances the surface hydrophobicity. The fracture toughness of the treated surface is reduced possibly because of the microhardness increase at the surface. The residual stress formed in the surface region is on the order of 1.8 GPa, and it is compressive.  相似文献   

4.
激光熔覆原位合成TiC/Ti复合材料试验研究   总被引:6,自引:1,他引:6  
利用激光熔覆技术,在工业纯钛表面原位合成了TiC/Ti复合材料。结果表明:选择不同的激光熔覆工艺参数,可使碳粉和Ti粉通过原位合成反应在钛表面生成TiC/Ti复合材料熔覆层;激光功率和扫描速率是影响熔覆层质量的主要因素:激光功率越大,形成的增强相颗粒尺寸越大,相应合金元素氧化也越严重;扫描速率越大,Ti与C的作用时间变短,增强相颗粒尺寸越细小,且增强相所占的体积分数也相应减少。用XRD、DES和SEM证明了TiC颗粒的存在,同时发现颗粒分布具有一定的均匀性,原位生成的TiC颗粒主要以等轴状和块状两种形态存在。  相似文献   

5.
Titanium carbide particles reinforced Fe-based surface composite coatings were fabricated by laser cladding using a 5 kW CO2 laser. The microstructure, phase structure and wear properties were investigated by means of scanning electron microscopy, transmission electron microscopy and X-ray diffraction, as well as dry sliding wear test. The results showed that TiC carbides were formed via in situ reaction between ferrotitanium and graphite in the molten pool during the laser-clad process. The morphology of TiC is mainly cubic and dendritic form; and the TiC carbides were distributed uniformly in the composite coating. The TiC/matrix interface was found to be free from cracks and deleterious phases. The coatings reinforced by TiC particles revealed higher wear resistance and lower friction coefficient than that of the substrate and FeCrBSi laser-clad coating.  相似文献   

6.
激光熔覆TiC/(Ni+Cr)复合粉涂层的显微组织   总被引:4,自引:1,他引:4  
安世民  梅雨 《金属学报》1996,32(4):382-386
用CO2连续激光在5CrNiMo钢表面熔覆包覆细颗粒TiC复合粉末涂层。微观分析结果表明:TiC颗料周围优先被Cr相晶粒包覆;粘结金属在凝固应力作用下,Ni相晶粒形成滑移带,Cr相晶粒形成孪晶;TiC不易溶解于液态中,而易溶于Fe基合金中;凝固过程中TiC在涂层与基体的液相交互扩散区中析出,并发现碳化物(Fe,Cr)23C6;同时还形成大量α和γ微量。  相似文献   

7.
Laser surface treatment of aluminum is considered and the temperature as well as the stress fields developed in the laser irradiated region are predicted using the finite element method (FEM). The predictions are obtained for two laser pulses with different pulse lengths. In the simulations, the variable thermal properties of the substrate material are used. The experiment is conducted to treat the aluminum specimen surface with the laser beam. The laser output pulse intensity consists of repetitive pulses, which are used in the model study to examine the metallurgical changes in the irradiated region. SEM and XRD are carried out in this regard. It is found that the von-Mises stress reaches the maximum in the surface vicinity, particularly at the onset of cooling cycle starts. The von-Mises stress attains values less than the critical values for the crack formation, which is particularly true after the end of the cooling cycle. The residual stress formed in the surface region is in the order of a few MPa.  相似文献   

8.
HVOF coating of Inconel 625 powder on carbon steel is carried out. Laser melting of the resulting coating is realized to improve coating structural integrity. Morphological and microstructural changes are examined in the coating prior and after laser treatment process using scanning electron microscopy, energy dispersive spectroscopy, and x-ray diffraction (XRD). The residual stress developed is measured on the surface vicinity of the laser-treated coating using the XRD technique. The corrosion resistance of the laser-treated and untreated coating surfaces is measured, incorporating the potentiodynamic tests in 0.5 M NaCl aqueous solution. It is found that laser treatment reduces the pores and produces cellular structures with different sizes and orientations in the coating. Laser-controlled melting improves the corrosion resistance of the coating surface.  相似文献   

9.
Laser-controlled melting of alumina surface with a carbon film of about 40-μm thickness formed prior to the laser treatment process is carried out to improve its hardness, durability, and superhydrophocity. The carbon film consisted of a uniformly distributed mixture of hard particles of WC, SiC, and B4C. The presence of carbon film improves the absorption of the laser beam during the treatment process. The morphology and hydrophobicity of the laser-treated surface were evaluated using optical microscopy, atomic force microscopy, and the contact angle measurement, respectively. The chemical changes of the treated layer were examined using scanning electron microscopy and energy-dispersive spectroscopy. The structure of the nitride compound formed at the surface was characterized using x-ray diffraction, which was also used to determine the residual stress at the surface. Both microhardness and fracture toughness of the laser-treated surface were determined using indentation tests. Scratch tests were conducted to measure the friction coefficient and scratch resistance of the laser-treated surface. Laser treatment produces micropoles, nanopoles, and small size cavities at the surface, which enhance hydrophobicity of the surface. The microhardness of the laser-treated surface increases almost 50% because of the dense layer formed at the surface and the residual stress is in the order of ?2 GPa, which is compressive. The scratch resistance and friction coefficient of the laser-treated surface is superior.  相似文献   

10.
Premature failures of die-casting dies used in the metal casting industry occur because of the damage caused by thermal fatigue, erosion, stress corrosion, and soldering on the die surfaces. In this work, the effects of two laser surface-treatment methods for the prevention of die failures were investigated. A 1500-W CO2 laser with round and line beam-shapes was employed to glaze H-13 steel substrate or alloy the substrate with TiC of various particle sizes (30 and 2 μm, and 300 nm). Laser parameters for the glazing and surface alloying processes were optimized, the criteria being a specified surface finish and integrity. The corrosion and erosion properties of laser-treated samples in aggressive casting conditions were evaluated by testing them in molten aluminum alloy A390. Laser-glazed and -alloyed specimens with μm-sized particles exhibited hardness 30–100% higher than that of heat-treated H-13 steel substrates. However, the hardness of specimens that were laser-alloyed with 300-nm particles was lower, approximately 25% of that of the substrate. The anomalous effects of nanocrystalline powder alloying could not be explained satisfactorily by the microstructural evidence obtained by the use of optical and scanning electron microscopy, and X-ray diffraction. However, it is hypothesized that some titanium dissolves in steel, promoting the formation of ferrite in preference to austenite at high temperatures, thereby decreasing the hardness. Laser glazing and alloying improved the resistance of H-13 steels to both corrosion and erosion, but a marked improvement occurred in the specimens alloyed with nanocrystalline powders. The beneficial effects of nanocrystalline alloying are attributed to smooth, crack-free, and tough surface layers, as well as to uniform and homogeneous microstructures. Laser surface processing of nanocrystalline materials is potentially important in the casting industry for improving die life and reducing downtime.  相似文献   

11.
目的 为克服激光冲击强化现有离线检测方法的缺点,提出了一种基于空气中冲击波信号能量的激光冲击强化在线检测方法。方法 利用波长为1064 nm、脉宽为14 ns、单脉冲能量为5~7 J的Nd:YAG激光器对经过振动时效处理的TC16钛合金试件进行激光冲击强化处理。用自主研制的信号放大器对空气中的冲击波信号进行一级放大后,再经前置放大器、数据采集卡传输到计算机控制系统,从而实现对空气中冲击波信号的采样、存储、滤波和数据分析,并从中提取冲击波信号能量。用X-350A型X射线应力测定仪测量TC16钛合金试件经激光冲击强化处理后的表面残余应力。最后对所得实验数据进行多项式拟合,以获得材料表面残余压应力与冲击波信号能量之间的经验公式。结果 经激光冲击强化处理后,材料表面形成了一定大小的残余压应力。随着激光能量的增加,材料表面残余压应力及冲击波信号能量均增加,且二者的增加趋势一致。结论 在激光冲击强化过程中,对空气中传播的冲击波信号进行采集和提取其信号能量,可以预测试件经激光冲击强化处理后的残余应力,能够准确判断激光冲击强化质量,从而实现工业过程的在线检测。  相似文献   

12.
Ni-W-TiC composite coatings were prepared via electrodeposition technique by dispersing the different amount of TiC particles into the plating bath.The Ni-W and Ni-W-TiC composite coatings containing different concentrations of TiC particles were characterized by using the scanning electron microscope,X-ray diffraction technique,Vickers microhardness test,surface roughness test,and tribology test.The results show that the Ni-W coatings containing reinforced TiC particles have shown a typical FCC Ni-W crystal structure with significantly higher Vickers microhardness.The amount of dispersed TiC particles into the plating bath considerably affected codeposition weight percent of TiC into the Ni-W matrix,as revealed by the EDS analysis.Ni-W-TiC samples demonstrated the decreased abrasive wear as compared to Ni-W coating and no characteristic features observed for the adhesive wear.Similarly,an improvement in coefficient of friction was observed in Ni-W-TiC composite coating as compared to Ni-W coating.  相似文献   

13.
用钛熔盐沉积及热处理工艺分别制备碳化钛涂覆的立方碳化硼颗粒(TiN/cBN)及碳化钛涂覆的金刚石颗粒(TiC/金刚石)。将cBN或金刚石颗粒分别与钛粉和KCl、NaCl和K2TiF6熔盐混合。将所得混合物在Ar气氛中加热至900°C,然后在H2气氛中于1000°C进行热处理。采用扫描电镜、X射线衍射和聚焦离子束技术对所制得颗粒进行表征。结果表明:cBN和金刚石颗粒表面已覆盖了纳米钛层。对Ti/cBN和TiC/金刚石涂层颗粒进行热处理后,颗粒表面沉积的Ti层与cBN和金刚石颗粒发生了原位化学反应,分别转化为钛化合物TiN和TiC。  相似文献   

14.
This study presents a experimental investigation to clarify the effects of tool nose radius and tool wear on residual stress distribution in hard turning of bearing steel JIS SUJ2. Three types of CBN tools with different nose radius (0.4, 0.8 and 1.2 mm) were used in this study. The residual stresses beneath the machined surface were measured using X-ray diffraction technique and electro-polishing technique. The results obtained in this study show that the tool nose radius affects the residual stress distribution significantly. Especially the effect on the residual stresses at the machined surface at early stage of cutting process is remarkable. For the tool wear, as the tool wear increases, the residual stress at the machined surface shifts to tensile stress range and the residual compressive stress beneath the machined surface increases greatly.  相似文献   

15.
采用激光熔覆加液氮辅助冷却技术在S355海洋钢表面制备Al基非晶涂层,运用SEM、XRD、电化学工作站等技术分析了涂层腐蚀前后表界面形貌及物相组成,研究了液氮辅助冷却对涂层性能的影响以及涂层在5%NaCl溶液中浸泡10、20、40和80 d后的腐蚀性能。结果表明:经过液氮辅助冷却后涂层中存在少量的非晶AlFeNi相;涂层与基体形成了良好的冶金结合;表面组织细小,增强相TiC均匀弥散分布,且裂纹气孔较少。涂层表面显微硬度增加15%;残余应力与自然冷却时基本持平,均为拉应力;其耐蚀性也得到了显著提升。  相似文献   

16.
Multiple treatment of engineering surfaces can provide improved surface properties that cannot be obtained by a single surface treatment. Consequently, this study investigates the effects of laser melting on the microstructures of plasma nitrided Ti-6Al-4V alloy. The study consists of two parts. In the first part, governing equations pertinent to the laser melting process are developed, and temperature variation across the melted zone is predicted. In the second, an experiment is conducted to nitride the surface of the alloy through plasma nitriding process and to melt the plasma nitrided and the untreated alloy surfaces with a CO2 laser beam. The resulting metallurgical changes are examined using x-ray diffraction (XRD), bdenergy-dispersive spectrometry (EDS), and scanning electron microscopy (SEM) techniques. It is shown that three distinct nitride layers are formed in the vicinity of the alloy surface prior to the laser melting process, and that after the melting process nitrided species are depleted while cellular and dendritic structures are formed. In addition, the structure consisting of transformed β containing coarse and fine acicular α is observed in the melted regions.  相似文献   

17.
选用超细SiC颗粒作为磨料,研究了韧性材料45钢在正向冲击条件下的冲蚀行为并与7075-T6铝合金对比。使用高强度磁铁捕获了45钢冲蚀磨屑,利用扫描电子显微镜(SEM)对冲蚀磨损后试样表面以及磨屑形貌进行观测;采用质量分析法,分析45钢在不同冲蚀条件下的失重情况与材料去除率;利用X射线应力测定仪,分析45钢在不同冲蚀条件下的表层及深度方向的残余压应力分布情况。结果表明,正向冲击条件下,韧性材料表面主要发生塑性变形,偏向堆积脊部还存在片层剥落的材料去除形式,超细磨料产生的材料去除率相对较小,材料去除率随磨料量的增加呈先增加后减小的趋势;表层应力随磨料量呈先增加后降低的趋势,微磨料冲蚀残余压应力的影响深度约为10μm。  相似文献   

18.
Laser shock processing is a very new technique and an emerging modem process that generates compressive stresses much deeper into the surfaces of metals or alloys. A brief parametric study of the effect of laser parameters on fatigue behavior and residual stress state generated in 6061-T651 alloy specimens was summarized. Residual stress of 6061-T651 alloy was analyzed both before and after laser processing with multishocks. The material remains in compressive residual stress of approximate 1 mm in depth which is approximately 10 times deeper than that can be achieved with the conventional technique, and the maximal compressive residual stress at the surface of the sample is about -350MPa. Near the surface, yield strength and hardness are found to be increased by the laser shock. The ratio of fatigue crack initiation life for the laser-shocked to unshocked specimens is found to be 4.9 for specimens. The results clearly show that LSP is an effective surface treatment technique for improving the fatigue performance of aluminum alloys.  相似文献   

19.
吴永忠  孔德军  龙丹  付贵忠 《焊接学报》2012,33(12):101-105
利用激光冲击波对X70管线钢焊缝进行了表面改性处理,通过人工气氛盐雾腐蚀试验考察了激光冲击处理前后焊缝的盐雾腐蚀行为.用扫描电镜、能谱分析仪和X射线衍射技术分析了盐雾腐蚀后焊缝表面形貌、腐蚀物的化学元素和物相组成,讨论了激光冲击处理对其腐蚀机理的影响.结果表明,原始状态的X70管线钢焊缝存在残余拉应力,易与腐蚀介质Cl-发生应力腐蚀开裂,且与晶界腐蚀共同作用发生剥落腐蚀;激光冲击处理使得试样内部晶粒细化,表层产生强化层,有利于提高焊缝抗盐雾腐蚀性能.  相似文献   

20.
HVOF coating of diamalloy 1005 containing WC particles onto steel (304) is considered and laser melting of the coating is carried out. The effect of WC content on the residual stress formed in the coating is examined. Temperature rise and the temperature gradient developed in the coating is modeled and predicted. XRD technique is used to measure the residual stress in the coating while the analytical formulation is used to predict the residual stress at the coating base material interface. The indentation tests are carried out to measure the Young's modulus and fracture toughness of the coating with and without WC content. It is found that existing of WC modifies temperature rise and the temperature gradient in the coating; in which case, increasing WC content reduces the temperature gradient. The Young's modulus, the magnitude of the residual stress, and the fracture toughness of the coating increase with increasing WC content in the coating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号