首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AZ31B alloy was subjected to vertical rolling at various temperatures prior to multi-pass severe rolling processing including initial rolling including one 80% reduction pass and finish rolling at 300 °C and 350 °C, respectively. The depth and number of edge crack, microstructure evolution and tensile properties were examined. The results indicate that pre-vertical rolling at low temperature before severe rolling can significantly restrain edge crack, change relative frequency distribution of edge-crack depth, increase microstructure homogeneity and sharply change the intensity and distribution of basal texture of initial-rolled sheets. The level of edge crack increases with increased vertical rolling temperature above 100 °C mostly due to the combination of shear band density, microstructure homogeneity, grain size and texture of rolled sheets. Compared with conventional rolling, the effect of vertical rolling on final mechanical properties depends on the finish rolling temperature due to the combination of shear bands, twins and grain size. The variation trend of mechanical properties with increased vertical rolling temperature is also sensitive to finish rolling temperature. For as-rolled sheets, the severe rolling route with vertical rolling at 100 °C and finish rolling at 300 °C should be required.  相似文献   

2.
采用不同的轧辊温度和速率制备AM50镁合金轧板,研究终轧工艺对镁板力学性能和织构特征的影响。研究表明:在轧辊温度为200°C和轧辊速率为5 m/min条件下制备的镁板的强度(极限抗拉强度:295 MPa;屈服强度:224 MPa)和伸长率(22.9%)之间达到较优组合;在热轧过程中,轧板的屈服强度主要取决于轧制温度,而织构强度则对轧辊速率更为敏感;提高轧制温度或轧辊速率均可改善AM50镁合金板材力学性能的各性异性。  相似文献   

3.
The as-extruded AZ31 alloy sheets of 10 mm in thickness were subjected to differential speed rolling (DSR) process performed on a mill, of which the rotation speed ratio of the lower roll and upper one is kept at constant 1.05 by using the different upper and lower roller diameters. The influence of the billet temperature, pass and total thickness reduction ratio on the microstructures, mechanical properties and crystal orientation of the specimens were examined by optical microscopy, tensile test and X-ray diffraction. The present process was found to be effective to refine the grain size and restrain the twinning. Grain refinement became more marked and uniform when the pass and total thickness reduction ratio increased, and the sheets processed by DSR exhibited higher elongation and lower strength than those of the conventional rolled sheets under the same testing conditions. Especially, the AZ31 sheet with elongation of 32% at room temperature was prepared. Moreover, anisotropy was diminished by further annealing at 573 K for 30 min. The DSR does not alter the basal texture but leads to the incline of the basal plane from the sheet surface plane to some extent.  相似文献   

4.
The effects of increasing rolling temperature from 723 K to 828 K at the last rolling pass on microstructure, texture, mechanical properties and stretch formability of a Mg-3Al-1Zn magnesium alloy previously rolled at 723 K were investigated. In the as-rolled condition, the basal texture strengthens slightly with increasing the rolling temperature whereas it weakens more remarkably after static recrystallization during annealing for the sheets rolled at higher temperatures. Only by increasing the rolling temperature from 723 K to 798 K, the Erichsen value is significantly increased from 4.5 to 8.6 due to the weakened texture for the annealed sheets. Further increasing the last rolling temperature does not appear to further improve the stretch formability.  相似文献   

5.
Microstructural evolution and mechanical properties of twin roll cast (TRC) Mg-3.3 wt.%Al-0.8 wt.%Mn-0.2 wt.%Ca (AM31 + 0.2Ca) alloy strip during warm rolling and subsequent annealing were investigated in this paper. The as-TRC alloy strip shows columnar dendrites in surface and equiaxed dendrites in center regions, as well as finely dispersed primary Al8Mn5 particles on interdendritic boundaries which result in the beneficial effect on microstructural refinement of strip casting. The warm rolled sheets show intensively deformed band or shear band structures, as well as finely and homogeneously dispersed Al-Mn particles. No evident dynamic recrystallization (DRX) takes place during warm rolling process, which is more likely attributed to the finely dispersed particle and high solid solution of Al and Mn atoms in α-Mg matrix. After annealing at 350 °C for 1 h, the warm rolled TRC sheets show fine equiaxed grains around 7.8 μm in average size. It has been shown that the present TRC alloy sheet has superior tensile strength and comparative elongation compared to commercial ingot cast (IC) one, suggesting the possibility of the development of wrought magnesium alloy sheets by twin roll strip casting processing. The microstructural evolution during warm rolling and subsequent annealing as well as the resulting tensile properties were analyzed and discussed.  相似文献   

6.
The differential speed rolling (DSR) with a roll speed ratio of 1.167 was carried out on an AZ31B magnesium alloy in order to investigate its effects on the formability. Compared with the normal rolled sheet exhibiting approximately the same average grain size, the Erichsen values of the DSR processed sheet with an inclination of basal pole in the rolling direction significantly increased by about 1.5 and 1.9 times at room temperature and at 423 K, respectively. The deep-drawing temperature limit for a drawing ratio of 1.5 was also lowered from 443 K to 423 K. The improvement of the press formability at low temperatures can be attributed to the texture modifications, which led to a lower 0.2% proof stress, a larger uniform elongation, a smaller Lankford value and a larger strain hardening exponent.  相似文献   

7.
The effects of differential speed rolling (DSR) on the texture of AZ31B magnesium alloy sheets were investigated,which were achieved by tailoring deformation temperature,reduction,and speed ratio.The results show that the intensity of basal texture weakens with DSR.With the increase of the rolling temperature,the intensity of basal texture decreased first and then increased,which had a relation with the change of the orientation of the new grains of dynamic recrystallization during rolling.The effect of the reduction on the basal texture was made with the changing degree of sharp point of texture.With increasing the deformation at the same rolling temperature,the intensity of basal texture decreased,and the extending of contour lines decreased in the transverse direction,which was close to the circular distribution.Differential speed ratio has a greater impact on the intensity of the basal texture and has a less effect on the basal deflection.  相似文献   

8.
Structural evolution of warm-rolled AZ31 alloy sheets was investigated with respect to various reduction ratios. In order to examine the effect of rolling pass on deformation of the sheet, one-pass rolling was applied to the AZ31 alloys for various 6/1/2011reduction ratios. When the applied reduction ratio was ∼85% of the initial thickness, significant grain refinement and texture development were achieved with dynamic recrystallization. Moreover, with the increase of the rolling reduction ratio from 30% to 85%, the warm rolled sheets exhibit plane strain mode displaying uniform 〈0 0 0 1〉//ND basal textures throughout the whole sheet thickness. The two-dimensional finite element method simulation showed that the current lubrication rolling results in a uniform plane strain deformation through the whole warm rolled sheet.  相似文献   

9.
Repeated unidirectional bending (RUB) process was carried out to improve the texture of AZ31B magnesium alloy sheets. Influence of initial texture on formability of AZ31B magnesium alloy sheets at different temperatures was investigated. Compared with the as-received sheets, the limiting drawing ratio of the RUB processed sheets increased to 1.3 at room temperature, 1.5 at 50 °C and 1.7 at 100 °C, respectively. The improvement of the press formability at lower temperatures can be attributed to the texture modification, which led to a smaller Lankford value and a larger strain hardening exponent. However, the press formability of the sheet with a weakened basal texture has no advantage at higher temperature. This is due to much smaller r-value that results in severe thinning in thickness direction during the stamping process which is unfavorable to forming. Anyhow it is likely that the texture control has more effect on the press formability at lower temperature.  相似文献   

10.
In order to investigate the micro-mechanism of warm forming of Mg alloys, three specimens cut from a rolled AZ31 sheet were chosen to be compressed along the Rolling Direction (RD) at 100 °C, 170 °C and 230 °C, separately. During compression, an in situ measurement of grain orientation in the plane of RD × TD (Transverse Direction) was carried out with EBSD method. Experimental and analytical results show that temperature has remarkable impact on activation of twinning and variation of texture. As the temperature was raised from 100 °C to 230 °C, the number of grains with twins activated decreased substantially during deformation, and rolling texture varied from quick vanishing at 100 °C to always existing at 230 °C. Tracing for orientation of individual grains during deformation shows that there are obvious different orientation changes between grains with twins activated and those without twins activated. Twinning plays a significant effect on texture variation during compression. The extension twin variant really activated during deformation is the one with maximal Schmid factor.  相似文献   

11.
The effect of texture evolution of AZ31 Mg sheet on cross-roll rolling process has been investigated for the commercial AZ31 Mg sheet. The large ?23 was operated for the cross-roll rolled sample throughout the whole thickness, leading to the homogeneity of the (0 0 0 2) basal texture. After recrystallization annealing at 673 K for 30 min, cross-roll rolled sample showed uniform texture intensity from surface layer to middle layer different from the normal-roll rolled sample. An excellent formability of the cross-rolled specimen was achieved due to the developed homogeneity of the texture and microstructure refinement for the cross-roll rolled specimen. The strain conditions of surface and center layers were discussed in terms of experimental evaluations and three-dimensional finite element method (FEM) for conventional rolling and cross-roll rolling.  相似文献   

12.
In order to develop new magnesium alloy sheets with high formability at room temperature, the microstructure, texture, ductility, and stretch formability of rolled Mg-2%Gd-1%Zn and Mg-3%Gd-1%Zn sheets were investigated. The microstructures of these rolled sheets consist of fine recrystallized grains with a large amount of homogeneously distributed tiny particles in the matrix. The basal plane texture intensity is quite low and the basal pole is tilted by about 30° from the normal direction toward both the rolling direction and the transverse direction. The sheets exhibit an excellent ultimate elongation of ∼50% and a uniform elongation greater than 30%, and the Erichsen values reach ∼8 at room temperature. The flow curves of the two Mg-Gd-Zn alloys sheets display a remarkable linear hardening after an obvious yield point. The majority of the grains in the tilted texture have an orientation favorable for both basal slip and tensile twinning because of a high Schmid factor. The excellent stretch formability at room temperature can be attributed to the non-basal texture and low texture intensity, which led to the following characteristics: a lower 0.2% proof stress, a larger uniform elongation, a smaller Lankford value and a larger strain hardening exponent.  相似文献   

13.
Pure Mg, AZ31 (Mg-3 wt%Al-1 wt%Zn) and experimental alloys, Mg-1 wt%Zn-1 wt%In, Mg-2 wt%Li-1 wt%Zn, Mg-2 wt%Li-1 wt%Zn-1 wt%In were rolled at 150 °C to 0.3 and 0.55 strain. The samples rolled to 0.3 strain were subsequently annealed for 10 min at 400 °C. The texture was evaluated in rolled and in rolled/annealed conditions. The axial ratio (c/a) of the alloys strongly influenced edge cracking during rolling (expressed as cracking index, IC), which was explained via the influence of c/a on the twinning mode. The as-cast grain size did not correlate to IC (edge cracking). Texture intensity was strongly influenced by the as-cast grain size (which was attributed to plastic compatibility at grain boundaries), showed weak correlation to the lattice parameter a, but did not depend on c/a. The Mg-2 wt%Li-1 wt%Zn alloy, with fine grain size and small c/a and a, exhibited the optimum combination of weak texture and crack-free rolling at 150 °C.  相似文献   

14.
An ultra purified 21%Cr ferritic stainless steel (FSS) was hot rolled at a low finisher entry temperature (FET) of 750 °C to generate shear bands through large shear flow localizations in grain interiors. The effects of shear bands on the formability and surface ridging have been studied as compared to a conventional hot rolled band at the FET of 970 °C with few shear bands. The results showed that as compared to the final sheet produced with the FET of 970 °C, the average r-value for the final sheet with the FET of 750 °C was increased by 25%, and the surface roughness of the final sheet strained by 15% along the rolling direction was decreased by 40%. It has been observed that the existence of shear bands could enhance the nucleation for recrystallization during hot rolling and annealing for microstructure refinement, and modify the texture by intensifying the {1 1 1} textures in the final sheet. The influence of shear bands on sheet formability and resistance against surface ridging was discussed.  相似文献   

15.
Understanding the effect of nitrogen content on the crack growth rate (CGR) due to intergranular stress corrosion cracking (IGSCC) in high temperature (288 °C) pure water, in non-sensitised and strain-hardened stainless steel (SS) type 304 LN was the focus of this study. Non-sensitised SS containing two different levels of nitrogen (0.08 and 0.16 wt.%) in the solution annealed condition was strain-hardened by cross-rolling at 200 °C (warm rolling). It has earlier been reported that SS with a higher nitrogen level in the warm rolled condition has a higher CGR in high temperature pure water. Tensile testing was carried out using both the SS in the warm rolled as well as in the solution annealed condition at 288 °C. Samples were prepared for transmission electron microscopy (TEM) from the warm rolled SS and from the tensile tested (at 288 °C) specimens. TEM studies indicated that twinning and shear band formation were the major modes of deformation due to rolling at 200 °C and these feature were observed to terminate at grain boundaries, leading to regions of higher strain and stresses at grain boundaries. Higher nitrogen SS has higher grain boundary strain and stresses making the grain boundary regions more susceptible to IGSCC, resulting in higher CGR values. At 288 °C dislocation entanglement and cross-slip were the predominant modes of deformation.  相似文献   

16.
In order to obtain quantitative relationship between (0002) texture intensity and hot rolling conditions, conventional rolling experiments on AZ31 magnesium alloys were performed with 20%–40% reductions and temperatures within the range of 300–500 °C. Shear strain and equivalent strain distributions along the thickness of the rolled sheets were calculated experimentally using embedded pin in a rolling sheet. Rolling microstructures and textures in the sheet surface and center layers of the AZ31 alloys were measured by optical microscopy (OM), X-ray diffractometry (XRD) and electron back scatter diffraction (EBSD). Effects of the rolling strain, dynamic recrystallization (DRX) and twinning on the texture evolution of the AZ31 alloys were investigated quantitatively. It is found that the highest (0002) basal texture intensities are obtained at a starting rolling temperature of 400 °C under the same strain. Strain–temperature dependency of the (0002) texture intensity of the AZ31 alloy is derived.  相似文献   

17.
A strongly basal textured AZ31 magnesium alloy were cryorolled at liquid-nitrogen temperature at various strains. The microstructure and texture of the rolled sheets have been investigated using electron backscatter diffraction (EBSD) and X-ray diffraction. The microstructural and textural evolutions of the AZ31 magnesium alloy during cryorolling have been discussed. A lot of twins were observed in the rolled sheets. The influence of strain on the twin types and variant selection during cryorolling for the magnesium alloy has been discussed quantitatively based on the orientation data collected using EBSD. The influence of the twins on the microstructural and textural evolutions for the AZ31 magnesium alloy during cryorolling has also been discussed. The mechanical properties of the cryorolled sheets were tested by uniaxial tensile tests at the ambient temperature with a strain rate 10-3s-1 in the tensile direction respectively along the rolling and transverse directions of the rolled sheets. The relationships between the mechanical properties and microstructure of the cryorolled sheets have been discussed in the present work. The active twinning during rolling at that cryogenic temperature has been found to play an important role in influencing the microstructure, texture, as well as the mechanical properties of the AZ31 magnesium alloy.  相似文献   

18.
脉冲电流轧制对AZ31镁合金微观组织与力学性能的影响   总被引:1,自引:0,他引:1  
对比研究脉冲电流轧制工艺与温轧工艺对AZ31镁合金板材的力学性能、织构、微观组织与沉淀相等方面的影响。结果表明:脉冲电流具有促进冷轧AZ31镁合金低温再结晶能力的作用。脉冲电流轧制后的镁合金板材组织由细小的等轴再结晶粒与析出相构成,没有发现孪晶组织,并且完全再结晶,原始晶粒均被细小的再结晶晶粒取代,再结晶晶粒内的位错密度低。而温轧镁合金组织则由稍拉长变形孪晶、粗大的再结晶晶粒和析出相构成,再结晶的晶粒内位错密度高。两种轧制方式下的镁合金析出相均为Mg17Al12。脉冲电流轧制后镁合金的织构具有典型基面织构的特征,而脉冲电流轧制镁合金的织构则出现横向偏转;脉冲电流轧制后镁合金的屈服强度与伸长率均比温轧镁合金的大,但抗拉强度正好相反。  相似文献   

19.
The formation of fine ferrite grains by the asymmetric rolling of low carbon steel and their mechanical properties were studied. Super-cooled low carbon austenite was deformed by asymmetric rolling at 750 °C with a roll size ratio of 1.5 and immediately cooled at various cooling rates ranging from 3 °C/s to 15 °C/s. Fine ferrite grains (∼2 μm) were formed after asymmetric rolling, preferentially at the prior austenite grain boundaries. The volume fraction of the fine ferrite grains increased with increasing rolling reduction. A ferrite plus pearlite microstructure was obtained at smaller strains and slower cooling rates. However, after heavy deformation, a fine ferrite grain structure with carbide particles dispersed at the ferrite grain boundaries was obtained and the pearlite structure was not observed even after very slow cooling, which implies that most of the ferrite grains were formed dynamically, i.e. during deformation. The yield strength of the asymmetrically rolled steel plates increased with increasing deformation; however, the yield ratio also increased with increasing rolling reduction. The best combination of strength and yield ratio was obtained by using a low level of deformation and a high cooling rate, in which case a portion of the untransformed austenite transformed to martensite.  相似文献   

20.
The effect of speed ratio (SR) in differential speed rolling on the development of texture and microstructure in Mg-3Al-1Zn alloy was systematically investigated in a wide SR range between 1 and 3 at a fixed thickness reduction of 20%. At low SRs, deformation bands and shear bands were dominant. At high SRs ≥ 2, however, dynamically recrystallized microstructures were developed. The intensity of the basal texture component increased with SR, but decreased to the level of the starting material at high SRs ≥ 2. The occurrence of the dynamic recrystallization at high SRs was attributed to high-dislocation density accumulation and high temperature rise of a deforming sheet due to large plastic deformation of which amount increased with SR. The basal texture weakening at high SRs was attributed to extensive tension twinning that occurred in the basal-oriented matrix, which is rarely observed in conventional rolling. Due to the positive effect of texture and microstructure, tensile ductility improvement was significant as compared to that by symmetric rolling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号