首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Friction stir welding generates periodic features within the weld. These ??onion ring?? features are associated with variations in both texture and the orientation of that texture along the length of the weld. Analysis of an AA2195 friction stir weld reveals the presence of periodic oscillations between the dominant B and $ \overline{\text{B}} $ components of the ideal shear texture, suggesting a periodic reversal in the predominant shear orientation during welding that is inconsistent with current understandings of the friction stir welding process. Microstructural features present in the weld and machine force variations during welding indicate that these textures may arise from the oscillation of an off-centered tool. Such a tool oscillation can generate a periodic extrusion of material around the tool, giving rise to the observed flow features, machine force variations, and reversals of the local shear texture orientations. A new model of material flow during friction stir welding is proposed to explain the observed features.  相似文献   

2.
In this study, the effect of tool pin profile on mechanical properties, microstructural, material flow, thermal and strain distributions of friction stir welding of AA5083 was investigated. Two different tools with cylindrical and square pin profiles were employed to produce the welds. A numerical model is developed for investigating the effect of tool pin profiles on material flow, thermal and strain distributions based on thermo-mechanically coupled rigid-viscoplastic 3D FEM. Then, optical microscopy was employed to characterize the microstructures features of the weld. Finally, tensile test was carried out to characterize the mechanical properties of the weld. Obtained results showed that square pin profile produced finer grain structure and higher ultimate strength relative to cylindrical one. These results may be related to higher eccentricity, larger stirred zone, and higher temperature in the weld zone of the square pin profile.  相似文献   

3.
The requirement for a probe, or pin, in friction stir spot welding (FSSW) leads to an undesirable keyhole and “hooking,” which can influence the fracture path and weld strength. Furthermore, the full weld cycle for FSSW is typically longer than ideal for the automotive industry, being 2 to 5 seconds. Here, it is shown that using a novel pinless tool design it is possible to achieve high lap shear strength (~3.4 kN) in thin aluminum sheet (~1 mm thick), with short weld cycle times (<1 second). Several techniques have been exploited to study the material flow and mechanisms of weld formation in pinless FSSW, including high-resolution X-ray tomography, to understand the role of the tool design and weld parameters. Despite the “simple” nature of a pinless tool, material flow in the weld zone was found to be surprisingly complex and strongly influenced by surface features on the tool, which greatly increased the penetration of the plastic zone into the bottom sheet. Because of the rapid thermal cycle and high level of grain refinement, the weld zone was found to develop a higher strength than the parent material with little evidence of a heat affected zone (HAZ) after postweld natural aging.  相似文献   

4.
Development of microstructure in the weld pool as well as in the partially molten zone is influenced by weld geometry and cooling of the weld metal besides heat input. Evolution of refined microstructure has definite advantage in AA2219 weldment to restrict the crack path. In the present paper, mechanisms of microstructure development in single pass and multipass gas tungsten arc welding of Al-alloy AA2219 alloy have been studied. Role of backing bar material and weld configuration in development of morphology and growth of microstructure have been discussed.  相似文献   

5.
A systematic set of single-pass full penetration friction stir bead-on-plate and butt-welds in HSLA-65 steel were produced using a range of different traverse speeds (50 to 500?mm/min) and two tool materials (W-Re and PCBN). Microstructural analysis of the welds was carried out using optical microscopy, and hardness variations were also mapped across the weld-plate cross sections. The maximum and minimum hardnesses were found to be dependent upon both welding traverse speed and tool material. A maximum hardness of 323?Hv(10) was observed in the mixed martensite/bainite/ferrite microstructure of the weld nugget for a welding traverse speed of 200?mm/min using a PCBN tool. A minimum hardness of 179?Hv(10) was found in the outer heat-affected zone (OHAZ) for welding traverse speed of 50?mm/min using a PCBN tool. The distance from the weld centerline to the OHAZ increased with decreasing weld speed due to the greater heat input into the weld. Likewise for similar energy inputs, the size of the transformed zone and the OHAZ increased on moving from a W-Re tool to a PCBN tool probably due to the poorer thermal conductivity of the PCBN tool. The associated residual stresses are reported in Part II of this series of articles.  相似文献   

6.
The influence of tool shoulder diameter and its rotational speed on the high temperature plastic deformation of the material during friction stir welding of AA 2014 aluminum alloy is investigated, using the principles of hot working. The soundness of weld and defect formation are analyzed using the Zener–Hollomon parameter ‘Z’ to describe the high temperature plastic deformation behaviour of material, under the simultaneous influence of temperature and strain-rate. The observed hot deformation behaviour is correlated with the deformation processing map for the first time. At a given rotational speed, the volume of shoulder driven flow reduces with increasing shoulder diameter.  相似文献   

7.
Weld metal grain structure and mechanical properties of the Ir-0.3 pct W alloy (DOP-26) doped with 60 ppm Th and 50 ppm Al have been investigated by use of a gas tungsten arc (GTA) welding process. The fusion zone grain structure is strongly influenced by heat input and puddle shape and therefore by the bead width. With increasing bead width from 2.5 to 3.7 mm, the grains in the fusion zone show a sharp change in growth direction near the centerline region and develop a fine columnar structure with grains growing parallel to the welding direction. Mechanical properties of the welds and base metal were characterized by tensile and impact tests from 650 to 1150 °C. The ductility and fracture behavior of DOP-26 welds are sensitive to weld bead width, postweld heat treatment, and weld-test orientation. The ductility of the welded specimens increases with increasing test temperature and decreasing weld bead width. The transverse weld specimen with a wide-bead width (3.7 mm) has the lowest impact ductility, and the longitudinal weld with a narrow-bead width (2.5 mm) has the highest elongation at all the test temperatures. The impact ductility of the transverse weld specimen with the narrow-bead width falls between the limits. All the results are discussed in terms of the fusion zone grain structure and fracture path of the welds.  相似文献   

8.
The influence of friction stir welding on the microstructure development and its role on residual stress distribution in the weldment and mechanical properties has been investigated. The study also focused on the impact of post weld heat treatment on the microstructure and mechanical properties as well as on residual stress distribution. The weld nugget region contained fine equiaxed grains as a result of thermo-mechanical working. Hardness survey showed that nugget region is soft due to precipitates dissolution. Weld joint exhibited lower strength as compared to the parent metal. Post weld Solution Treatment and Aging (STA) of longitudinal welds resulted in strength and ductility equivalent to that of parent metal while transverse weld tensile strength and ductility were lower than that of parent metal even after post weld STA. Residual stress distribution profiles across the weld region are asymmetric with respect to weld centerline, with the largest residual; stress gradients occurring on the advancing side of the weld. Within the region inside the shoulder diameter, residual stress is entirely compressive. Welds exhibited tensile residual stresses in post weld STA condition  相似文献   

9.
Friction stir welding (FSWing) is a solid-state joining process of special interest in joining alloys that are traditionally difficult to fusion weld. In order to optimize the process, various numeric modeling approaches have been pursued. Of importance to furthering modeling efforts is a better understanding of the contact conditions between the workpiece and the weld tool. Both theoretical and experimental studies indicate the contact conditions between the workpiece and weld tool are unknown, possibly varying during the FSW process. To provide insight into the contact conditions, this study characterizes the material flow in the FSW nugget by embedding a lead (Pb) wire that melted at the FSWing temperature of aluminum alloy 2195. The Pb trace provided evidence of changes in material flow characteristics which were attributed to changes in the contact conditions between the weld tool and workpiece, as driven by temperature, as the tool travels the length of a weld seam.  相似文献   

10.
Friction stir welding (FSW) is a cost-effective and high-quality joining process for aluminum alloys (especially heat-treatable alloys) that is historically operated at lower joining speeds (up to hundreds of millimeters per minute). In this study, we present a microstructural analysis of friction stir welded AA7075-T6 blanks with high welding speeds up to 3 M/min. Textures, microstructures, mechanical properties, and weld quality are analyzed using TEM, EBSD, metallographic imaging, and Vickers hardness. The higher welding speed results in narrower, stronger heat-affected zones (HAZs) and also higher hardness in the nugget zones. The material flow direction in the nugget zone is found to be leaning towards the welding direction as the welding speed increases. Results are coupled with welding parameters and thermal history to aid in the understanding of the complex material flow and texture gradients within the welds in an effort to optimize welding parameters for high-speed processing.  相似文献   

11.
Friction stir welding undergoes a steep evolution in industrial applications since the invention in the early 1990s. Especially for aluminium alloys in sheet thicknesses over 2 mm a lot of applications are established, whereas a lack in knowledge about friction stir welding of thin sheets with sheet thickness less than 2 mm exists. This article deals with friction stir welding of thin sheet aluminium steel tailored hybrids and their formability. These investigations tend to close the gap of availability of friction stir welded blanks in the range of 1 mm sheet thickness and to offer new applications of this joining technology. For production of aluminium steel tailored hybrids AA5182 with a thickness of 1.2 mm and DC04 in 1.0 mm are used, the joining partners are friction stir welded in a lap joint. Different tool geometries and process parameters are performed to achieve the highest strength and elongation at fracture of the tailored hybrids. The influence of the stirring on the arrangement and distribution of both materials in the welding zone and its microstructure is analysed using light optical and scanning electron microscopy. In addition to tensile tests planar microhardness measurements help to detect the local changes of the mechanical properties in the characteristic zones of the weld seam. Tailored hybrids, which were friction stir welded with the best welding parameters in accordance to the mechanical properties of the weld seams, were used for deep drawing tests of friction stir welded thin sheet aluminium steel tailored hybrids. The maximum drawing ratio of these tailored hybrids coincides with the one of the parent material of AA5182.  相似文献   

12.
The aim of this study was to explore the so-called processing window, within which good-quality welds can be produced, for the friction stir welding of AA5083 to AA6082. To that end a systematic set of nine instrumented welds were made using rotation speeds of 280, 560, and 840 rpm and traverse speeds of 100, 200, and 300 mm/min with AA5083 on the advancing side and another nine with the materials reversed. For comparison a smaller series of AA5083-AA5083 and AA6082-AA6082 welds were also made. Thermocouple measurements, tool torque, extent of material mixing, and macrostructural observations all indicate that the temperature under the tool is more strongly dependent on the rotation than the traverse speed. It was found that in the current case, the power (energy/s) and heat input (energy/mm) do not correlate simply with the weld temperature. As a result, such metrics may not be suitable for characterizing the conditions under which welds are produced.  相似文献   

13.
Friction-stir welding (FSW) of 3-mm-thick plates of 6061 Al and LF6 Al was conducted and the materials’ flow patterns in the weld nugget along three perpendicular planes were analyzed. The onion structure viewed on any cross section normal to the travel direction is independent of weld position. The weld morphology was examined along its length by considering planes of different depths parallel to the surface. These showed semicircle streaks whose shapes depended on the depth of the observation plane. It is determined that the weld nugget is composed of a series of identical half ellipsoid regions. A tentative simplified cavity model is presented to explain the mass flow pattern and formation of defects in the weld nugget. This model is based on the assumption that only the metal between the pin surface and the last maximum circle created by the pin rotation is in a plasticized state. From this model, it is shown that the location and size of the cavity formed during the rotation of the pin changes cyclically and it is related to the position of the pin’s center. The holes or slots left in the weld nugget center or near the advancing side are directly related to the size of the cavity. The welding parameters or weld pitch affects the volume of the cavity, and consequently influence the weld defects. A large weld pitch will cause holes to be formed in the weld nugget because of the large cavity. The flow patterns, which show that the plasticized material flows from both advancing and retreating sides to the weld center behind the pin, can be easily explained with this cavity model.  相似文献   

14.
Friction stir welding process is a promising solid state joining process with the potential to join low melting point materials, particularly aluminum alloys. The most attractive reason for this is the avoidance of solidification defects formed during conventional fusion welding processes. Tool rotational speed and the welding speed play a major role in deciding the weld quality. In the present work an effort has been made to study the effect of the tool rotational speed and welding speed on mechanical and metallurgical properties of friction stir welded joints of aluminum alloy AA6082-T651. The micro hardness profiles obtained on welded zone indicate uniform distribution of grains in the stir zone. The maximum tensile strength obtained is 263 MPa which is about 85% of that of base metal. Scanning electron microscope was used to show the fractured surfaces of tensile tested specimens.  相似文献   

15.
16.
Material Flow during Friction Stir Welding of HSLA 65 Steel   总被引:1,自引:0,他引:1  
Material flow during friction stir welding of HSLA-65 steel was investigated by crystallographic texture analysis. During the welding process, the steel deforms primarily by local shear deformation in the austenite phase and then transforms upon cooling. Texture data from three weld specimens were compared to theoretical textures calculated using ideal Euler angles for shear in face centered cubic (FCC) structures transformed by the Kurdjumov–Sacks (KS) relationship. These theoretical textures show similarities to the experimental textures. Texture data from the weld specimens revealed a rotation of the shear direction corresponding to the tangent of the weld tool on both the area directly under the weld tool shoulder and weld cross sections. In addition, texture data showed that while the shear plane of the area under the weld tool shoulder remained constant, the shear plane of the weld cross sections is influenced by the weld tool pin.  相似文献   

17.
The linear friction welding behavior of Ti-6Al-4V was investigated using varying processing conditions of frequency (15 to 70 Hz), amplitude (1 to 3 mm), pressure (50 to 90 MPa), and axial shortening (1 to 2 mm). Examination of linear friction welded Ti-6Al-4V using microscopic techniques indicated that the process requires certain critical conditions at the interface and its adjacent region to be reached for producing joints without structural defects along the weld centerline, such as voids or oxide inclusions. Characterization of the weldments included analysis of the microstructural features of the weld and thermomechanically affected zones (TMAZs) in relation to the parent material. It was observed that in the weld region, exposure to supertransus temperatures (>995 °C) combined with hot-deformation working and rapid cooling after joining produced recrystallization of the beta grain structure that had a Widmanstätten alpha-beta transformation microstructure. In the TMAZ, the bimodal microstructure of the parent material was deformed and the presence of elongated alpha grains with broken beta-phase particles was established. Through examination of the mechanical properties, using microhardness and tensile testing, the integrity of the joints was determined in order to assess the impact of the various processing parameters and to define the optimum welding conditions.  相似文献   

18.
分析了焊接电流70A、80A、90A对40CrNiMoA钢焊缝接头组织和力学性能的影响。随着焊接电流的增大,焊缝外观质量较好。随着焊接电流的增大,熔池区温度升高,奥氏体晶粒尺寸增大,导致马氏体组织粗大。焊缝的显微组织为马氏体及少量残余奥氏体。焊缝的硬度远高于母材的硬度,且波动较大。热影响区的硬度从母材向沿焊缝方向逐渐升高。焊接接头纵向应力在焊缝中心为压应力,向外压应力减小。焊接颜色区边界处纵向应力为拉应力,且该点拉应力最大。焊接接头横向应力在焊缝中心为拉应力,向外逐渐增大,焊接颜色区边界处变横向拉应力达到最大。焊接电流和热输入增大,降低了材料的韧性,组织中铁素体增多及焊接残余应力是诱发脆性断裂的原因。焊接电流80A是40CrNiMoA同质焊条平板对接焊接工艺的最佳的焊接电流。  相似文献   

19.
Over the past decade, friction stir welding (FSW) has rapidly become an important industrial joining process, particularly in the aluminum industry. Included among the advantages of FSW are such important attributes as improved weld strength and the elimination of cracking and porosity. During the friction stir process, the metal undergoes a tortuous deformation path that is not yet fully understood. The crystallographic texture that evolves during FSW contains sharp spatial gradients that undoubtedly influence the integrity of the weld and surrounding region in subsequent performance. The locally measured textures are discussed in the context of the material flow required to produce such textures, ultimately resulting in an estimate of the flow field present during FSW.  相似文献   

20.
Recent computer calculations of heat transfer and fluid flow in welding were intended to provide useful insight about weldment geometry for certain specific welding conditions and alloys joined. However, no generally applicable correlation for the joining of all materials under various welding conditions was sought in previous work. To address this difficulty, computer models of fluid flow and heat transfer were used for the prediction of weld pool geometry in materials with diverse properties, such as gallium, pure aluminum, aluminum alloy 5182, pure iron, steel, titanium, and sodium nitrate under various welding conditions. From the results, a generally applicable relationship was developed between Peclet (Pe) and Marangoni (Ma) numbers. For a given material, Ma and Pe increased with the increase in laser power and decrease in beam radius. For materials with high Prandtl number (Pr), such as sodium nitrate, the Pe and Ma were high, and heat was transported primarily by convection within the weld pool. The resulting welds were shallow and wide. For low Pr number materials, like aluminum, the Pe and Ma were low in most cases, and low Pe made the weld pool deep and narrow. The cross-sectional areas of stationary and low speed welds could be correlated with welding conditions and material properties using dimensionless numbers proposed in this article.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号