首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abnormalities in the dystrophic gene product, dystrophin, have been implicated in initiating the primary membrane defect and excessive intracellular calcium accumulation (EICA), which play fundamental pathogenic roles in hereditary muscular dystrophy (HMD). Two other cytoskeletal proteins, spectrin and utrophin, bear remarkable structural and functional homologies to dystrophin. CHF-146 strain dystrophic hamsters (DH), like patients with Duchenne muscular dystrophy (DMD), die prematurely from cardiopulmonary insufficiency, focal myonecrosis, and progressive degeneration of the cardiac and skeletal muscles with EICA. Although DH present a suitable model for HMD, there are controversies concerning their dystrophin and utrophin status. Using immunocytochemistry and Western blotting, we studied dystrophin, spectrin and utrophin anomalies in the cardiac and skeletal muscles of 6-mo-old male DH. Age- and sex-matched CHF-148 strain albino normal hamsters (NH) served as controls. Sarcolemmal dystrophin staining was much weaker and interruptive in the DH. The densitometric analysis of the immunoblots revealed that dystrophin is reduced in DH by 83% in cardiac muscle (p < 0.0001), and by 50% in skeletal muscle (p < 0.0001). We conclude that sarcolemmal dystrophin distribution is markedly reduced and discontinuous in the cardiac and skeletal muscles of DH, with simultaneous upregulation of utrophin and a varied degree of spectrin labelling. This observation suggests that reduced sarcolemmal dystrophin is associated with membrane hyperpermeability, which leads to progressive muscle degeneration via EICA and segmental necrosis in DH. As in DMD, utrophin appears to play an important compensatory role in hamster dystrophinopathy.  相似文献   

2.
3.
Cardiac involvement in Becker muscular dystrophy   总被引:1,自引:0,他引:1  
OBJECTIVES: The purpose of this study was to assess the incidence of myocardial involvement and the relation of cardiac disease to the molecular defect at the deoxyribonucleic acid (DNA) or protein level in Becker muscular dystrophy. BACKGROUND: Dystrophin gene mutations produce clinical manifestations of disease in the heart and skeletal muscle of patients with Becker muscular dystrophy. METHODS: Thirty-one patients underwent electrocardiographic and echocardiographic examination and 24-h Holter monitoring. The diagnosis was established by neurologic examination, dystrophin immunohistochemical assays or Western blot on muscle biopsy, or both, and DNA analysis. RESULTS: Electrocardiographic and echocardiographic findings were abnormal in 68% and 62% of the patients, respectively. Right ventricular involvement was detected in 52%. Left ventricular impairment was observed either as an isolated phenomenon (10%) or in association with right ventricular dysfunction (29%). Right ventricular disease was manifested in the teenagers, and an impairment of the left ventricle was observed in older patients. Right ventricular end-diastolic volumes were significantly increased compared with those in a control group. The left ventricular ejection fraction was significantly lower in older patients than in control subjects or younger patients. Life-threatening ventricular arrhythmias were detected in four patients. No correlations were found between skeletal muscle disease, cardiac involvement and dystrophin abnormalities. In our patients, exon 49 deletion was invariably associated with cardiac involvement. Exon 48 deletion was associated with cardiac disease in all but two patients. CONCLUSIONS: The cardiac manifestation of Becker muscular dystrophy is characterized by early right ventricular involvement associated or not with left ventricular impairment. Exon 49 deletion is associated with cardiac disease.  相似文献   

4.
5.
6.
No health risk?     
Female carriers of Duchenne muscular dystrophy (DMD) may demonstrate elevated serum creatine kinase (CK) and reduction of muscle dystrophin in all muscle types. We hypothesized that decreased dystrophin in uterine or pelvic girdle musculature might affect the obstetrical performance of females heterozygous for a dystrophin mutation. We reviewed the outcome of 34 deliveries resulting in 35 children from 13 women who were mothers of males attending a muscular dystrophy clinic. Obstetrical performance was examined retrospectively by chart review and patient contact. Of 35 children, 6 (17%) were delivered in the breech position, which is a fivefold increase above the national standards for term pregnancies. Of the six infants with breech presentation, two were males affected with DMD, one was a female heterozygote, one was a male who died perinatally, and the carrier status of the other two females is unknown. Most DMD affected males (12/14) were delivered in the vertex position. Thus, it is likely that maternal, rather than fetal, muscle weakness was the significant factor in determination of fetal position at term. We speculate that subtle changes in uterine or pelvic girdle muscle tone may contribute to a higher rate of fetal breech position in carriers of the DMD gene.  相似文献   

7.
Inactivation of one X chromosome (X inactivation) in female mammals results in dosage compensation of X-chromosomally encoded genes between sexes. In the embryo proper of most mammals X inactivation is thought to occur at random with respect to the parental origin of the X chromosome. We determined on the cellular level the expression of the X-chromosomally encoded protein dystrophin in skeletal and cardiac muscle of female mice heterozygous for a null mutation of the dystrophin gene (mdx/+). In all muscles investigated (cardiac, anterior venter of digastric muscle, biceps brachii and tibialis anterior muscle) we found a mosaic expression of dystrophin-expressing versus non-expressing cells and determined their proportion with respect to the parental origin of the X chromosome. In all groups of mdx/+ mice the level and pattern of dystrophin expression were found to be dependent on the parental origin of the mdx mutation. Additionally, the extent of dystrophin expression was clearly dependent on the mouse strains (C57BL/10 and BALB/c) used to produce heterozygous mdx/+ mice. Variable differences and patterns of dystrophin expression in skeletal versus cardiac muscle were found that were strictly dependent on the parental source of the mdx mutation and the strain used to breed mdx/+ mice. Moreover, dystrophin expression was found to be different between the right side and the left side of the body in individual muscles, and this difference was clearly dependent on the parental origin of the X chromosome. Our data provide evidence that in the mouse embryo proper there is a non-random distribution of cells showing inactivation of the paternal versus the maternal X chromosome in skeletal and cardiac muscle, indicating a non-random X-inactivation. Besides gametic imprinting, strain-, tissue and position-dependent factors also appear to bias X inactivation.  相似文献   

8.
Myoblast transplantation and gene therapy are two promising therapeutical approaches for the treatment of Duchenne Muscular Dystrophy (DMD). So far, both strategies have met many hurdles, mainly because of immune reactions. In this study, we investigated a third and novel strategy based on the combination of these two basic ones, i.e., transplantation of genetically modified myoblasts. We first derived a primary culture from a muscle biopsy of a young DMD patient (3 years old). Adenoviral-mediated dystrophin gene transfer into these DMD cultures and expression of the dystrophin transgene were achieved in vitro. The transduced cultures were then transplanted the same day in immunodeficient SCID mouse muscles. Three weeks following the graft, many human dystrophin-positive fibers were observed throughout sections of the injected muscles. However, many fibers expressed human MHC antigens without expressing human dystrophin due to the low percentage of infected primary muscle cells in vitro (even when a high MOI [400] was used) and to a reduction and even to a complete loss of transgene copy number during myoblast replication. From our results, we conclude that, although not at a high proportion, (1) DMD primary myoblast cultures are infectable by adenoviruses; (2) they can be efficiently transplanted back in a muscle, leading to normal fusion of infected myoblasts with the host fibers; and (3) they can correct the dystrophin deficiency in the host fibers by the expression of a mini-dystrophin transgene.  相似文献   

9.
Cardiomyopathy was reported in a few Duchenne muscular dystrophy (DMD) carriers with clinical evidence of myopathy. We report two carriers with dilated cardiomyopathy, increased serum CK, and no symptoms of muscle weakness. In heart biopsies of both patients, dystrophin-the protein product of DMD locus--was absent in many fibers. Dilated cardiomyopathy may be the only manifestation of dystrophin gene mutation in carriers.  相似文献   

10.
The effects of 10 day clenbuterol administration on cardiac and skeletal muscle capillarities were studied, particularly in terms of the distribution of arteriolar and venular capillaries and their capillary density, in young (10-week-old) and middle-aged (37-week-old) male Wistar rats. Rats of the treated groups were fed a diet containing 2 mg kg-1 clenbuterol hydrochloride. In both young and middle aged rats, clenbuterol treatment increased the body wt and the weights of the heart and hindlimb muscles. The mean fibre cross-sectional area was significantly increased after the treatment in the left ventricle, soleus, plantaris and both deep and superficial portions of gastrocnemius (P < 0.01). In the left ventricle, the total capillary density and the density of venular capillaries were decreased after the treatment in both young (9 and 13%, respectively) and middle-aged rats (10 and 11%, respectively). A decrease in total capillary density was also observed in all skeletal muscles examined. In both young and middle-aged rats, the capillary-to-fibre (C:F) ratio and the proportion of each capillary did not change after the treatment in both the left ventricle and skeletal muscles. Clenbuterol significantly decreased the activity of succinate dehydrogenase in all skeletal muscles examined (P < 0.01). These results suggest that clenbuterol increased the diffusion distance for oxygen in the left ventricle and skeletal muscles. These changes may reduce the oxygen supply to tissues and increase muscle fatigability.  相似文献   

11.
The mdx mouse, an animal model of the Duchenne muscular dystrophy, was used for the investigation of changes in mitochondrial function associated with dystrophin deficiency. Enzymatic analysis of skeletal muscle showed an approximately 50% decrease in the activity of all respiratory chain-linked enzymes in musculus quadriceps of adult mdx mice as compared with controls, while in cardiac muscle no difference was observed. The activities of cytosolic and mitochondrial matrix enzymes were not significantly different from the control values in both cardiac and skeletal muscles. In saponin-permeabilized skeletal muscle fibers of mdx mice the maximal rates of mitochondrial respiration were about two times lower than those of controls. These changes were also demonstrated on the level of isolated mitochondria. Mdx muscle mitochondria had only 60% of maximal respiration activities of control mice skeletal muscle mitochondria and contained only about 60% of hemoproteins of mitochondrial inner membrane. Similar findings were observed in a skeletal muscle biopsy of a Duchenne muscular dystrophy patient. These data strongly suggest that a specific decrease in the amount of all mitochondrial inner membrane enzymes, most probably as result of Ca2+ overload of muscle fibers, is the reason for the bioenergetic deficits in dystrophin-deficient skeletal muscle.  相似文献   

12.
The level of plasma brain natriuretic peptide (BNP) was elevated in 8 of 15 female gene carriers of Duchenne muscular dystrophy (DMD), and the level correlated with indices of cardiac function. In one of these carriers, whose clinical course was followed for one year, the plasma BNP level was elevated before the development of cardiac symptoms, further increased with the evolution of cardiac symptoms, and then decreased after treatment for cardiac failure. These results suggest that the plasma BNP level may be useful for the early detection of cardiac dysfunction and for evaluating the efficacy of cardiac treatment in female DMD carriers.  相似文献   

13.
We correlated utrophin expression with the physiopathological course in mdx mice. Evolution of the pathology was assessed by monitoring expression of developmental MHC in mdx mice versus control. Utrophin expression is detected by dystrophin/utrophin cross-reacting antibodies and can only be evaluated in mdx mouse muscles (in absence of dystrophin). This protein was expressed at the periphery of all myotubes and myofibers during the first postnatal week. It began declining in fast muscles before the third week and disappeared from the soleus between the 3rd and the 4th week. The decrease was concomitant with a sudden degenerative/regenerative process affecting slow muscle earlier and more massively than fast muscles. The pathological process became stable in all muscle types (except the diaphragm), with greater utrophin expression in the soleus. These results in mdx mice along with observed utrophin expression in severely affected DMD patients suggest that overexpression of utrophin is not enough to explain the stability of regenerated fibers in mdx mice.  相似文献   

14.
Muscles or muscle groups exhibiting responses to neuromuscular disease that are unlike those of other skeletal muscles may provide novel information about pathogenesis leading to improved treatment strategies. The author's laboratory studies the relationship between the unique phenotype of the extraocular muscles and their selective sparing or targeting in neuromuscular disease. This commentary evaluates the evidence for and against four hypotheses for the selective protection of extraocular muscle in Duchenne muscular dystrophy (DMD) and merosin-deficient congenital muscular dystrophy (CMD).  相似文献   

15.
16.
17.
Duchenne muscular dystrophy (DMD) is a severe, progressive, X-linked muscle-wasting disorder with an incidence of approximately 1/3,500 male births. Females are also affected, in rare instances. The manifestation of mild to severe symptoms in female carriers of dystrophin mutations is often the result of the preferential inactivation of the X chromosome carrying the normal dystrophin gene. The severity of the symptoms is dependent on the proportion of cells that have inactivated the normal X chromosome. A skewed pattern of X inactivation is also responsible for the clinical manifestation of DMD in females carrying X;autosome translocations, which disrupt the dystrophin gene. DMD may also be observed in females with Turner syndrome (45,X), if the remaining X chromosome carries a DMD mutation. We report here the case of a karyotypically normal female affected with DMD as a result of homozygosity for a deletion of exon 50 of the dystrophin gene. PCR analysis of microsatellite markers spanning the length of the X chromosome demonstrated that homozygosity for the dystrophin gene mutation was caused by maternal isodisomy for the entire X chromosome. This finding demonstrates that uniparental isodisomy of the X chromosome is an additional mechanism for the expression of X-linked recessive disorders. The proband's clinical presentation is consistent with the absence of imprinted genes (i.e., genes that are selectively expressed based on the parent of origin) on the X chromosome.  相似文献   

18.
In the initial phase of the infarction, there is a decrease of ventricular function due to loss of contractile activity. In addition, a negative effect of the paradoxical movement of the infarcted area on the hemodynamics of the ventricle is noted. The stiffening of the infarcted area in the early stage has a favorable influence on ventricular function, leading to a change in the elastic properties of the ventricle. The loss of ventricular compliance persists after the infarction, and its severity depends on the extent of myocardial destruction. In the non-compliant ventricle, the end-diastolic pressure rises without a proportionate increase in volume. Consequently, the ventricular function curve shows a shift downward and to the right, making it difficult to distinguish between the loss of contractile function or compliance in the heart in situ. Evaluation of the contractile properties of the surviving cardiac muscle in situ is, however, hardly possible due to the changed geometry and the additonal elastic elements functioning in series with the surviving muscle. To exclude these factors, a study of the contractile properties of the surviving cardiac muscle in the isolated state was carried out following experimental myocardial infarction in cats. By ligating several coronary branches, infarctions in the area of the left ventricle were caused; to avoid the ischaemic border zone of the infarction, right ventricular papillary muscles were studied. Haemodynamic investigations showed an increase in right ventricular end-diastolic pressure which persisted 6 weeks after infarction. As early as 48 hours but, more significantly 1 week after infarction, there was a decrease of actively developed force in the surviving cardiac muscle due to a lower rate of force development. The resting length tension curve of the surviving cardiac muscle after infarction showed no alterations; and 6 weeks following infarction, almost normal contractility parameters were observed. As a result of the infarction, a decrease in contractility in the surviving cardiac muscle is observed during the early stage, which regresses after complete recuperation.  相似文献   

19.
The absence of dystrophin at the muscle membrane leads to Duchenne muscular dystrophy (DMD), a severe muscle-wasting disease that is inevitably fatal in early adulthood. In contrast, dystrophin-deficient mdx mice appear physically normal despite their underlying muscle pathology. We describe mice deficient for both dystrophin and the dystrophin-related protein utrophin. These mice show many signs typical of DMD in humans: they show severe progressive muscular dystrophy that results in premature death, they have ultrastructural neuromuscular and myotendinous junction abnormalities, and they aberrantly coexpress myosin heavy chain isoforms within a fiber. The data suggest that utrophin and dystrophin have complementing roles in normal functional or developmental pathways in muscle. Detailed study of these mice should provide novel insights into the pathogenesis of DMD and provide an improved model for rapid evaluation of gene therapy strategies.  相似文献   

20.
The challenge of Duchenne muscular dystrophy (DMD) carrier identification resides in the ability to identify the presence of a mutant gene over the background contributed by the normal allele. Current diagnosis of carrier status when a deletion has been identified in a proband is based on an analysis of a gene dosage. We present a diagnostic strategy that uses fluorescence in situ hybridization (FISH) to detect female carriers with major deletions in the dystrophin gene. We screened a human X-chromosome-derived genomic library with a full-length dystrophin cDNA and isolated 15 dystrophin-specific cosmids that contain DMD gene exons. Six cosmids were further tested as FISH probes in control individuals and subsequently applied on chromosomes from eight males with DMD and known deletions and on samples from three female carriers. As expected, X chromosomes in normal females displayed four signals, two for the DMD-specific probe and two for the X-chromosome centromeric probe. Hybridization on chromosomal spreads from carriers of deletions revealed only one signal from the DMD-specific probe and two from the control centromeric probe. Males carrying deletions showed no DMD-specific signal for the deleted exons tested. Our data indicate that FISH could represent an alternative method for the detection of female carriers with DMD gene deletions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号