首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
针对差分进化算法差分策略优化问题上的不足, 解决DE/best/1策略全局探测能力差, DE/rand/1局部搜索能力弱而带来的鲁棒性降低及陷入局部最优等问题, 本文在差分策略上进行改进, 并且加入邻域分治思想提高进化效率, 提出一种基于双种群两阶段变异策略的差分进化算法(TPSDE). 第一个阶段利用DE/best/1的优势对邻域向量划分完成的子种群区域进行局部优化, 第二个阶段借鉴DE/rand/1的思想实现全局优化, 最终两阶段向量加权得到最终变异个体使得算法避免了过早收敛和搜索停滞等问题的出现. 6个测试函数的仿真实验结果表明TPSDE在收敛速度、优化精度和鲁棒性方面都得到了明显改善.  相似文献   

2.
为加强差分进化算法的全局搜索能力,提出了一种基于交叉变异策略的双种群差分进化算法(CMDPDE)。CMDPDE中,两个种群分别采用大小不同的缩放因子和交叉因子,在每代进化完毕后,对其中缩放因子和交叉因子较小的种群执行交叉或变异策略来寻找更优的个体,同时两个种群之间每10代进行一次信息交流。这种方式与单种群差分进化算法相比,可以通过双种群和交叉变异策略来增加解的多样性,使算法能在更大的范围内寻优。6个Benchmark函数的实验结果证明CMDPDE具有较好的寻优能力。  相似文献   

3.
针对差分进化算法存在的收敛速度慢、稳健性差等问题,借鉴多种群并行机制和随机搜索策略,提出一种基于随机扩散搜索的协同差分进化算法。引入反向混沌搜索的初始化机制,利用随机扩散搜索策略将种群分为成功和失败2个子群并进行改进,对改进的成功和失败子群分别采用不同的差分策略,克服单一差分策略的缺陷,同时定期使子群的部分最好与最差个体实现一对一的信息交流,从而达到协同进化的目的。仿真结果证明,与粒子群优化算法及差分进化算法相比,该算法具有较好的收敛速度和寻优能力。  相似文献   

4.
张斌  李延晖  郭昊 《计算机应用》2017,37(4):1093-1099
针对差分进化(DE)算法存在的寻优精度低、收敛速度慢等问题,借鉴混沌分散策略、反向学习策略(OBL)以及跨种群并行机制,提出一种基于反向学习的跨种群差分进化算法(OLCPDE)。采用混沌分散策略进行种群初始化,将种群划分为精英种群和普通种群,对两个子种群分别采用标准的差分进化策略和基于反向学习的差分进化策略;同时,为进一步提高算法对单峰函数的求解精度和稳定性,采用了一种跨种群的差分进化策略,运用三种策略对子种群进行操作,达到共同进化的目的。实验独立运行30次,OLCPDE在12个标准的测试函数中,有11个函数都能稳定地收敛到全局最优解,优于对比算法。实验结果表明,OLCPDE收敛精度高,能有效避免陷入局部最优点。  相似文献   

5.
基于小生境的混沌变异差分进化算法   总被引:1,自引:0,他引:1       下载免费PDF全文
针对高维复杂函数的优化问题,提出了基于小生境的混沌变异差分进化算法(CNDE)。算法结合小生境策略,使子种群高效独立地进行搜索,并引入混沌变异进行精细的遍历搜索,在运行中根据迭代次数自动地调整交叉概率因子从而使搜索的初始阶段提高种群多样性,而在搜索后期加强局部搜索能力。对3种经典函数的测试表明,新算法不仅具有很强的全局搜索能力,而且能有效避免早熟收敛问题。  相似文献   

6.
针对入侵杂草优化算法易出现早熟且收敛速度较慢的问题,提出一种具有差分进化策略的入侵杂草算法。利用差分进化策略较强的开发能力,对种子进行交叉变异选择操作以帮助算法跳出局部最优;同时,为了提高算法的收敛速度和种群多样性,提出对杂草进行初始化并采用基于混沌反向学习的初始化方法。对8个标准测试函数进行的仿真实验表明:与标准杂草优化、差分进化及混合杂草优化算法相比,提出的改进算法具有较快的收敛速度、较高的收敛精度及较强的搜索全局最优解的能力。  相似文献   

7.
针对差分进化算法易于陷入早熟收敛和局部搜索较慢的问题,提出了一种类似Nelder-Mead方法中的反射操作的变异策略,称为反射变异策略。不同于其他基本的差分策略,提出的变异策略具有明确的差分方向,具有更快的局部收敛速度。为了避免因差分方向的贪婪性而导致算法早熟的可能性增加,反射变异策略使用4个随机的个体完成一次变异操作。将基于反射变异策略的子代生成策略和自适应参数方法组合形成了基于反射变异策略的自适应差分进化算法(RMADE)。使用12个函数测试了RMADE的性能并与其他算法进行比较,结果表明RMADE具有较快的收敛速度和较好的全局探测能力,进而体现了反射变异策略的价值。  相似文献   

8.
针对差分进化算法在复杂优化问题求解时后期收敛速度慢、易陷入局部最优和参数设置繁琐等问题,提出一种基于新变异策略的动态自适应差分进化算法p-ADE.首先,新变异策略中通过利用种群的全局最优解和目标个体的历史最优解引导种群搜索方向,为下一代个体的生成引入更多有效的方向性信息,避免差分向量中个体随机选择导致的搜索盲目性.其次,为加快收敛速度、提高算法稳定性、避免参数设置的繁琐与不精确,提出一种参数动态自适应调整策略,动态平衡算法局部搜索与全局搜索间的关系,有效调节个体在进化过程中的变异程度.在10个Benchmark函数上的实验结果表明,p-ADE相对于多种先进DE优化策略和全局优化算法在收敛精度、速度和鲁棒性上均具有明显优势.  相似文献   

9.
针对回溯搜索优化算法存在的收敛速度慢,容易陷入局部最优等问题,提出了一种改进算法。首先利用t分布产生变异尺度系数,加快了算法收敛速度;接着完善交叉方程结构,引入最优个体控制种群搜索方向,有效提高了算法开发能力;最后提出进化选择机制,引入差分进化算法变异因子,一定概率下以较差解替换较优解,避免算法陷入局部最优。在数值实验中,选取了15个测试函数进行仿真测试,并与5种表现良好的算法进行了比较,结果表明,该算法在收敛速度及搜索精度方面有明显优势。  相似文献   

10.
具有混沌局部搜索策略的差分进化全局优化算法   总被引:1,自引:0,他引:1       下载免费PDF全文
提出了一种具有混沌局部搜索策略的差分进化全局优化算法(CLSDE),它是在每一代中通过DE/best/1/bin形式的差分进化算法找到最佳个体,然后在最佳个体的附近用混沌的方法进行局部搜索。8个基本的测试函数优化结果表明:若误差函数精度为10-10,CLSDE寻优成功率比DE和SACDE都要高,而且收敛速度比DE和SACDE都要快。  相似文献   

11.
传统差分进化(DE)算法在迭代过程中不能充分平衡全局勘探与局部开发,存在易陷入局部最优、求解精度低、收敛速度慢等缺点。为提升算法性能,提出一种基于随机邻域变异和趋优反向学习的差分进化(RNODE)算法并对其进行复杂度分析。首先,为种群中每个个体生成随机邻域,用全局最佳个体引导邻域最佳个体生成复合基向量,结合控制参数自适应更新机制构成随机邻域变异策略,使算法在引导种群向最优方向趋近的同时保持一定的勘探能力;其次,为了进一步帮助算法跳出局部最优,对种群中较差个体执行趋优反向学习操作,扩大搜索区域;最后,将RNODE与九种算法进行对比以验证RNODE的有效性和先进性。在23个Benchmark函数和两个实际工程优化问题上的实验结果表明,RNODE算法收敛精度更高、速度更快、稳定性更优。  相似文献   

12.
张强  邹德旋  耿娜  沈鑫 《计算机应用》2018,38(10):2812-2821
为了克服差分进化算法寻优精度低、收敛速度慢、稳定性差等不足,提出一种基于多变异策略的自适应差分进化算法(ADE-MM)。首先,在3个变异策略的选择过程中添加2个具有学习功能的扰动阈值,以提高种群多样性,扩大搜索范围;然后,根据上次迭代的成功参数自适应调整当前参数,提高寻优精度和寻优速度;最后,利用向量粒子池法和中心粒子法产生新的向量粒子,进一步提高寻优效果。使用8个函数、5种对比算法(RMDE、OLCPDE、JADE、SaDE、MDE_pBX)进行测试,且每种例子都独立执行30次。ADE-MM算法在均值和方差的比较中取得了全胜,其中在30维的情况下取得了5个独立胜利,3个并列胜利;在50维的情况下取得了6个独立胜利,2个并列胜利;在100维的情况下全部为独立胜利。同时在Wilcoxon rank sum test、胜率和算法耗时分析中,ADE-MM算法也取得优异的表现。实验结果表明,相对于其他5种对比算法,ADE-MM算法具有更强的全局寻优能力、收敛性和稳定性。  相似文献   

13.
标准差分进化(DE)算法在高维多峰等复杂函数优化时易出现早熟现象,并且算法后期收敛速度较慢。为此,研究2种标准差分进化算法的变异策略(DE/rand/1和DE/best/1),并将其进行串行组合,提出一种多变异策略的差分进化算法(MDE)。在4个Benchmark函数上的测试结果表明,在多变异策略下,通过对MDE算法控制参数的调整能有效拓展和平衡改进后算法的全局与局部搜索能力,其所得最优解的精度、算法的收敛速度都较标准差分进化算法有明显优势,能较好地解决电力负载分配问题。  相似文献   

14.
差分进化是一种有效的优化技术,已成功用于多目标优化问题。但也存在Pareto最优集合的收敛慢和多样性差等问题。针对上述不足,本文提出了一种基于分解和多策略变异的多目标差分进化算法(MODE/DMSM)。该算法利用基于分解的方法将多目标优化问题分解为多个单目标优化问题;通过高效的非支配排序方法选择具有良好收敛性和多样性的解来指导差分进化过程;采用了多策略变异方法来平衡进化过程中收敛性和多样性。在ZDT和DTLZ的10个测试函数上的仿真结果表明,本文算法在Parato最优集合的收敛性和多样性优于其他六种代表性多目标优化算法。  相似文献   

15.
为克服rand/1和best/1两种变异策略存在的缺陷,提出分工差分进化算法.该算法结合rand/1变异策略全局搜索能力强和best/1变异策略局部搜索能力强、收敛速度快的特点,在进化过程中对个体进行分工,优秀个体选择best/1策略承担开发任务,一般或较差个体选择rand/1变异策略承担探索任务,通过个体分工负责从而提高算法性能.对典型函数的测试结果证明,新算法能够大大提高算法的收敛速率和全局搜索能力.  相似文献   

16.
针对标准群搜索优化算法在解决一些复杂优化问题时容易陷入局部最优且收敛速度较慢的问题,提出一种应用反向学习和差分进化的群搜索优化算法(Group Search Optimization with Opposition-based Learning and Diffe-rential Evolution,OBDGSO)。该算法利用一般动态反向学习机制产生反向种群,扩大算法的全局勘探范围;对种群中较优解个体实施差分进化的变异操作,实现在较优解附近的局部开采,以改善算法的求解精度和收敛速度。这两种策略在GSO算法中相互协同,以更好地平衡算法的全局搜索能力和局部开采能力。将OBDGSO算法和另外4种群智能算法在12个基准测试函数上进行实验,结果表明OBDGSO算法在求解精度和收敛速度上具有较显著的性能优势。  相似文献   

17.
针对多目标差分进化算法求解多目标优化问题时收敛慢和均匀性欠佳等不足,提出了一种基于多策略排序变异的多目标差分进化算法。该算法利用基于排序变异算子快速接近真实的Pareto最优解,同时引入多策略差分进化算子以保持算法的多样性和分布性。通过自适应策略,动态调整控制参数以提高算法的鲁棒性。从理论证明的角度分析了所提算法的收敛性。仿真实验结果表明,本文所提算法相对于近期相关文献中的改进算法具有更好的收敛性与多样性,从而表明了所提算法的有效性。  相似文献   

18.
基于混沌搜索的自适应差分进化算法   总被引:2,自引:0,他引:2  
提出一种基于混沌搜索的自适应差分进化算法(CADE),该算法在计算过程中自适应地调整交叉率,在搜索初期保持种群多样性的同时增强算法的全局收敛性。具有较强局部遍历搜索性能的混沌搜索的引入使得算法具有较好的求解精度,增加搜索到全局最优解的概率。对几种典型的测试函数对CADE进行了测试,实验结果表明,该算法能有效地避免早熟收敛,具有良好的全局收敛性。  相似文献   

19.
20.
基于Laplace分布变异的改进差分进化算法   总被引:1,自引:0,他引:1  
刘兴阳  毛力 《计算机应用》2011,31(4):1099-1102
为了提高差分进化算法(DEA)的收敛速度和寻优精度,提出了一种改进的差分进化算法。在该算法中,引入了基于Laplace分布的变异算子,并且能根据以往的进化经验自适应地调整进化策略及交叉概率以适应不同阶段的进化。通过5个典型Benchmark函数的测试结果表明,该算法的收敛速度快、求解精度高、鲁棒性较强,适合求解高维复杂的全局优化问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号