首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We demonstrate the nucleation of self-assembled, epitaxial GaN nanowires (NWs) on (111) single-crystalline diamond without using a catalyst or buffer layer. The NWs show an excellent crystalline quality of the wurtzite crystal structure with m-plane faceting, a low defect density, and axial growth along the c-axis with N-face polarity, as shown by aberration corrected annular bright-field scanning transmission electron microscopy. X-ray diffraction confirms single domain growth with an in-plane epitaxial relationship of (10 ?10)(GaN) [parallel] (01 ?1)(Diamond) as well as some biaxial tensile strain induced by thermal expansion mismatch. In photoluminescence, a strong and sharp excitonic emission reveals excellent optical properties superior to state-of-the-art GaN NWs on silicon substrates. In combination with the high-quality diamond/NW interface, confirmed by high-resolution transmission electron microscopy measurements, these results underline the potential of p-type diamond/n-type nitride heterojunctions for efficient UV optoelectronic devices.  相似文献   

2.
Single crystal gallium nitride nanowires have been obtained by heating gallium acetylacetonate in the presence of carbon nanotubes or activated carbon in NH3 vapor at 910 degrees C. GaN nanowires also were obtained when the reaction of gallium acetylacetonate with NH3 was carried out over catalytic Fe/Ni particles dispersed over silica. The former procedure with carbon nanotubes is preferable because it avoids the presence of metal particles in the nanowire bundles.  相似文献   

3.
The large-scale popularization of 5G mobile network technology accelerates the arrival of modern intelligent society. In this society, billions of distributed sensors are needed as the sense organ for information collection, posing a grand challenge of high precision sensor and distributed power supply. As an emerging technology, triboelectric nanogenerator (TENG) can effectively harvest varied environmental low frequency mechanical energy and convert it into electricity with the merits of low cost, environmentally friendliness and strong adaptability, showing a great potential as a distributed power source. However, there is still a distance for its commercial use due to the insufficient function modes and output performance of TENG. Therefore, in order to push forward its commercial process, here we systematically review TENG, from the basic characteristics, improving output performance of alternating current (AC) TENG, working modes of direct current (DC) TENG to effective power management. Besides, we suggest some unified and standardized terminologies on energy efficiency to solve some confusing nomenclature. At last, challenges and future research focus in this field are also predicted to provide a significant guideline for the next stage development of TENG for the research community.  相似文献   

4.
ZnO nanowires were grown on a-plane GaN templates by chemical vapor deposition (CVD) without employing a catalyst. The a-plane GaN templates were pre-deposited on an r-plane sapphire substrate by metal-organic CVD. The resulting ZnO nanowires grow in angles off- related to the GaN basal plane. X-ray diffraction (XRD) spectra showed that the ZnO layer was grown with a heteroepitaxial relationship of (110)ZnO||(110)GaN. Photoluminescence spectra measured at 17 K exhibited near-band-edge emission at 372 nm with a full width at half maximum of 10 nm. The growth mechanism on a-GaN was the Volmer-Weber (VW) mode and differed from the Stranski-Krastanow (SK) mode observed for growth on c-GaN. This difference results from the higher interfacial free-energy on the a-plane between ZnO and GaN than that on the c-plane orientation.  相似文献   

5.
6.
Advanced electronic devices based on carbon nanotubes (NTs) and various types of nanowires (NWs) could have a role in next-generation semiconductor architectures. However, the lack of a general fabrication method has held back the development of these devices for practical applications. Here we report an assembly strategy for devices based on NTs and NWs. Inert surface molecular patterns were used to direct the adsorption and alignment of NTs and NWs on bare surfaces to form device structures without the use of linker molecules. Substrate bias further enhanced the amount of NT and NW adsorption. Significantly, as all the processing steps can be performed with conventional microfabrication facilities, our method is readily accessible to the present semiconductor industry. We use this method to demonstrate large-scale assembly of NT- and NW-based integrated devices and their applications. We also provide extensive analysis regarding the reliability of the method.  相似文献   

7.
A convenient approach to patterning inorganic and organic nanowires using a novel probe manipulator is presented. The system utilizes an electrochemically etched tungsten wire probe mounted onto a 3D actuator that is directed by a 3D controller. When it is engaged by the user, the movement of the probe and the forces experienced by the tip are simultaneously reported in real time. Platinum nanowires are manipulated into organized mesostructures on silicon chip substrates. In particular, individual nanowires are systematically removed from aggregates, transferred to a chosen location, and manipulated into complex structures in which selected wires occupy specific positions with defined orientations. Rapid prototyping of complex mesostructures, by pushing, rotating and bending conjugated polymer, i.e., polyfluorene, nanowires into various configurations, is also achieved. By exploiting the strong internal axial alignment of polymer chains within the polyfluorene nanowires, mesostructures tailored to exhibit distinctly anisotropic optical properties, such as birefringence and photoluminescence dichroism, are successfully assembled on fused silica substrates.  相似文献   

8.
Huang JY  Zheng H  Mao SX  Li Q  Wang GT 《Nano letters》2011,11(4):1618-1622
The deformation, fracture mechanisms, and the fracture strength of individual GaN nanowires were measured in real time using a transmission electron microscope-scanning probe microscope (TEM-SPM) platform. Surface mediated plasticity, such as dislocation nucleation from a free surface and plastic deformation between the SPM probe (the punch) and the nanowire contact surface were observed in situ. Although local plasticity was observed frequently, global plasticity was not observed, indicating the overall brittle nature of this material. Dislocation nucleation and propagation is a precursor before the fracture event, but the fracture surface shows brittle characteristic. The fracture surface is not straight but kinked at (10-10) or (10-11) planes. Dislocations are generated at a stress near the fracture strength of the nanowire, which ranges from 0.21 to 1.76 GPa. The results assess the mechanical properties of GaN nanowires and may provide important insight into the design of GaN nanowire devices for electronic and optoelectronic applications.  相似文献   

9.
10.
Hersee SD  Sun X  Wang X 《Nano letters》2006,6(8):1808-1811
This paper reports a scalable process for the growth of high-quality GaN nanowires and uniform nanowire arrays in which the position and diameter of each nanowire is precisely controlled. The approach is based on conventional metalorganic chemical vapor deposition using regular precursors and requires no additional metal catalyst. The location, orientation, and diameter of each GaN nanowire are controlled using a thin, selective growth mask that is patterned by interferometric lithography. It was found that use of a pulsed MOCVD process allowed the nanowire diameter to remain constant after the nanowires had emerged from the selective growth mask. Vertical GaN nanowire growth rates in excess of 2 mum/h were measured, while remarkably the diameter of each nanowire remained constant over the entire (micrometer) length of the nanowires. The paper reports transmission electron microscopy and photoluminescence data.  相似文献   

11.
Diameter-dependent electromechanical properties of GaN nanowires   总被引:1,自引:0,他引:1  
The diameter-dependent Young's modulus, E, and quality factor, Q, of GaN nanowires were measured using electromechanical resonance analysis in a transmission electron microscope. E is close to the theoretical bulk value ( approximately 300 GPa) for a large diameter nanowire (d=84 nm) but is significantly smaller for smaller diameters. At room temperature, Q is as high as 2,800 for d=84 nm, significantly greater than what is obtained from micromachined Si resonators of comparable surface-to-volume ratio. This implies significant advantages of smooth-surfaced GaN nanowire resonators for nanoelectromechanical system (NEMS) applications. Two closely spaced resonances are observed and attributed to the low-symmetry triangular cross section of the nanowires.  相似文献   

12.
We present acoustic charge transport in GaN nanowires (GaN NWs). The GaN NWs were grown by molecular beam epitaxy (MBE) on silicon(111) substrates. The nanowires were removed from the silicon substrate, aligned using surface acoustic waves (SAWs) on the piezoelectric substrate LiNbO(3) and finally contacted by electron beam lithography. Then, a SAW was used to create an acoustoelectric current in the GaN NWs which was detected as a function of radio-frequency (RF) wave frequency and its power. The presented method and our experimental findings open up a route towards new acoustic charge transport nanostructure devices in a wide bandgap material such as GaN.  相似文献   

13.
The mechanism of ultraviolet laser ablation of GaN epitaxial films is determined: it is found to be based on the dissociation of GaN molecules to form volatile nitrogen-containing components. The conditions of exposure under which the formation of gallium nanoclusters on the GaN surface are determined. Regimes of epitaxial growth of GaN are found in which parallel microterraces form on the surface of the samples. It is found that when samples with microterraces in the as-grown state are irradiated by high-power ultraviolet radiation, gallium nanowires are formed on the surface. It is proposed to use these phenomena to develop new UV optical lithographic techniques and to fabricate single-electron devices based on GaN. Pis’ma Zh. Tekh. Fiz. 25, 13–18 (May 26, 1999)  相似文献   

14.
The synthesis of Tb-doped GaN nanowires on Si (111) substrates through ammoniating Ga2O3 films doped with Tb was investigated. X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscope, high-resolution transmission electron microscopy and photoluminescence were used to characterize the composition, structure, morphology and optical properties of the products. The results show that the as-synthesized GaN nanowires doped with 3 at % Tb are of single-crystalline hexagonal wurtzite structure. The nanowires have diameters ranging from 30 to 50 nm and the lengths up to tens of micrometers. An f-f intra-atomic transition of rare earth at 545 nm corresponding to 5 D 47 F 5 of the Tb3+ and other two peaks related with doping are observed in PL spectrum, confirming the doping of Tb into GaN. The growth mechanism of GaN nanowires was discussed briefly.  相似文献   

15.
16.
We report on the photocurrent behavior of single GaN n-i-n nanowires (NWs) grown by plasma-assisted molecular-beam epitaxy on Si(111). These structures present a photoconductive gain in the range of 10(5)-10(8) and an ultraviolet (350 nm) to visible (450 nm) responsivity ratio larger than 6 orders of magnitude. Polarized light couples with the NW geometry with a maximum photoresponse for polarization along the NW axis. The photocurrent scales sublinearly with optical power, following a I ~ P(β) law (β < 1) in the measured range with β increasing with the measuring frequency. The photocurrent time response remains in the millisecond range, which is in contrast to the persistent (hours) photoconductivity effects observed in two-dimensional photoconductors. The photocurrent is independent of the measuring atmosphere, either in the air or in vacuum. Results are interpreted taking into account the effect of surface states and the total depletion of the NW intrinsic region.  相似文献   

17.
Mechanical elasticity of hexagonal wurtzite GaN nanowires with hexagonal cross sections grown through a vapour-liquid-solid (VLS) method was investigated using a three-point bending method with a digital-pulsed force mode (DPFM) atomic force microscope (AFM). In a diameter range of 57-135?nm, bending deflection and effective stiffness, or spring constant, profiles were recorded over the entire length of end-supported GaN nanowires and compared to the classic elastic beam models. Profiles reveal that the bending behaviour of the smallest nanowire (57.0?nm in diameter) is as a fixed beam, while larger nanowires (89.3-135.0?nm in diameter) all show simple-beam boundary conditions. Diameter dependence on the stiffness and elastic modulus are observed for these GaN nanowires. The GaN nanowire of 57.0?nm diameter displays the lowest stiffness (0.98?N?m(-1)) and the highest elastic modulus (400 ± 15?GPa). But with increasing diameter, elastic modulus decreases, while stiffness increases. Elastic moduli for most tested nanowires range from 218 to 317?GPa, which approaches or meets the literature values for bulk single crystal and GaN nanowires with triangular cross sections from other investigators. The present results together with further tests on plastic and fracture processes will provide fundamental information for the development of GaN nanowire devices.  相似文献   

18.
Zhu G  Wang AC  Liu Y  Zhou Y  Wang ZL 《Nano letters》2012,12(6):3086-3090
We demonstrate a new type of integrated nanogenerator based on arrays of vertically aligned piezoelectric ZnO nanowires. The peak open-circuit voltage and short-circuit current reach a record high level of 58 V and 134 μA, respectively, with a maximum power density of 0.78 W/cm(3). The electric output was directly applied to a sciatic nerve of a frog, inducing innervation of the nerve. Vibrant contraction of the frog's gastrocnemius muscle is observed as a result of the instantaneous electric input from the nanogenerator.  相似文献   

19.
The potential of surfactant interactions to direct both the placement and orientation of gold nanowires onto surfaces from solution has been investigated. Gold nanowires were synthesized by template electrodeposition in porous aluminum oxide membranes. Their assembly onto surfaces was controlled by functionalizing the nanowires and surfaces with self-assembled monolayers of thiol based surfactants. Nanowires were assembled from solution onto patterned functional surfaces, and after excess solvent had evaporated the arrangement of nanowires on the surface was observed. A variety of assembly techniques, based upon wettability, electrostatic, or chemical interactions have been studied. Nanowire assembly onto surfaces with patterned wettability resulted in the placement of nanowires on hydrophilic regions with a specific orientation. Hydrogen bonding and carboxylate salt attachment of mercaptoundecanoic acid functionalized nanowires to reactive regions of patterned surfaces has been demonstrated, with unbound wires removed by washing. Similarly, electrostatic interactions between charged nanowires and surfaces have been demonstrated to preferentially assemble nanowires onto oppositely charged surface regions. Although selective attachment of nanowires to reactive surface regions was achieved by both chemical and electrostatic assembly techniques, these methods did not control the orientation of assembled nanowires.  相似文献   

20.
Nam CY  Tham D  Fischer JE 《Nano letters》2005,5(10):2029-2033
The current-bias (I-V) characteristics at various temperatures, T, of focused-ion-beam (FIB)-deposited Pt contacts on GaN nanowires evolves from low-resistance ohmic (linear I-V) to rectifying as the diameter increases, and both exhibit strongly nonmetallic T-dependence. The small-diameter (66 nm) T-dependent resistance is explained by two-dimensional variable range hopping with a small characteristic energy, ensuring low resistance at 300 K. For large diameters (184 nm), back-to-back Schottky barriers explain the nonlinear I-V at all T values and permit an estimate of doping concentration from the bias-dependent barrier height. Both behaviors can be understood by accounting for the role of FIB-induced amorphization of GaN underneath the contact, as confirmed by cross-sectional transmission electron microscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号