首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two standard commercial flashlamp-pumped Nd:YAG (YAG denotes yttrium aluminum garnet) lasers have been upgraded to "pulse-burst" capability. Each laser produces a burst of up to 15 2 J Q-switched pulses (1064 nm) at repetition rates of 1-12.5 kHz. Variable pulse-width drive (0.15-0.39 ms) of the flashlamps is accomplished by insulated gate bipolar transistor (IGBT) switching of electrolytic capacitor banks. Direct control of the laser Pockels cell drive enables optimal pulse energy extraction, and up to four 2 J laser pulses during one flashlamp pulse. These lasers are used in the Thomson scattering plasma diagnostic system on the MST reversed-field pinch to record the dynamic evolution of the electron temperature profile and temperature fluctuations. To further these investigations, a custom pulse-burst laser system with a maximum pulse repetition rate of 250 kHz is now being commissioned.  相似文献   

2.
We have developed in situ x-ray synchrotron diffraction measurements of samples heated by a pulsed laser in the diamond anvil cell at pressure up to 60 GPa. We used an electronically modulated 2-10 kHz repetition rate, 1064-1075 nm fiber laser with 1-100 μs pulse width synchronized with a gated x-ray detector (Pilatus) and time-resolved radiometric temperature measurements. This enables the time domain measurements as a function of temperature in a microsecond time scale (averaged over many events, typically more than 10,000). X-ray diffraction data, temperature measurements, and finite element calculations with realistic geometric and thermochemical parameters show that in the present experimental configuration, samples 4 μm thick can be continuously temperature monitored (up to 3000 K in our experiments) with the same level of axial and radial temperature uniformities as with continuous heating. We find that this novel technique offers a new and convenient way of fine tuning the maximum sample temperature by changing the pulse width of the laser. This delicate control, which may also prevent chemical reactivity and diffusion, enables accurate measurement of melting curves, phase changes, and thermal equations of state.  相似文献   

3.
A compact CO(2) laser has been developed for field use as part of an infrared heterodyne radar. The laser, which contains a separate local oscillator, transmits 10.5 W cw or 7 W average in the electrooptically Q-switched mode at a repetition rate of 50 kHz. The applicability of this laser to active imaging is discussed.  相似文献   

4.
The design and characteristics of an automated temperature sensor of dielectric and semiconductor substrates in apparatuses for film deposition and etching of microstructures are considered. The temperature is measured via the laser interference thermometry technique as wavelengths of 0.633 and 1.15 μm of a He-Ne laser. A signal-to-noise ratio of ~30 dB attained in the system is such that the device is sensitive to a change in the substrate temperature of 0.01 K. The heating and cooling of the wafer are recognized automatically and displayed via a graphic interface in real time. An interferogram recorded during substrate heating or cooling, the time dependence of the temperature after the discharge initiation, and the temperature dependence of the substrate-heating power are displayed on the monitor. For 0.5-mm-thick silicon substrates, the measurement range at a wavelength of 1.15 μm extends from cryogenic temperatures to 650 K.  相似文献   

5.
谢冀江 《光学精密工程》2009,17(5):1008-1013
摘要:利用调Q脉冲激光器速率方程计算了自行设计的声光调Q小型CO2激光器的主要技术参数,分析了影响声光调Q CO2激光器输出的主要因素,提出了优化设计的途径和方法,实验结果与理论计算基本一致。经优化设计的激光器脉冲重复频率达1Hz~50kHz, 1kHz时在获得脉宽180ns,峰值功率4062w的激光输出,并利用光栅实现了激光输出波长的连续调谐,波长调谐范围9.2μm~10.8μm,该激光器在激光测距、环境探测及空间通讯等领域具有广泛的用途。  相似文献   

6.
A multiple-circuit high pulse repetition frequency (PRF) pulse generator for the pumping of rare gas halide lasers is reported. With this multiple-circuit design, high PRF can be achieved by the use of existing low PRF thyratron switches and capacitors. A two-circuit pulse generator was constructed, and its performance is described. By means of this pulse generator and a blowdown-type fast transverse-flow system, high PRF laser action in XeF was obtained, typically, 6 mJ/pulse at 1 kHz or 6 W average power. High PRF laser action in N(2) was also observed.  相似文献   

7.
A simple technique for the measurement of the beam shape parameters of pulsed lasers, with just a single pulse of the laser is described. It involves the use of several beam dividers inclined at very small angles to the beam axis, reflecting the beam back to a screen or a phosphor placed near the exit of the laser. The reflected images are then photographed by a camera to yield the beam parameters.  相似文献   

8.
Scanning pyrometry with microsecond time resolution was developed at the IMGC for measurement of thermophysical properties by dynamic techniques. A new pulse method (subsecond experiment) for the measurement of thermal expansion at high temperatures is presented, in which the expansion of a long speciment is correlated to its temperature profile. A new dynamic technique (20–30 s experiment) for the measurement of thermal conductivity is described. Both measurement methods are made possible by high-speed scanning pyrometry.  相似文献   

9.
A photodiode and data acquisition card whose sampling clock is synchronized to the repetition rate of a laser are used to measure the energy of each laser pulse. Simple analysis of the data yields the noise spectrum from very low frequencies up to half the repetition rate and quantifies the pulse energy distribution. When two photodiodes for balanced detection are used in combination with an optical modulator, the technique is capable of detecting very weak pump-probe signals (ΔI/I(0) ~ 10(-5) at 1 kHz), with a sensitivity that is competitive with a lock-in amplifier. Detection with the data acquisition card is versatile and offers many advantages including full quantification of noise during each stage of signal processing, arbitrary digital filtering in silico after data collection is complete, direct readout of percent signal modulation, and easy adaptation for fast scanning of delay between pump and probe.  相似文献   

10.
Novel transformer designs for high-power high-repetition-rate applications   总被引:1,自引:0,他引:1  
The construction technique and resulting electrical performance of high-voltage impulse transformers for 'pulser-sustained' laser applications is presented. The compact structures exhibit excellent rise-time and power-handling capacity over a wide range of operating conditions. The distributed core geometry permits impulse power operation at several megawatts within the kilowatt average power regime. Reliable performance at a repetition rate of up to 40 kHz has been demonstrated. These simple condensed winding and torous core devices can be constructed in minutes and at negligible cost.  相似文献   

11.
Underwater laser machining process is a promising method to cut materials with less thermal damage. A variation of underwater technique is overflow-assisted laser ablation. This process can introduce a higher thermal convection and more uniform water layer than the typical underwater method. Such characteristics can encourage the damage-free fabrication and also stabilize the laser ablation in water. In this study, cut profile and temperature distribution of workpiece induced by the overflow technique were investigated. Titanium alloy (Ti-6Al-4V) used as a work sample was grooved by a nanosecond pulse laser under different overflow conditions. The effects of laser power, laser repetition rate, and water flow velocity were experimentally and numerically examined. A clean and smooth cut surface can be fabricated when the overflow technique was used. Microcracks and porosities found on the laser-ablated area were also addressed in this study. The temperature field of titanium alloy under the different ablation conditions was simulated by using the finite difference computation. The transient heat conduction model was implemented together with the enthalpy method and temperature-dependent material properties. By using the developed model, the groove depths obtained from the experiment and simulation were in a good agreement.  相似文献   

12.
We present an optical technique to measure five-degree-of-freedom error motions of a high-speed microspindle. The measurement system consists of a rod lens, a ball lens, four divided laser beams, and multiple divided photodiodes. When the spindle rotates with its concomitant rotation errors, the rod and ball lenses, which are mounted to the chuck of the spindle, are displaced, and this displacement is measured using an optical technique. For this study, we decide the design parameters of the optical system using ray tracing, fabricate a prototype of the measurement system, and evaluate it experimentally. The results show that the measurement system has a resolution of 5 nm and can be used to evaluate high-speed microspindle rotation errors.  相似文献   

13.
Development of controlled Nd:YAG laser for medical applications   总被引:1,自引:0,他引:1  
Several medical fields are concerned with applications of thermal lasers such as neodymium-doped, yttrium aluminum garnet (Nd:YAG), argon, and CO2. However, quantification of the necrotic volume of Nd:YAG laser-induced damage is not possible at the time of treatment. Mathematic models and feedback control can help to optimize Nd:YAG laser treatments. We therefore formulated mathematic models for coagulation processes and developed an intelligent Nd:YAG laser system with closed-loop feedback control. Surface temperature evolution proved to be valuable data for real-time control of coagulation and ablation. Infrared thermometry provided the noncontact measurement of temperature. A computer stored the temperature data calculated by the mathematic model. Deviations of surface temperature during the treatment beyond established tolerances causes the Nd:YAG laser system to adjust the laser power automatically.  相似文献   

14.
An assembly consisting of a stack of three microchannel plates (MCPs) and a phosphor screen anode has been operated over the temperature range from 300 to 12 K. We report on measurements at 6.4 kHz (using an alpha source) and with dark counts only (15 Hz). Without any particle source, the MCP bias current decreased by a factor of 2.1 x 10(3) when the temperature was lowered from 300 to 12 K. Using the alpha source, and a photomultiplier tube (PMT) to monitor the phosphor screen anode, we first observed an increase in the decay time of the phosphor from 12 to 45 mus when the temperature was decreased from 300 to 100 K while the decay time then decreased and reached a value of 5 mus at 12 K. The pulse height distribution from the PMT was measured between 300 and 12 K and shows a spectrum typical for a MCP phosphor setup at 300 K and 12 K but is strongly degraded for intermediate temperatures. We conclude that the present MCP-phosphor detector assembly is well suited for position-sensitive particle counting operation at temperatures down to at least 12 K even for count rates beyond 6 kHz. This result is crucial and an important part of ongoing developments of new instrumentation for investigations of, e.g., interactions involving complex molecular ions with internal quantum state control.  相似文献   

15.
The design and operational parameters of a high-power pulser suitable for a photo-impulse ionized laser are presented. The relatively compact device utilizes a ceramic thyratron in a triggered resonant charging circuit. Efficient operation at repetition rates up to 40 kHz, with pulsed powers in excess of 2 MW and average powers of several kilowatts has been achieved.  相似文献   

16.
A new microcomputer based air temperature measurement system is presented. An accurate temperature measurement is derived from the measurement of sound velocity by using an ultrasonic time-of-flight (TOF) technique. The study proposes a novel algorithm that combines both amplitude modulation (AM) and phase modulation (PM) to get the TOF measurement. The proposed system uses the AM and PM envelope square waveform (APESW) to reduce the error caused by inertia delay. The APESW ultrasonic driving waveform causes an envelope zero and phase inversion phenomenon in the relative waveform of the receiver. To accurately achieve a TOF measurement, the phase inversion phenomenon was used to sufficiently identify the measurement pulse in the received waveform. Additionally, a counter clock technique was combined to compute the phase shifts of the last incomplete cycle for TOF. The presented system can obtain 0.1% TOF resolution for the period corresponding to the 40 kHz frequency ultrasonic wave. Consequently, with the integration of a humidity compensation algorithm, a highly accurate and high resolution temperature measurement can be achieved using the accurate TOF measurement. Experimental results indicate that the combined standard uncertainty of the temperature measurement is approximately 0.39 degrees C. The main advantages of this system are high resolution measurements, narrow bandwidth requirements, and ease of implementation.  相似文献   

17.
Minority carrier lifetime is one of the basic material properties in optoelectronic devices and material. Both the micrometer range dimensions of the devices and lifetime variations around defects in materials require a lifetime measurement technique with both high spatial and high temporal resolution. In order to meet these requirements a highly efficient cathodoluminescence (CL) measurement system has been developed consisting of a commercial scanning electron microscope extended for integral and spectral CL-measurements and a streak camera with subnanosecond time resolution as time resolving detector. The lifetime is determined by evaluation of CL-decay time after excitation of the specimen by an electron beam pulse, which is blanked in less than 50 ps by an adjustable plate capacitor. The CL-light is collected by an adjustable, ellipsoidal mirror and can be dispersed in a vacuum monochromator. The monochromator exit slit is imaged on to the photocathode of the streak camera, which transforms the temporal distribution of the photon intensity into a lateral distribution on the camera phosphor screen after amplification by an integrated microchannel plate. By this technique it is possible to record the complete CL-decay simultaneously, thus avoiding all measurement falsifications by system instabilities. The resulting intensity distribution is read out by a SIT vidicon camera with subsequent multichannel analyser, providing an intensity plot versus streak time in less then 1 min for each beam spot location. The technique is therefore well suited for lifetime mapping experiments. The best time resolution of the complete system achieved today is about 100 ps. Its performance is here demonstrated by measurements of the temperature dependence of the CL-decay in a highly Se-doped GaAs specimen in the temperature range from 90 K to 300 K.  相似文献   

18.
A pulsed tunable laser source of ultraviolet radiation with a linewidth of <400 MHz, a pulse duration of 9 ns, and a pulse repetition rate of 11 kHz pumped by a copper-vapor laser has been developed. Its average output power at a wavelength of 276 nm is 1.5 W. A system intended for laser isotope separation contains a master oscillator based on a dye laser, two amplifying stages with an average output radiation power of 4.5 W at a wavelength of 553 nm, and a radiation-frequency doubler on a BBO crystal. The master-oscillator laser is built according to a scheme with a diffraction grating positioned at an angle close to the glancing angle, a prism beam expander, and an air-filled hermetically sealed Fabry-Perot etalon. The long-term frequency stability of the output radiation is 10 MHz/h.  相似文献   

19.
A compact coil setup, in conjunction with a high power current pulser, is presented; developed especially for time- and spin-resolved photoemission spectroscopy measuring the sample in magnetic remanence at room temperature. A novel approach is presented where the sample is switched in the stray field of a coil pair. This enables the electrical biasing of the sample without altering the electron trajectories due to field gradients introduced by the coils. The pulser driving the coils reaches a peak power of 1 MW at 1 kA with a switching frequency up to 10 kHz suitable for experiments, for example, with state of the art repetition rates of femtosecond laser systems.  相似文献   

20.
A supersonic helium beam diagnostic, based on the line-ratio technique for high resolution electron density and temperature measurements in the plasma edge (r/a > 0.9) was designed, built, and optimised at TEXTOR (Torus Experiment for Technology Oriented Research). The supersonic injection system, based on the Campargue skimmer-nozzle concept, was developed and optimised in order to provide both a high neutral helium beam density of n(0) = 1.5 × 10(18) m(-3) and a low beam divergence of ±1° simultaneously, achieving a poloidal resolution of Δ(poloidal) = 9 mm. The setup utilises a newly developed dead volume free piezo valve for operation in a high magnetic field environment of up to 2 T with a maximum repetition rate of 80 Hz. Gas injections are realised for a duration of 120 ms at a repetition rate of 2 Hz (duty cycle 1/3). In combination with a high sensitivity detection system, consisting of three 32 multi-channel photomultipliers (PMTs), measurements of edge electron temperature and density with a radial resolution of Δ(radial) = 2 mm and a maximum temporal resolution of Δt ? 2 μs (470 kHz) are possible for the first time. The diagnostic setup at TEXTOR is presented. The newly developed injection system and its theoretical bases are discussed. The applicability of the stationary collisional-radiative model as basis of the line-ratio technique is shown. Finally, an example of a fluctuation analysis demonstrating the unique high temporal and spatial resolution capabilities of this new diagnostic is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号