首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of the operating temperature (between 220 and 270 °C) on the formation of trans isomers of linoleic and linolenic acids in physically refined rapeseed oil during deodorization in a plant‐scale semicontinuous tray‐type deodorizer (capacity 10 t/h) was investigated. The industrial procedures of physical refining consisted of a two‐step bleaching and deodorization process. The degree of isomerization of linoleic acid ranged from 0.33 to 4.77% and that of linolenic acid from 4.43 to 45.22% between 220 and 270 °C, respectively. A relation between the logarithm of the degree of isomerization and the deodorization temperature can be approximated by statistically highly significant linear functions for both linoleic and linolenic acids. Oleic acid was resistant to the heat‐induced geometrical isomerization. The values found for the ratio between the degrees of isomerization of linolenic and linoleic acids, slightly decreasing with increasing temperature, were equal to 13.6 and 12.9 at 230 and 240 °C, respectively. Two trans isomers of linoleic acid, exclusively with one double bond isomerized into trans configuration, and four trans isomers of linolenic acid, mostly with one double bond isomerized into trans configuration, were determined in deodorized rapeseed oils. Linolenic acid was observed to be the main source responsible for the formation of nearly all trans fatty acids in physically refined rapeseed oil. At 235 °C, a deodorization temperature considered as a reasonable technological compromise, the content of trans fatty acids in plant‐scale physically refined rapeseed oil was less than 1% of total fatty acids, which would be acceptable for further application.  相似文献   

2.
Laboratory-scale treatments of canola oils similar to deodorization were carried out by applying the following conditions: reduced pressure with nitrogen or steam stripping at different temperatures ranging from 210 to 270°C for 2–65 h. The formation of the group of trans linolenic acid isomers follows a first-order reaction and the kinetic constant varies according to the Arrhenius’ law. Similar results were observed for the trans isomerization of linoleic acid. Based on these experiments, a mathematical model was developed to describe the isomerization reaction steps occurring in linoleic and linolenic acids during deodorization. The calculated degrees of isomerization are independent of the composition of the oil but related to both time and temperature of deodorization. The degree of isomerization of linolenic acid is unaffected by the decrease of this acid content observed during the deodorization. Deodorization at about 220–230°C appears to be a critical limit beyond which the linolenic isomerization increases very strongly. The newly established model can be a tool for manufacturers to reduce the total trans isomer content of refined oils, and was applied to produce a special selectively isomerized oil for a European Nutritional Project.  相似文献   

3.
The fatty acid compositions of rapeseed and soybean oils marketed in France have been determined by gas liquid chromatography on a fused-silica capillary column coated with a 100% cyanopropyl polysiloxane stationary phase. Under the operating conditions employed, methyl esters of linolenic acid geometrical isomers could be separated and quantitated easily without any other complementary technique. With only one exception, all samples under study (eight salad oils and five food samples) contain geometrical isomers of linolenic acid in measurable, although variable, amounts. Totaltrans-18:3 acids may account for up to 3% of total fatty acids. This value corresponds to a degree of isomerization (percentage oftrans isomers relative to total octadecatrienoic acids) of 30%. Examination of our data indicates that the distribution pattern of linolenic acid geometrical isomers does not depend on the degree of isomerization. The two main isomers always have thec,c,t and thet,c,c configurations. These isomers occur in the almost invariable relative proportions of 47.8±1.7% and 41.1±1.0%, respectively. The third mono-trans isomer is present in lower amounts−6.5±0.7%. The only di-trans isomer that can be quantitated with sufficient accuracy is thet,c,t isomer (4.9±1.5%). Mono-trans isomers of linoleic acid are also present in these oils. However, their maximum percentages are lower than those determined for linolenic acid geometrical isomers. In the oils showing the highest degrees of isomerization,trans isomers of linoleic acid account for 0.5% (rapeseed oils) and 1% (soybean oils) of total fatty acids. Taking into account all data, it would appear that the probability of isomerization of linolenic acid is about 13–14 times that of linoleic acid.  相似文献   

4.
Gas liquid chromatography on polar open tubular columns of the methyl esters of fatty acids from vegetable oils shows that the linolenic acid in deodorized oils is accompanied by two major artifacts identified as cis-9,cis-12,trans-15 and trans-9,cis-12,cis-15 isomers. Physicochemical studies, isolation, and partial degradation steps showed two additional isomers with trans-9,cis-12,trans-15 and cis-9,trans-12,cis-15 structures. Gas liquid chromatography also showed that linoleic acid was accompanied by the trans-9,cis-12 isomer. These artifacts were not present in unrefined oils or bleached oils but could be induced by deodorization in the laboratory. Proportions of the two major artifacts in total 18:3ω3 are given for some vegetable oils from the retail market. Presented in part at the AOCS Spring Meeting, New Orleans.  相似文献   

5.
Long‐chain polyunsaturated fatty acids (LC‐PUFA) of the n‐3 series, particularly eicosapentaenoic (EPA) and docosahexaenoic (DHA) acid, have specific activities especially in the functionality of the central nervous system. Due to the occurrence of numerous methylene‐interrupted ethylenic double bonds, these fatty acids are very sensitive to air (oxygen) and temperature. Non‐volatile degradation products, which include polymers, cyclic fatty acid monomers (CFAM) and geometrical isomers of EPA and DHA, were evaluated in fish oil samples obtained by deodorization under vacuum of semi‐refined fish oil at 180, 220 and 250 °C. Polymers are the major degradation products generated at high deodorization temperatures, with 19.5% oligomers being formed in oil deodorized at 250 °C. A significant amount of CFAM was produced during deodorization at temperatures above or equal to 220 °C. In fact, 23.9 and 66.3 mg/g of C20 and C22 CFAM were found in samples deodorized at 220 and 250 °C, respectively. Only minor changes were observed in the EPA and DHA trans isomer content and composition after deodorization at 180 °C. At this temperature, the formation of polar compounds and CFAM was also low. However, the oil deodorized at 220 and 250 °C contained 4.2% and 7.6% geometrical isomers, respectively. Even after a deodorization at 250 °C, the majority of geometrical isomers were mono‐ and di‐trans. These results indicate that deodorization of fish oils should be conducted at a maximal temperature of 180 °C. This temperature seems to be lower than the activation energy required for polymerization (intra and inter) and geometrical isomerization.  相似文献   

6.
The equilibrium composition ofcis andtrans isomers obtained by isomerizing oleic, linoleic, and linolenic acids with selenium or nitrous acid has been studied using gas chromatography and infrared spectroscopy. The oleic/elaidic equilibrium mixture was found to contain 75–80% elaidic acid instead of the generally accepted 66% value. It is felt that the greater accuracy of gas chromatography and infrared analyses over older methods allows this equilibrium to be defined with greater precision. Similar studies on thecis-trans isomerization of linoleic and linolenic acids indicated that their equilibrium mixtures also contained 75–80%trans double bonds. With linoleic acid, thesetrans bonds were shown to be randomly distributed among the double bonds present. Cis-trans isomerization of linoleic or linolenic acids with selenium produced by-products having elution times equivalent to 18∶2, 18∶1, and 18∶0 on a gas chromatograph. No such by-products were observed when oleic acid was isomerized. Apparently some type of hydrogen-transfer reaction accompanies thecis-trans isomerization of polyunsaturated acids with selenium. Presented at the AOCS meeting in Toronto, Canada, 1962.  相似文献   

7.
Dietary trans monoenes have been associated with an increased risk of heart disease in some studies and this has caused much concern. Trans polyenes are also present in the diet, for example, trans α‐linolenic acid is formed during the deodorisation of α‐linolenic acid‐rich oils such as rapeseed oil. One would expect the intake of trans α‐linolenic acid to be on the increase since the consumption of rapeseed oil in the western diet is increasing. There are no data on trans α‐linolenic acid consumption and its effects. We therefore carried out a comprehensive study to examine whether trans isomers of this polyunsaturated fatty acid increased the risk of coronary heart disease. Since inhibition of Δ6‐desaturase had also been linked to heart disease, the effect of trans α‐linolenic acid on the conversion of [U‐13C]‐labelled linoleic acid to dihomo‐γ‐linolenic and arachidonic acid was studied in 7 healthy men recruited from the staff and students of the University of Edinburgh. Thirty percent of the habitual fat was replaced using a trans ‘free’‐ or ‘high’ trans α‐linolenic acid fat. After at least 6 weeks on the experimental diets, the men received 3‐oleyl, 1,2‐[U‐13C]‐linoleyl glycerol (15 mg twice daily for ten days). The fatty acid composition of plasma phospholipids and the incorporation of 13C‐label into n‐6 fatty acids were determined at day 8, 9 and 10 and after a 6‐week washout period by gas chromatography‐combustion‐isotope ratio mass spectrometry. Trans α‐linolenic acid of plasma phospholipids increased from 0.04 ? 0.01 to 0.17 ? 0.02 and cis ? ‐linolenic acid decreased from 0.42 ? 0.07 to 0.29 ? 0.08 g/100 g of fatty acids on the high trans diet. The composition of the other plasma phospholipid fatty acids did not change. The enrichment of phosphatidyl 13C‐linoleic acid reached a plateau at day 10 and the average of the last 3 days did not differ between the low and high trans period. Both dihomo‐γ‐linolenic and arachidonic acid in phospholipids were enriched in 13C, both in absolute and relative terms (with respect to 13C‐linoleic acid). The enrichment was slightly and significantly higher during the high trans period (P<0.05). Our data suggest that a diet rich in trans α‐linolenic acid (0.6% of energy) does not inhibit the conversion of linoleic acid to dihomo‐γ‐linolenic and arachidonic acid in healthy middle‐aged men consuming a diet rich in linoleic acid.  相似文献   

8.
This study examined the effect of the fatty acid positional distribution and of the triacylglycerol (TG) composition on heat-induced trans isomerization of linoleic and linolenic acids. For this, we synthesized diacid TG molecules that were acylated only with linoleic acid (L) or with linolenic acid (Ln) along with palmitic acid (P). The fatty acid of interest was positioned either in the central position (PLP and PLnP, respectively) or in one of the two outer positions (PPL and PPLn, respectively). Monoacid TG, i.e., trilinolein and trilinolenin, were also synthesized and mixed with tripalmitin in a 1:2 ratio. This model TG was also compared to another TG model, which consisted of a canola oil and its randomized counterpart whose fatty acid positional distribution and TG composition were determined by means of high-performance liquid chromatography. After heating, the content of trans isomers was determined by gas-liquid chromatography with a polar capillary column. In model TG, polyunsaturated fatty acids in monoacid TG (LLL and LnLnLn) exhibited the highest degree of isomerization, compared to diacid TG, and this effect was greatest at 220°C. At this temperature, an effect of the TG structure was observed only with linolenic acid. In that situation, 18:3n-3 acylated in the central position of the TG molecule (PLnP) displayed the highest sensitivity to trans geometrical isomerization. Although to a lesser extent, the same trends as for the pure TG model were observed with the canola oil model with regard to the influence of the fatty acid positional distribution and TG molecular species.  相似文献   

9.
This study examined the effect of the fatty acid positional distribution and of the triacylglycerol (TG) composition on heat-induced trans isomerization of linoleic and linolenic acids. For this, we synthesized diacid TG molecules that were acylated only with linoleic acid (L) or with linolenic acid (Ln) along with palmitic acid (P). The fatty acid of interest was positioned either in the central position (PLP and PLnP, respectively) or in one of the two outer positions (PPL and PPLn, respectively). Monoacid TG, i.e., trilinolein and trilinolenin, were also synthesized and mixed with tripalmitin in a 1:2 ratio. This model TG was also compared to another TG model, which consisted of a canola oil and its randomized counterpart whose fatty acid positional distribution and TG composition were determined by means of high-performance liquid chromatography. After heating, the content of trans isomers was determined by gas-liquid chromatography with a polar capillary column. In model TG, polyunsaturated fatty acids in monoacid TG (LLL and LnLnLn) exhibited the highest degree of isomerization, compared to diacid TG, and this effect was greatest at 220°C. At this temperature, an effect of the TG structure was observed only with linolenic acid. In that situation, 18:3n-3 acylated in the central position of the TG molecule (PLnP) displayed the highest sensitivity to trans geometrical isomerization. Although to a lesser extent, the same trends as for the pure TG model were observed with the canola oil model with regard to the influence of the fatty acid positional distribution and TG molecular species.  相似文献   

10.
Heating of borage oil, either under vacuum as a model or during steam-vacuum deodorization, produces artifacts that are geometrical isomers of γ-linolenic acid (cis-6,cis-9,cis-12 18∶3 acid). In a first approach, we have studied the behavior of these fatty acids in the form of either methyl or isopropyl esters on two capillary columns (CP-Sil 88 and DB-Wax). From this study, it appears that the DB-Wax capillary column is the best suited analytical tool to study in some detail γ-linolenic acid geometrical isomers. In a second approach, the structure of these isomers was formally established by combining several analytical techniques: Argentation thin-layer chromatography, comparison of the equivalent chainlengths with those of isomers present in NO2-isomerized borage oil on two different capillary columns, partial hydrazine reduction, oxidative ozonolysis, gas chromatography coupled with mass spectrometry and gas chromatography coupled with Fourier transform infrared spectroscopy. The two main isomers that accumulate upon heat treatments are thetrans-6,cis-9,cis-12 andcis-6,cis-9,trans-12 18∶3 acids with minor amounts ofcis-6,trans-9,cis-12 18∶3 acid. One di-trans isomer, supposed to be thetrans-6,cis-9,trans-12 18∶3 acid, is present in low although noticeable amounts in some of the heated oils. The content of these artificial fatty acids increases with increasing temperatures and duration of heating. The degree of isomerization (DI) of γ-linolenic acid is less than 1% when the oil is deodorized at 200°C for 2 h. Heating at 260°C for 5 h increases the DI up to 74%. Isomerization of γ-linolenic acid resembles that of α-linolenic (cis-9,cis-12,cis-15 18∶3) acid in several aspects: The same kinds and numbers of isomers are formed, and similar degrees of isomerization are reached when the octadecatrienoic acids are heated under identical conditions. It seems that the reactivity of a double-bondvis-à-vis cis-trans isomerization is linked to its relative position, central or external, and not to its absolute position (Δ6, 9, 12 or 15).  相似文献   

11.
Fifteen samples of commercial edible soybean and rapeseed oils (and mixtures of these) from Belgium, Great Britain and Germany have been analyzed for theirtrans-polyunsaturated fatty acid content. Only one sample out of the 13 refined samples, and the two cold-pressed samples, contained trace amounts oftrans isomers. Others contained between 1 and 3.3% of their total fatty acids as geometrical isomers of linoleic and linolenic acids. The degree of isomerization (DI) of linolenic acid varied between 10.5 and 26.9%. Combining results obtained in this study together with corresponding data for French oils (totalling 21 samples) indicates that the relative percentages of individual linolenic acid geometrical isomers depend on linolenic acid DI. Relationships linking these parameters could be approximated by straight lines, at least for DIs lying between 9 and 30%. Extrapolation to DI=0 suggests that the relative probabilities of isomerization of double bonds in positions 9, 12, and 15 are 41.7, 6.1 and 52.1%, respectively, at the very beginning of the isomerization reaction. At that time, the probability of a simultaneous isomerization of double bonds in positions 9 and 15 is close to zero. Thet,c,t isomer is apparently formedvia thec,c,t and thet,c,c isomers, the former being somewhat more prone to a second geometrical isomerization than the latter. The relative proportion of thec,t,c isomer is practically independent from the DI, at least between 9 and 30%, which would suggest that this isomer is an “end-product” of thecis-trans isomerization reaction.  相似文献   

12.
Soybean oils were hydrogenated either electrochemically with Pd at 50 or 60°C to iodine values (IV) of 104 and 90 or commercially with Ni to iodine values of 94 and 68. To determine the composition and sensory characteristics, oils were evaluated for triacylglycerol (TAG) structure, stereospecific analysis, fatty acids, solid fat index, and odor attributes in room odor tests. Trans fatty acid contents were 17 and 43.5% for the commercially hydrogenated oils and 9.8% for both electrochemically hydrogenated products. Compositional analysis of the oils showed higher levels of stearic and linoleic acids in the electrochemically hydrogenated oils and higher oleic acid levels in the chemically hydrogenated products. TAG analysis confirmed these findings. Monoenes were the predominant species in the commercial oils, whereas dienes and saturates were predominant components of the electrochemically processed samples. Free fatty acid values and peroxide values were low in electrochemically hydrogenated oils, indicating no problems from hydrolysis or oxidation during hydrogenation. The solid fat index profile of a 15∶85 blend of electrochemically hydrogenated soybean oil (IV=90) with a liquid soybean oil was equivalent to that of a commercial stick margarine. In room odor evaluations of oils heated at frying temperature (190°C), chemically hydrogenated soybean oils showed strong intensities of an undesirable characteristic hydrogenation aroma (waxy, sweet, flowery, fruity, and/or crayon-like odors). However, the electrochemically hydrogenated samples showed only weak intensities of this odor, indicating that the hydrogenation aroma/flavor would be much less detectable in foods fried in the electrochemically hydrogenated soybean oils than in chemically hydrogenated soybean oils. Electrochemical hydrogenation produced deodorized oils with lower levels of trans fatty acids, compositions suitable for margarines, and lower intensity levels of off-odors, including hydrogenation aroma, when heated to 190°C than did commercially hydrogenated oil.  相似文献   

13.
Any new crop for which there is a market, and which appears to be adapted to the region, would be attractive to replace nonprofitable traditional crops in Northwestern Argentina. Chia (Salvia hispanica L.) is especially attractive because it can be grown to produce oil for both food and industry. The fatty acids of chia oil are highly unsaturated, with their main components being linoleic (17–26%) and linolenic (50–57%) acids. Seeds from a chia population harvested in Catamarca were sown in five Northwestern Argentina locations. The oil from the chia seeds produced under these five field conditions was measured. Linolenic, linoleic, oleic, palmitic, and stearic fatty acid contents of the oil were determined by gas chromatographic analysis. The results showed variations in oil content, and the oleic, linoleic, and linolenic fatty acid concentrations of the oil were significantly affected by location.  相似文献   

14.
Hydroperoxides produced by oxidation of linoleic and linolenic acids with soybean lipoxygenase were analyzed by nuclear magnetic resonance. The isomerized double bond α,β to the hydro-peroxide group at carbon-13 was determined to betrans. The complete structures of the major products proved to be 13-hydroperoxy-cis-9,trans-11-octa-decadienoic acid from linoleic acid and 13-hydroperoxy-cis-9,trans-11,cis-15-octadecatrienoic acid from linolenic acid. The configuration of the double bonds indicates that oxidation took place through a free radical mechanism as proposed previously by others. N. Market. Nutr. Res. Div., ARS, USDA.  相似文献   

15.
To understand thecis-trans isomerization reaction of ethylenic bonds in heated octadecatrienoic acids (occurring during industrial deodorization of oils), we have prepared a mixture ofcis-9,cis-12,cis-15, andcis-9,cis-15 18:2 acids by partial hydrazine reduction ofcis-9,cis-12,cis-15 18:3 acid present in linseed oil. This mixture (as fatty acid methyl esters) was heated under vacuum at 270°C for 2.25 h. The two methylene-interrupted acids isomerize at a similar rate under such conditions, but the nonmethylene-interruptedcis-9,cis-15 18:2 acid remains unchanged. This means that the mechanism of isomerization does not involve a direct interaction between the two external ethylenic bonds as previously hypothesized. The centralcis-12 ethylenic bond is apparently necessary for the isomerization of the two externalcis-9 andcis-15 ethylenic bonds. However, this bond is itself rather protected against isomerization in the originalcis-9,cis-12,cis-15 18:3 acid which is mainly isomerized totrans-9,cis-12,trans-15,cis-9,cis-12,trans-15, andtrans-9,cis-12,cis-15 18:3 acids. Thecis-9,trans-12,cis-15 18:3 isomer is less than 10% of totaltrans isomers of α-linolenic acid. As a general rule, only one of the two double bonds in a methylene-interrupted diethylenic system can undergocis-trans isomerization when submitted to heat treatment, at least for temperatures equal to or less than 270°C.  相似文献   

16.
The paper gives a short overview about the production and composition of borage (Borago officinalis) and evening primrose (Oenothera biennis) oil considering special aspects of the production as cold‐pressed oil. Both oils are characterized by a remarkable amount of γ‐linolenic acid, which has some nutritional advantages. The fatty acid composition of evening primrose oil is dominated by linoleic acid with about 72% and about 13% γ‐linolenic acid, while borage oil consists of twice the amount of γ‐linolenic acid and only 38% linoleic acid. The amount of saturated fatty acids is higher in borage oil. The tocopherol composition of both oils is dominated by γ‐tocopherol, with borage oil containing twice the amount compared to evening primrose oil.  相似文献   

17.
Summary Potassium tertiary butoxide (1.1 M, 15.5%) in t-butanol readily isomerized linoleic and linolenic acids at 60°C. The absorptivity value for linoleic acid during isomerization rose rapidly, then slowly reached a maximum (88.5) after three days. Maximum absorptivity values for linolenic acid at both 233 mμ (68.5) and at 268 mμ (65.0) were attained at 12 hrs.; thereafter absorptivity at both wavelengths decreased with time. Glycerol also reacted with potassium-t-butoxide under the experimental conditions to produce an absorption maximum at 267 mμ; however this absorbance was easily destroyed by treatment with hydrochloric acid. A simple procedure has been described for isomerization with the alkoxide in a reagent bottle at 60° for 20 hrs. Analyses for linoleic and linolenic acids in five seed oils isomerized by the “bottle method” agreed well with results obtained by the A.O.C.S. KOH-glycol method. Journal Paper No. 1346 of the Purdue Agricultural Experiment Station, Lafayette, Ind.  相似文献   

18.
The composition and physicochemical properties of pecan (Carya illinoensis) kernels and oils from different native trees of the central region of Mexico were investigated. The main compositional characteristic of the kernel was the high lipid content (70–79% w/w on dry basis) with elevated concentration of oleic acid (55–75% w/w). The results confirmed the relationship in the biosynthesis of linoleic and linolenic acids from oleic acid existing in oilseeds. Our results indicate that in pecans such relationship is a function of pecan tree age. The proportion of oleic, linoleic, and linolenic fatty acids determined the oxidative stability, viscosity, and melting/crystallization behavior of pecan oil. In general, these properties in pecan oils were similar or superior to extra-virgin olive oil and unrefined sesame oil. Although all native pecan oils studied showed a significant concentration of oleic acid, a particular group of native Mexican pecan trees produces an oil with a fatty acid composition with the nutritional appeal that consumers demand nowadays (i.e., very high oleic acid, 60–75%), with excellent natural oxidative stability (i.e., induction time for oxidation between 8.5 and 10.8 h), and substantially higher concentrations of α-, γ-, and δ-tocopherol than in pecan varieties previously reported in the literature.  相似文献   

19.
The effect of alpha‐tocopherol (alpha‐T) and quercetin on the formation of hydroperoxides of linoleic and linolenic acids during autoxidation at 60 ± 1 °C was investigated. Three isomers of hydroperoxides were detected using HPLC. Of isomers of linoleic acid hydroperoxides, 13‐hydroperoxy‐octadecadienoic acid trans‐trans (13‐HPODE t‐t), 9‐HPODE cis‐trans (9‐HPODE c‐t) and 9‐HPODE trans‐trans (9‐HPODE t‐t) were identified, constituting 64, 19 and 17% of the total amount, respectively. For linolenic acid, the components 13‐hydroperoxy‐octadecatrienoic acid trans‐trans (13‐HPOTE t‐t), 9‐HPOTE c‐t and 9‐HPOTE t‐t contributed 7, 33 and 60% to the total, respectively. The different dominant hydroperoxide isomers detected in linoleic and linolenic acids during oxidation are related to their chemical structure and the microenvironment of emulsion droplets. The ratios between specific isomers for both fatty acid hydroperoxides did not change during oxidation with or without antioxidants. Alpha‐T effectively inhibited the oxidation of fatty acids and reduced the formation of hydroperoxides. The total amount of the hydroperoxides decreased along with the increase in the concentration of alpha‐T, 1–40 µM. Quercetin inhibited the oxidation of both fatty acids at similar efficiency only at 40 µM concentration. A synergistic antioxidant effect of quercetin with alpha‐T in a binary system on both fatty acids was observed.  相似文献   

20.
The purpose of this study was to evaluate the trans fatty acid (TFA) composition and the tocopherol content in vegetable oils produced in Mexico. Sample oils were obtained from 18 different oil refining factories, which represent 72% of the total refineries in Mexico. Fatty acids and TFA isomers were determined by gas chromatography using a 100-m fused-silica capillary column (SP-2560). Tocopherol content was quantified by normal-phase high-performance liquid chromatography using an ultraviolet detector and a LiChrosorb Si60 column (25 cm). Results showed that 83% of the samples corresponded to soybean oil. Seventy-two percent of the oils analyzed showed TFA content higher than 1%. Upon comparing the tocopherol contents in some crude oils to their corresponding deodorized samples, a loss of 40–56% was found. The processing conditions should be carefully evaluated in order to reduce the loss of tocopherols and the formation of TFA during refining.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号