首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The microstructure and humidity-sensitive characteristics of α -Fe2O3 porous ceramic were investigated. Microporous α -Fe2O3 powders were obtained by controlling the topotactic decomposition reaction of α -FeOOH. Water vapor adsorption thermogravimetrical experiments were carried out in the relative humidity (rh) range 0% to 95% on the α -Fe2O3 powder and the 900°C sintered compact. The microstructure was investigated by SEM, TEM, Hg intrusion, and N2 adsorption porosimetry techniques. The humidity sensitivity was investigated by the impedance measurements technique in 0% to 95% rh on the compacts sintered at 50°C steps in the 850° to 1100°C range. Humidity response was found to be affected by the microstructure, i.e., the characteristics of the precursor powders and sintering temperatures.  相似文献   

2.
Compared to conventional sintering of Y2O3-doped ZrO2 using a slow heating rate of 10°C/min, microwave sintering and fast firing using a rapid heating rate of about 500°C/min resulted in lower final sintered densities. It is attributed to the residual chlorine in commerical zirconia powders manufactured by the chloride process. By calcining at 1100°C for 1 h to remove residual chlorines from the powder compacts, near full densities (>99% of theoretical) could be obtained by both fast firing and microwave sintering.  相似文献   

3.
Mg–Cu–Zn ferrites can be sintered at T ≤950°C to sufficient density and display adequate permeability profiles for application in multilayer ferrite inductors. The permeability and Curie temperature have to be optimized by proper selection of composition. Ferrites with <50 mol% Fe2O3 reveal enhanced densification behavior. Submicrometer powders prepared by fine milling show good sintering activity and density after firing at 900°C. Nano-size ferrite powders prepared by coprecipitation or flame synthesis lead to high density; maximum shrinkage already occurs at T <800°C. The use of Bi2O3 as a sintering additive further improves the densification, but also affects the microstructure and, hence, the permeability. A maximum permeability of μi=450–500 is obtained.  相似文献   

4.
Precoarsening to Improve Microstructure and Sintering of Powder Compacts   总被引:1,自引:0,他引:1  
MgO and Al2O3 were sintered by two types of processes: a conventional isothermal sintering and a two-step sintering consisting of an initial low-temperature precoarsening treatment before conventional isothermal sintering. The final microstructure from two-step sintering can be more uniform and finer than that of compacts sintered conventionally. A narrow-size-distribution alumina powder was sintered under constant-heating-rate conditions, with and without a precoarsening treatment, and the results were compared. The differences between two-step and conventional processing were clarified by experiments on precoarsened and as-received ZnO powders. These compacts were precoarsened at 450°C for 90 h with virtually no increase in the overall density. The resulting grain size was 1.7 times the starting one, but the standard deviation of the precoarsened powder size distribution was smaller than that of the asreceived powder. Precoarsened compacts sintered to nearly full density showed improved homogeneity. The sintering stress of the precoarsened ZnO was approximately 0.8 that of the as-received one. A computational model has been used with two components of coarsening to describe the differences in pore spacing evolution between the precoarsened and the as-received system. The benefit of two-step sintering is attributed to the increase in uniformity resulting from precoarsening. The increased uniformity decreases sintering damage and allows the system to stay in the open porosity state longer, delaying or inhibiting additional coarsening (grain growth) during the final stage of densification. Two-step sintering is especially useful for nonuniform powder systems with a wide size distribution and is a simple and convenient method of making more uniform ceramic bodies without resorting to specialized powders or complicated heat schedules.  相似文献   

5.
Transparent Cr4+-Doped YAG Ceramics for Tunable Lasers   总被引:1,自引:0,他引:1  
Transparent Cr4+:YAG (Y3AlSO12) ceramics doped with Ca and Mg as counterions and SiO2 as a sintering aid were fabricated by a solid-state reaction method using high-purity powders of Al2O3, Y2O3, and Cr2O3. The mixed powder compacts were sintered at 1750°C for 10 h in oxygen, or 1750°C for 10 h under vacuum, and then annealed at 1400°C for 10 h in oxygen. Cr-doped YAG ceramics sintered in oxygen had a brown color and characteristic absorption by Cr4+ ions, whereas these YAG ceramics sintered under different conditions (vacuum + oxygen) had a green color and absorption at ∼590 and 430 nm by Cr3+ ions. The absorption behavior of YAG ceramics sintered in oxygen was almost equivalent to that of Cr4+:YAG single crystals fabricated by the Czochralski method.  相似文献   

6.
The field-activated sintering technique (FAST) was applied to simultaneously sinter and react sol–gel amorphous powders to form Al2TiO5. Densities close to theoretical and conversion to Al2TiO5 (to 92.5%) have been achieved using FAST at 1050°–1200°C for 10 min. Conventional sintering of the same powders at 1300°C for 2 h resulted in 88.9% Al2TiO5 and ∼75% of theoretical density. The enhanced sintering and compound formation using FAST have been explained by the synergistic effects of precursor reactivity, nanosized powders, and electric-field effects.  相似文献   

7.
Compositionally homogeneous indium tin oxide (ITO) ceramics with low porosity were obtained successfully by sintering hydrothermally prepared powders. The fabrication technique began with the preparation of microcrystalline, homogeneously tin-doped (5 wt%) indium oxyhydroxide powder, under hydrothermal conditions. Low-temperature (∼500°C) calcination of the hydrothermally derived powder led to the formation of a substitutional-vacancy-type solid solution of In2Sn1− x O5− y , and further heating of this phase at temperatures of >1000°C resulted in the formation of the tin-doped indium oxide phase, which had the C -type rare-earth-oxide structure. The sintering of uniformly packed, calcined powder compacts at 1450°C for 3 h in air resulted in low-porosity (∼0.7%) ITO ceramics.  相似文献   

8.
Polycrystalline, transparent YAG (Y3AI5O12) ceramics were fabricated by a solid-state reaction method using high-purity Al2O3 and Y2O3 powders. The mixed powder compacts were sintered at 1600° to 1850°C for 5 h under vacuum. Optical transmittance in the region between the ultraviolet and infrared wavelengths for YAG ceramics (1 mm thick) sintered at 1800°C was similar to that for a YAG single crystal.  相似文献   

9.
Nanocrystalline CeO2 powders were prepared electrochemically by the cathodic electrogeneration of base, and their sintering behavior was investigated. X-ray diffraction and transmission electron microscopy revealed that the as-prepared powders were crystalline cerium(IV) oxide with the cubic fluorite structure. The lattice parameter of the electrogenerated material was 0.5419 nm. The powders consisted of nonaggregated, faceted particles. The average crystallite size was a function of the solution temperature. It increased from 10 nm at 29°C to 14 nm at 80°C. Consolidated powders were sintered in air at both a constant heating rate of 10°C/min and under isothermal conditions. The temperature at which sintering started (750°C) for nanocrystalline CeO2 powders was only about 100°C lower than that of coarser-grained powders (850°C). However, the sintering rate was enhanced. The temperature at which shrinkage stopped was 200°-300°C lower with the nanoscale powder than with micrometer-sized powders. A sintered specimen with 99.8% of theoretical density and a grain size of about 350 nm was obtained by sintering at 1300°C for 2 h.  相似文献   

10.
Pressureless Sintering of Boron Carbide   总被引:4,自引:0,他引:4  
B4C powder compacts were sintered using a graphite dilatometer in flowing He under constant heating rates. Densification started at 1800°C. The rate of densification increased rapidly in the range 1870°–2010°C, which was attributed to direct B4C–B4C contact between particles permitted via volatilization of B2O3 particle coatings. Limited particle coarsening, attributed to the presence or evolution of the oxide coatings, occurred in the range 1870°–1950°C. In the temperature range 2010°–2140°C, densification continued at a slower rate while particles simultaneously coarsened by evaporation–condensation of B4C. Above 2140°C, rapid densification ensued, which was interpreted to be the result of the formation of a eutectic grain boundary liquid, or activated sintering facilitated by nonstoichiometric volatilization of B4C, leaving carbon behind. Rapid heating through temperature ranges in which coarsening occurred fostered increased densities. Carbon doping (3 wt%) in the form of phenolic resin resulted in more dense sintered compacts. Carbon reacted with B2O3 to form B4C and CO gas, thereby extracting the B2O3 coatings, permitting sintering to start at ∼1350°C.  相似文献   

11.
Fabrication of Transparent Silicon Nitride from Nanosize Particles   总被引:3,自引:0,他引:3  
Compaction of ultrafine silicon nitride (Si3N4) powder at high pressures and various temperatures followed by pressureless sintering was investigated. The powder, consisting of nearly spherical particles (16 nm in diameter) of amorphous stoichiometric Si3N4, was pressed in a diamond anvil cell under pressures up to 5 GPa and temperatures ranging from liquid nitrogen to 500°C. Quality of compaction, evaluated by visual transparency and hardness of the produced compacts, depended on the amount of adsorbed gases on the surface of the particles and on the temperature of compaction. Visually transparent compacts were produced by pressing the starting powder without outgassing in liquid nitrogen under 5 GPa. The transparent compacts exhibited a hardness of 1200 kg/mm2 after pressing in the diamond anvil cell at 500°C for 3 h at 5 GPa. After subsequent pressureless sintering conducted for 1 h at 5 GPa. After subsequent pressureless sintering conducted for 1 h at 1400°C in a tube furnace under nitrogen, the hardness of these samples increased to over 2000 kg/mm2 and the visual transparency was maintained. The results demonstrated that transparency was maintained. The results demonstrated that transparent compacts of nanosize amorphous Si3N4 particles could be sintered to high hardness at relatively low temperatures without using sintering aids or applying pressure during sintering.  相似文献   

12.
Preparation of Titanium Nitride/Alumina Laminate Composites   总被引:2,自引:0,他引:2  
A preparation route for TiN/Al2O3 laminate composites has been described. A water-based process using Al2O3 and TiN slurries with solids contents of 40 and 35 vol%, respectively, was used to make TiN and Al2O3 tapes. The removal of the binder was monitored by weight-loss measurements in a thermogravimetry unit. Bodies composed of Al2O3 and TiN tapes were densified at temperatures of 1400° and 1500°C using the Spark Plasma Sintering® (SPS) technique. Densities of >98% of the theoretical densities were approached. Crack-free and almost fully densified TiN/Al2O3 compacts were prepared by heating the burned-out green bodies to the final sintering temperature (1500°C) at a rate of 100°C/min, and with a holding time of 5–10 min, under a pressure of 75 MPa. The microstructures of the obtained compacts were studied using scanning electron microscopy. Grain sizes in the sintered Al2O3 and TiN compacts were similar to those of the precursor powders. Hardness and indentation fracture toughness were measured at room temperature, and the monolithic compacts as well as the laminate composites exhibited anisotropic mechanical behavior; i.e., the cracks propagated much more easily in a direction parallel to the laminas than perpendicular to them.  相似文献   

13.
Silicon nitride ceramics were prepared by spark plasma sintering (SPS) at temperatures of 1450°–1600°C for 3–12 min, using α-Si3N4 powders as raw materials and MgSiN2 as sintering additives. Almost full density of the sample was achieved after sintering at 1450°C for 6 min, while there was about 80 wt%α-Si3N4 phase left in the sintered material. α-Si3N4 was completely transformed to β-Si3N4 after sintering at 1500°C for 12 min. The thermal conductivity of sintered materials increased with increasing sintering temperature or holding time. Thermal conductivity of 100 W·(m·K)−1 was achieved after sintering at 1600°C for 12 min. The results imply that SPS is an effective and fast method to fabricate β-Si3N4 ceramics with high thermal conductivity when appropriate additives are used.  相似文献   

14.
The dc resistivity of nickel-zinc ferrite was studied as a function of nickel/zinc ratio, apparent density, temperature, and grain size. Resistivities of Ni0.40Zn0.51Fe1.90O4– and Ni0.35Zn0.65-Fe1.90O4– are similar. Evaluation of samples sintered between 1100° and 1220°C showed that densification proceeds rapidly for sintering temperatures 1170°C; for these specimens the room temperature resistivity increases to an equilibrium value with sintering time. Samples sintered to 99+% of theoretical density at lower temperatures densify slowly; the resistivity is invariant with sintering time. The Seebeck coefficient for the p -type ferrites is 550 μV/°C from 200° to 700°C; the dielectric constant varies from 17.3 at 0.5 MHz to 16.4 at 15 MHz.  相似文献   

15.
Ultra-high-temperature ceramic composites of ZrB2 20 wt%SiC were pressureless sintered under an argon atmosphere. The starting ZrB2 powder was synthesized via the sol–gel method with a small crystallite size and a large specific surface area. Dry-pressed compacts using 4 wt% Mo as a sintering aid can be pressureless sintered to ∼97.7% theoretical density at 2250°C for 2 h. Vickers hardness and fracture toughness of the sintered ceramic composites were 14.82±0.25 GPa and 5.39±0.13 MPa·m1/2, respectively. In addition to the good sinterability of the ZrB2 powders, X-ray diffraction and scanning electron microscopy results showed that Mo formed a solid solution with ZrB2, which was believed to be beneficial for the densification process.  相似文献   

16.
Amorphous CeO2–ZrO2 gels were prepared by coprecipitation in ammonia solutions. The onset of crystallization of the gels, from calcining in air, was 420°C, while 200° to 250°C in the presence of water and organic solvents such as methanol and ethanol. The sintering behaviors of CeO2–ZrO2 powders were sensitive to the crystallizing conditions, since hard agglomerates formed when the precipitated gels were crystallized by normal calcination in air, whereas soft agglomerates formed when they were crystallized in water or organic solvents. CeO2–ZrO2 powders crystallized in methanol and water at 250°C were sintered to full theoretical density at 1150° and 1400°C, respectively, whereas that crystallized by calcination in air at 450°C was sintered to only 95.2% of theoretical density, even at 1500°C.  相似文献   

17.
Dense BaTiO3 ceramics consisting of submicrometer grains were prepared using the spark plasma sintering (SPS) method. Hydrothermally prepared BaTiO3 (0.1 and 0.5 µm) was used as starting powders. The powders were densified to more than similar/congruent95% of the theoretical X-ray density by the SPS process. The average grain size of the SPS pellets was less than similar/congruent1 µm, even by sintering at 1000-1200°C, because of the short sintering period (5 min). Cubic-phase BaTiO3 coexisted with tetragonal BaTiO3 at room temperature in the SPS pellets, even when well-defined tetragonal-phase BaTiO3 powder was sintered at 1100° and 1200°C and annealed at 1000°C, signifying that the SPS process is effective for stabilizing metastable cubic phase. The measured permittivity was similar/congruent7000 at 1 kHz at room temperature for samples sintered at 1100°C and showed almost no dependence on frequency within similar/congruent100-106 Hz; the permittivity at 1 MHz was 95% of that at 1 kHz.  相似文献   

18.
A ZrB2–SiC–ZrC ceramic was produced by reactive hot pressing using Zr, Si, and B4C as raw materials. The kinetics of the reaction process was studied. The reduction of powders by ball milling is of crucial importance for the sintering. The self-propagating high-temperature synthesis reaction between the raw powders can be ignited by controlling the sintering conditions, which leads to a sintering temperature as low as 1600°C, the lowest sintering temperature reported thus far. The relative density is 97.3%, with an open porosity of 0.6%, and the mechanical properties are comparable to the composites that sintered at higher temperatures. The depletion of oxygen impurities during the sintering was discussed.  相似文献   

19.
Transparent polycrystalline Nd:YAG ceramics were fabricated by solid-state reactive sintering a mixture of commercial Al2O3, Y2O3, and Nd2O3 powders. The powders were mixed in methanol and doped with 0.5 wt% tetraethoxysilane (TEOS), dried, and pressed. Pressed samples were sintered from 1700° to 1850°C in vacuum without calcination. Transparent fully dense samples with average grain sizes of ∼50 μm were obtained at 1800°C for all Nd2O3 levels studied (0, 1, 3, and 5 at.%). The sintering temperature was little affected by Nd concentration, but SiO2 doping lowered the sintering temperature by ∼100°C. Abnormal grain growth was frequently observed in samples sintered at 1850°C. The Nd concentration was determined by energy-dispersive spectroscopy to be uniform throughout the samples. The in-line transmittance was >80% in the 350–900 nm range regardless of the Nd concentration. The best 1 at.% Nd:YAG ceramics (2 mm thick) achieved 84% transmittance, which is equivalent to 0.9 at.% Nd:YAG single crystals grown by the Czochralski method.  相似文献   

20.
Powder compacts consisting of Al, Al2O3, and ZrO2 were heated by microwave radiation. Tracing the phase evolution during reaction bonding revealed the reaction mechanism. In the case of conventional heating, the compacts expanded slightly at temperatures of <700°C due to Al surface oxidation and expanded sharply at temperatures greater than 700°C as oxidation proceeded from the surface to the interior. Then, the compacts shrank at 1550°C due to sintering. For the case of microwave heating, the compacts expanded at temperatures of <550°C due to the formation of Al3Zr. This Al3Zr formation was caused by the preferential heating of ZrO2 relative to Al and Al2O3 by microwave radiation. Then, Al3Zr was oxidized to form Al2O3 and ZrO2 at temperatures of >1000°C. Finally, the compacts shrank at 1550°C due to sintering, similarly to conventional sintering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号