首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 280 毫秒
1.
采用CVD金刚石厚膜车刀对K10硬质合金进行了不同安装前角下的切削加工试验,比较分析了刀具的磨损状况和加工表面粗糙度随前角的变化规律。结果表明,增大车刀安装前角的负值,可以抑制切削刃边缘的破碎及直线刃部的剥离破碎,提高工件的加工表面质量。  相似文献   

2.
采用整体式波前校正器替代自适应式波前校正器可以大大降低光学系统的成本。介绍了整体式波前校正器的金刚石切削原理。利用所研制的快速伺服刀架、计算机控制系统 ,在超精密车床上进行了切削试验。试验表明 ,用单点金刚石车削整体式波前校正器是可行的。  相似文献   

3.
金刚石刀具高速精密切削加工的研究   总被引:7,自引:4,他引:7  
王西彬 《工具技术》2002,36(2):15-18
采用聚晶金刚石刀具和天然金刚石刀具对LY12高强度铝合金进行了高速精密切削试验 ,系统研究了切削条件、切削用量对加工表面粗糙度的影响规律。结果表明 ,在比常用切削速度高 8倍的高速切削速度范围内(v=80 0~ 12 0 0m/min) ,采用圆弧刃天然金刚石刀具可获得Ra0 0 4~ 0 0 6 μm的高光洁加工表面 ;采用直线刃聚晶金刚石刀具可获得Ra0 0 7~ 0 1μm的光洁加工表面。切削速度对加工表面粗糙度的影响主要受到机床动态特性的制约 ;进给量的选择范围较大 ;背吃刀量对加工表面质量影响极大 ,为获得较小表面粗糙度必须合理选用背吃刀量  相似文献   

4.
在对单晶硅的超精密切削加工中,为了优化金刚石刀具参数以利于实现其塑性域切削,运用线弹性断裂力学和有限元法对在不同的刀具前角和切削刃钝圆半径下切削区域的应力场分布和微裂纹扩展规律进行了计算仿真研究,并在此基础上进行了单晶硅的金刚石切削试验以验证仿真分析。结果表明,采用前角范围为-15°~-25°的车刀进行切削有利于抑制原子级尺寸裂纹初步扩展成微裂纹,因此可以提高加工时的脆塑转变临界切深值,有利于实现塑性域切削;而且,切削刃钝圆半径越小加工时的微裂纹就越不易扩展,因此也就容易实现单晶硅的塑性域车削,得到高质量的金刚石切削加工表面。  相似文献   

5.
超精密切削时刀具切削刃的作用机理分析   总被引:3,自引:0,他引:3  
分析了金刚石刀具切削刃的切削作用、脆性材料超精密切削时切屑形成机理;对金刚石刀具切削刃钝圆半径、切削厚度、切削角三者之间的关系进行了描述。结果表明:脆性材料可以实现塑性域超精密切削加工;控制切削参数可以加工出满足要求的表面粗糙度和表面波纹度,为生产实际提供可靠的工艺条件及技术参数。  相似文献   

6.
在圆弧刃刀具切削直线廓形时理论粗糙度计算的基础上,着重研究圆弧刃刀具切削圆弧廓形时理论粗糙度的计算方法。研究表明,工件已加工表面理论粗糙度取决于工件已加工表面的廓形、刀具切削刃形状和刀具切削运动方式,优化选取刀刃半径和刀具进给量后,可以有效地减小理论粗糙度值并提高切削效率。  相似文献   

7.
李佳  李晓群  王鹏  邹钰 《中国机械工程》2015,26(12):1563-1568
为了提高插齿加工精度,提出一种无理论刃形误差插齿刀具设计方法。基于曲面共轭原理,根据待加工齿面和插齿加工运动特点,建立齿面共轭面的数学模型。前刀面选择球面形式,应用割线法求得共轭面和前刀面的交线,进而建立切削刃的数学模型。从刀具重新刃磨后仍能满足无理论刃形误差要求的角度出发,求取多条切削刃,利用所求得切削刃曲线构造后刀面,建立后刀面数学模型。插齿加工实验表明,采用无理论刃形误差直齿插齿刀加工工件,刀具重磨前后加工精度有较好的一致性,从而证明了该设计方法的正确性和可行性。    相似文献   

8.
高硬度模具侧壁精铣加工需要抑制长悬伸刀具的震颤,提高切削刃强度.切削刃形状参数主要包括刀具前角和刃口钝圆半径(或倒棱宽度),通过切削试验分析轴向前角和切削刃钝圆半径对加工表面精度和刀具寿命的影响规律,优化刀具刃口形状,可以获得更优良的加工精度和更长的刀具寿命.  相似文献   

9.
在车削螺纹时,螺纹车刀的切削刃形状将决定所加工螺纹纵剖面的形状。若车刀的纵向前角γp及横向前角γf皆为零,且刀具前刀面与通过工件中心线的水平面重合,则刀具切削刃就保持在母线上,或者可以认为此时刀具切削刃就是该螺旋面的母线。在此条件下进行精加工,人们预期所获得的螺纹牙形能符合在水平剖面上的刀具切削刃的形状。但事实上,即便是在精加工中,工件被切削表面必定发生某种程度的弹性及塑性变形,在切削过程结束后,又将发生弹性恢复。其结果是使得螺纹牙形角εw不等于刀尖角εr,并且εw>εr…………………………………………  相似文献   

10.
吴高潮 《工具技术》2021,55(12):25-29
在切削碳纤维增强复合材料(CFRP)时,大前角的切削刃可以有效减少毛刺,提高加工表面质量,但是前角的增加会影响刀具寿命.本文研究开发了一种PCD直刃波齿立铣刀,设计了不同前角的铣刀进行铣削对比试验,并进行了不同切削距离的磨损试验.通过对比不同切削长度的刀具前刀面、后刀面磨损形貌以及工件上下表面的毛刺,研究了不同前角的铣刀对加工质量的影响.结果 表明,7°前角的铣刀可以有效切断碳纤维,从而减少毛刺的产生,而0°前角的毛刺较多;随着切削距离的增长,7°前角的铣刀比0°前角铣刀前后刀面磨损更小.  相似文献   

11.
We conducted a series of screening experiments to survey the influence of machining parameters on tool wear during ductile regime diamond turning of large single-crystal silicon optics. The machining parameters under investigation were depth-of-cut, feed rate, surface cutting speed, tool radius, tool rake angle and side rake angle, and cutting fluid. Using an experimental design technique, we selected twenty-two screening experiments. For each experiment we measured tool wear by tracing the tool edge with an air bearing linear variable differential transformer before and after cutting and recording the amount of tool edge recession. Using statistical tools, we determined the significance of each cutting parameter within the parameter space investigated. We found that track length, chip size, tool rake angle and surface cutting speed significantly affect tool wear, while cutting fluid and side rake angle do not significantly affect tool wear within the ranges tested. The track length, or machining distance, is the single most influential characteristic that causes tool wear. For a fixed part area, a decrease in track length corresponds to an increase in feed rate. Less tool wear occurred on experiments with negative rake angle tools, larger chip sizes and higher surface velocities. The next step in this research is to perform more experiments in this region to develop a predictive model that can be used to select cutting parameters that minimize tool wear.  相似文献   

12.
The present work shows a study on cutting of stone by diamond tool. The diamond grits on the tool surface remove material through the scratching and the cracking of the stone volume. This work reports a kinematics analysis between a single grit of a diamond tool and the stone volume. In previous works, a mathematical relationship of the chipping geometry, due to a single grit, with machining and tool parameters has been derived. This work aims to measure the cutting force due to a single tool grit for different machining conditions. In particular, the machining conditions that are most interesting by an industrial point of view have been investigated. The stone cutting force has been measured by a Kistler 9257 BA piezoelectric platform dynamometer. The outputs of the dynamometer were fed into an A/D converter and sampled at high frequency by a PC. Then, the signals recorded by the PC were filtered by Matlab software at a low frequency. The collected data have been put into relationship with machining and tool parameters.  相似文献   

13.
According to the hypothesis of ductile machining, brittle materials undergo a transition from brittle to ductile mode once a critical undeformed chip thickness is reached. Below this threshold, the energy required to propagate cracks is believed to be larger than the energy required for plastic deformation, so that plastic deformation is the predominant mechanism of material removal in machining these materials in this mode. An experimental study is conducted using diamond cutting for machining single crystal silicon. Analysis of the machined surfaces under a scanning electron microscope (SEM) and an atomic force microscope (AFM) identifies the brittle region and the ductile region. The study shows that the effect of the cutting edge radius possesses a critical importance in the cutting operation. Experimental results of taper cutting show a substantial difference in surface topography with diamond cutting tools of 0° rake angle and an extreme negative rake angle. Cutting with a diamond cutting tool of 0° rake angle could be in a ductile mode if the undeformed chip thickness is less than a critical value, while a ductile mode cutting using the latter tool could not be found in various undeformed chip thicknesses.  相似文献   

14.
Management of the chips generated in diamond turning is often critical since contact between chips and the workpiece can result in superficial damage to the finished surface. Controlling chip motion is not a trivial process as the proper positioning of an oil or an air stream requires an understanding of the dynamics of a diamond turned chip and the machining parameters that affect it. Previous work [1] introduced the chip curvature parameter, χ, which is useful in predicting chip radius of curvature over a wide range of cutting speeds, depths of cut, tool geometries and workpiece material properties. To control chip motion, however, an understanding of the direction chips leave the tool/workpiece interface must also be obtained. Cutting experiments were performed investigating the influence of cutting speed, depth of cut, feed rate, tool path angle, tool geometry and tool orientation on the directional characteristics of the motion of diamond turned chips. Flow angle measurements obtained during cutting were found to remain within ± 10° of predictions from a simple geometrical model originally proposed for conventional machining.  相似文献   

15.
加工TC4钛合金发动机叶片球型刀的试验研究   总被引:1,自引:0,他引:1  
针对发动机TC4钛合金叶片的切削加工,通过生产部门大量的切削试验,确定了合理的刀具材料、几何角度、切削用量以及粗、精加工条件下刀具的相对磨钝标准。并用试验验证了粗、精加工条件下几何角度和切削用量对球型刀耐用度的影响以及表面粗糙度值随切削时间的变化规律。试验结论对硬质合金球型刀切削TC4钛合金叶片具有实际的指导意义与参考价值。  相似文献   

16.
A surface roughness model utilizing regression analysis method is developed for predicting roughness of ultra-precision machined surface with a single crystal diamond tool. The effects of the main variables, such as cutting speed, feed, and depth of cut on surface roughness are also analyzed in diamond turning aluminum alloy. In order to predict and control the surface roughness before ultraprecision machining, constrained variable metric method is used to select the optimum cutting conditions during process planning. A lot of experimental results show that the model can predict the surface roughness effectively under a certain cutting conditions .  相似文献   

17.
Tool path generation is one of the key challenges in multi-axis sculptured surface machining. Besides geometry accuracy, machining processes have been considered in tool path generation in order to improve machining quality and efficiency as far as possible. However, so far, the machine tool accuracies have not been yet fully taken into account during tool path generation. Contour accuracy is one of the most important precision indexes to guarantee the machining quality of sculptured surfaces. One of the major reasons causing contour error is the dynamic mismatch between feed axes of machine tools. In this study, the mathematic relationship between the cutting direction, dynamic mismatch of feed axes and contour error is theoretically established. The mathematic relationship can be used to calculate the optimal cutting directions which minimize the contour error caused by dynamic mismatch between feed axes during machining a sculptured surface by a three-axis machine tool. A machining experiment is carried out to verify the mathematic relationship. In the experiment, the tool paths are generated along the optimal cutting direction and other cutting directions for comparison. The results show that the contour error under the case of the optimal cutting direction is much smaller than that under the other cases.  相似文献   

18.
Turbo-machinery gradually has expanded its business into the automotive and aircraft industries. A core part of turbo-machinery is the impeller which can lead to manufacturing problems because it has twisted surfaces. Therefore, impeller machining requires five-axis machining technology and expert knowledge. Five-axis machining has the advantages of being able to select a variety of tool axis in the machining and remove uncut region which are impossible in the three-axis machining, which could obtain high productivity and good surface quality. Rough cutting is one very important operation as it affects productivity in the impeller machining and it is necessary to determine cutting strategies and select optimal cutting condition. This paper proposes a statistical method to optimize the rough cutting parameters in impeller machining by response surface methodology and efficient strategy to divide cutting region. Firstly, the rough operation was divided into three steps to remove volume from inducer to exducer and two steps were also added to remove the fillets between blade surfaces and hub surfaces. These machining strategies are selected as the qualitative factors when the response surface method is used. Secondly, cutting time was set as the response factor for productivity, and step-down, step over, and feed rate were determined as independent factors. Finally, the response surface model was estimated by a single surface in order to predict rough cutting time and the optimum cutting conditions were searched by the estimated model.  相似文献   

19.
超精密车削表面粗糙度的控制与优化   总被引:1,自引:0,他引:1  
金刚石车削是利用高精度机床与锋利的单晶金刚石刀具加工出尺寸精度高、表面完整性好的零件的一种金属加工技术。用回归分析的方法,根据金刚石车削铝合金的实验结果可以建立表面粗糙度预测模型,这种方法能够以较少的实验次数获得大量的加工信息。在一定条件下,利用优化设计软件可以实现切削参数的优选,用优选得到的最优切削参数组合进行超精密加工,能够获得超光滑加工表面。  相似文献   

20.
Rapid tool wear in diamond machining of steel can cause catastrophic failures. Despite several approaches to reducing tool wear, diamond machining of steel for industrial applications remains limited. We investigated two solutions, namely plasma nitriding treatment for workpiece surface modification and elliptical vibration cutting for cutting process modification, to determine their effect on reducing tool wear in diamond machining of AISI 4140 die steel. Furthermore, a new approach by combining the two solutions was also explored. Experimental results showed that diamond tool wear could be reduced by several orders of magnitude and mirror-quality surface can be obtained by using either the plasma nitriding treatment or the elliptical vibration cutting. However, in contrast to our expectations, combining the two solutions did not yield further improvement of either the surface finish or the reduction of tool wear compared with that of elliptical vibration cutting alone due to microchipping. Care has been taken to investigate the mechanism responsible for microchipping, and it was found that microchipping is highly dependent on the crystal orientation of the diamond. A diamond tool with the (1 1 0) plane as the rake face and the (1 0 0) plane as the flank face was more resistant to damage, and the microchipping induced in the combined cutting process was almost completely suppressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号