首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 53 毫秒
1.
简单介绍了功能高分子材料的种类和特点,特别就其各类功能高分子材料(如导热、导电、磁性、光敏、离子交换树脂、高吸水性、絮凝、光引发、耐高温和形状记忆等材料)在胶粘剂领域中的应用进行了综述。最后对功能高分子材料在胶粘剂中的独特作用和应用前景进行了展望。  相似文献   

2.
功能高分子材料具有独特的功能和不可替代的特性,其应用可促进各领域技术进步。通过对目前国内国外功能高分子材料研究现状进行分析,将功能高分子材料与传统材料进行比较,阐述功能高分子材料的性能及应用。对功能高分子材料的现状、性能及应用趋势进行全面的、系统的研究,对功能高分子材料的应用前景进行展望与分析。  相似文献   

3.
功能高分子是一类具有特殊用途的高分子材料 ,印迹高分子、敏感性水凝胶和固定化酶是三种较有特色的功能高分子材料。该文将对上述三种功能高分子材料以及它们在生化分离、生物催化、物质分析与检测以及药物控制释放中的应用做一介绍 ,同时也对它们的不足和发展前景进行了评述  相似文献   

4.
朱利会  陈爱政  王士斌 《化工进展》2014,33(7):1832-1838
肺部给药作为一种非入侵式的给药方式,在蛋白质、多肽类药物的给药研究中具有很大的发展潜力。高分子多孔微球是最适合肺部给药的药物载体之一,本文首先阐述了高分子多孔微球的几种传统制备方法,分析了这些制备方法在不同的条件下存在的优点及缺点。随后本文针对传统的高分子多孔微球制备条件难以单独控制,药物不能有效包封等问题,对近年来研究者们为了提高多孔微球的性能对其进行的物理化学改性进行了综述并提出了观点。最后对肺部给药用高分子多孔微球不同的制备方法的相互结合以及在生物医学领域的应用价值进行了展望。  相似文献   

5.
高分子载体药物是随着药物学研究、生物材料科学和临床医学的发展而新兴的给药技术。高分子材料作为药物的载体越来越多的被应用于化工医药领域,这一技术受到了研究者们的重视,并且得到了较好的发展。文章介绍近年来研究比较广泛的高分子药物载体的应用情况、有关机理以及制备方法。  相似文献   

6.
综述缓控释制剂中常见的:骨架型缓控释系统;膜缓释控释给药系统;渗透泵控释给药系统中应用的典型高分子材料的特点,并对其进行评价。  相似文献   

7.
纳米载药系统是指由无机或高分子材料形成的纳米级微观范畴的亚微粒药物载体输送系统。纳米载药系统具有改善药物性能、增强药物靶向性、提高生物利用度、降低药物毒副作用等优势,正成为新型给药系统的研究热点,至今已经开发了纳米颗粒、纳米脂质体、纳米胶束及纳米乳液等。本文对纳米载药系统近10年来的发展状况做如下整理和分析,以供后续研究者和临床工作者参考。  相似文献   

8.
目前与炎症性肠病(IBD)相关药物的制备途径和作用机理已相对明确,但通过传统给药方式应用这些药物时会带来一定的副作用。为此,学者们开发了一些新型给药系统,不仅提高了这些药物的疗效,同时也减轻了其副作用,特别是仿生主动靶向给药系统,将是未来IBD治疗中最具前景的方向。本文综述了治疗IBD的药物的工业合成路线以及新型给药系统的研究进展,同时介绍了不同给药系统的靶向机制以及其在IBD治疗领域中的应用前景。  相似文献   

9.
李国芝  周冬菊 《广州化工》2012,40(20):38-39,64
离子交换材料作为一种新型的药用高分子材料近年来在药剂学中的应用广泛,在药物传递系统中的应用研究迅速。但离子交换技术及离子交换材料在药剂学中的应用仍存在许多不足。归纳了离子交换材料的种类、特性,以及离子交换材料作为药物载体在药物制剂方面的应用。提出了研制功能性离子交换树脂辅料将是未来发展方向。  相似文献   

10.
离子液体是室温下呈液态的离子化合物,是一类新型的"软"功能材料或介质,具有优良的可设计性,它作为一种绿色溶剂,具有很多独特的物理化学性能,可广泛应用于高分子材料中,本文介绍了离子液体在高分子溶解,合成,改性,降解等方面的应用。并展望了离子液体在高分子材料领域中的应用。  相似文献   

11.
The controlled delivery of active pharmaceutical ingredients to the site of disease represents a major challenge in drug therapy. Particularly when drugs have to be transported across biological barriers, suitable drug delivery systems are of importance. In recent years responsive delivery systems have been developed which enable a controlled drug release depending on internal or external stimuli such as changes in pH, redox environment or light and temperature. In some studies delivery systems with reactivity against two different stimuli were established either to enhance the response by synergies of the stimuli or to broaden the window of possible trigger events. In the present review numerous exciting developments of pH-, light- and redox-cleavable polymers suitable for the preparation of smart delivery systems are described. The review discusses the different stimuli that can be used for a controlled drug release of polymer-based delivery systems. It puts a focus on the different polymers described for the preparation of stimuli-sensitive systems, their preparation techniques as well as their stimuli-responsive degradation. © 2022 The Authors. Polymer International published by John Wiley & Sons Ltd on behalf of Society of Industrial Chemistry.  相似文献   

12.
Controlled‐release delivery systems are designed to prolong the release of drugs within the body. They consist of drug molecules encapsulated within biodegradable polymers which degrade safely into small, non‐toxic fragments, resulting in the release of the drug. Because different polymers have different degradation times, the system can be tailored to achieve the desired release rate and this can be very useful in treatments where daily dosing is required, such as epilepsy. Despite this obvious advantage, there are problems with this type of delivery, including an increased risk of overdosing. This article examines the pros and cons of controlled‐release drug‐delivery systems. Copyright © 2007 Society of Chemical Industry  相似文献   

13.
Recent pharmaceutical research has focused on controlled drug delivery having an advantage over conventional methods. Adequate controlled plasma drug levels, reduced side effects as well as improved patient compliance are some of the benefits that these systems may offer. Controlled delivery systems that can provide zero-order drug delivery have the potential for maximizing efficacy while minimizing dose frequency and toxicity. Thus, zero-order drug release is ideal in a large area of drug delivery which has therefore led to the development of various technologies with such drug release patterns. Systems such as multilayered tablets and other geometrically altered devices have been created to perform this function. One of the principles of multilayered tablets involves creating a constant surface area for release. Polymeric materials play an important role in the functioning of these systems. Technologies developed to date include among others: Geomatrix® multilayered tablets, which utilizes specific polymers that may act as barriers to control drug release; Procise®, which has a core with an aperture that can be modified to achieve various types of drug release; core-in-cup tablets, where the core matrix is coated on one surface while the circumference forms a cup around it; donut-shaped devices, which possess a centrally-placed aperture hole and Dome Matrix® as well as “release modules assemblage”, which can offer alternating drug release patterns. This review discusses the novel altered geometric system technologies that have been developed to provide controlled drug release, also focusing on polymers that have been employed in such developments.  相似文献   

14.
Polyoxalate (POx) and copolyoxalate (CPOx) smart polymers are topics of interest the field of inflammation. This is due to their drug delivery ability and their potential to target reactive oxygen species (ROS) and to accommodate small molecules such as curcumin, vanilline, and p-Hydroxybenzyl alcohol. Their biocompatibility, ultra-size tunable characteristics and bioimaging features are remarkable. In this review we discuss the genesis and concept of oxylate smart polymer-based particles and a few innovative systemic delivery methods that is designed to counteract the inflammation and other aging-associated diseases (AADs). First, we introduce the ROS and its role in human physiology. Second, we discuss the polymers and methods of incorporating small molecule in oxalate backbone and its drug delivery application. Finally, we revealed some novel proof of concepts which were proven effective in disease models and discussed the challenges of oxylate polymers.  相似文献   

15.
Smart drug delivery systems have attracted a lot of attention as one of the new treatment methods for cancer. In this study, a smart drug delivery system carrying anticancer drugs was obtained by the intelligent synthesis of glucosamine (GA)-functionalized graphene oxide (GO)-based iron oxide nanoparticles (Fe3O4@GO-GA) using Hummers and chemical co-precipitation processes. Nanohybrids have a high surface area (280.26 m2/g) and superparamagnetic behaviour (Ms = 26.017 emu/g), indicating a significant loading capacity (373.78 mg/mg) and efficiency (96.3%) for pharmaceutical loading. An adsorption study of conventional daunorubicin (DNR) on this carrier showed that the drug release is more prone to occur under acidic conditions (pH = 5.5), at moderately high temperatures (T = 40°C), and in the absence of smart carriers. The toxicity of the smart nanohybrids was examined using the sulphorhodamine B (SRB) assay in Michigan Cancer Foundation-7 (MCF-7) cell lines. The rate of death of cells exposed to smart drug-containing systems in comparison to the systems without GA shows that GA reduces the toxicity of Fe3O4@GO.  相似文献   

16.
Within the general context of nanomedicine, drug delivery systems based on polymers have sparked a rapidly growing interest and raised many efforts to tackle various diseases, among which cancer. Polyester-based nanoparticulate drug delivery systems, including polymer-drug conjugates and amphiphilic block copolymers, represent a major class with promising outcomes, especially for those derived from poly(3-hydroxybutyrate) (PHB). This review describes recent advances in drug delivery systems designed from the self-assembly of synthetic (co)polymers derived from PHB. The various strategies for the synthesis of PHB-conjugates, PHB/poly(ethylene glycol) (PEG) and other PHB-based copolymers are first summarized. Nanoparticles, micelles, microparticles, and hydrogels elaborated from these (co)polymers following various preparation methods, along with their exploitation in the encapsulation and release of various therapeutic agents, are next detailed. Finally, we discuss the synthetic challenges, drug delivery outlooks, and perspectives of PHB-based drug delivery systems. Engineered nano-scaled materials based on PHB self-assembled systems are thus anticipated to emerge as a valuable platform for original drug delivery systems.  相似文献   

17.
Drug delivery vectors for sustained release include a variety of polymeric constituents, both natural and synthetic. Among synthetic polymers several linear block copolymer systems have been explored for use as drug delivery vectors. Release of the pharmaceutical agent is affected by the degradation characteristics and/or by the swelling of the polymer. The goal of this study is to evaluate the degradation behavior of branched polyethylene oxide polylactide polyether ester as a drug delivery vector. Three samples of a star polyethylene oxide/polylactide copolymer with differing polylactide chain lengths were evaluated by characterizing the thermal properties of the neat polymer and in vitro degradation behavior.The thermal and morphological properties were examined by DSC, TGA and XRD. The in vitro polymeric micelle samples were observed over time by UV-vis, TEM and fluorescence. The four star PEO-PLA polymers have exceptional amphiphilic characteristics, which enable their use for a variety of applications. The polymers are thermally stable at biological conditions. In addition, the star polymers have shorter degradation times as compared to previously reported linear PLA and PEG-PLA copolymers, suggesting use as a short-term drug release agent. The four star PEO/PLA copolymer may be an excellent candidate for drug delivery applications.  相似文献   

18.
王映华 《河北化工》2006,29(12):14-16
可生物降解药物控释系统具有智能化、效率高和使用方便等特点,在药物控制释放研究领域越来越受到瞩目.基于国内外大量研究文献,对可生物降解药物控释系统进行了综述,着重介绍了温度和pH敏感型可生物降解智能化高分子给药系统的研究进展.  相似文献   

19.
Nature continues to be the ultimate in nanotechnology, where polymeric nanometer‐scale architectures play a central role in biological systems. Inspired by the way nature forms functional supramolecular assemblies, researchers are trying to make nanostructures and to incorporate these into macrostructures as nature does. Recent advances and progress in nanoscience have demonstrated the great potential that nanomaterials have for applications in healthcare. In the realm of drug delivery, nanomaterials have been used in vivo to protect the drug entity in the systemic circulation, ensuring reproducible absorption of bioactive molecules that do not naturally penetrate biological barriers, restricting drug access to specific target sites. Several building blocks have been used in the formulation of nanoparticles. Thus, stability, drug release, and targeting can be tailored by surface modification. Herein the state of the art of stimuli‐responsive polymeric nanoparticles are reviewed. Such systems are able to control drug release by reacting to naturally occurring or external applied stimuli. Special attention is paid to the design and nanoparticle formulation of these so‐called smart drug‐delivery systems. Future strategies for further developments of a promising controlled drug delivery responsive system are also outlined.  相似文献   

20.
Layered hydroxides (LHs) have recently fascinated researchers due to their wide application in various fields. These inorganic nanoparticles, with excellent features as nanocarriers in drug delivery systems, have the potential to play an important role in healthcare. Owing to their outstanding ion-exchange capacity, many organic pharmaceutical drugs have been intercalated into the interlayer galleries of LHs and, consequently, novel nanodrugs or smart drugs may revolutionize in the treatment of diseases. Layered hydroxides, as green nanoreservoirs with sustained drug release and cell targeting properties hold great promise of improving health and prolonging life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号